Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Cancer Cell ; 39(10): 1404-1421.e11, 2021 10 11.
Artigo em Inglês | MEDLINE | ID: mdl-34520734

RESUMO

The CDK4/6 inhibitor, palbociclib (PAL), significantly improves progression-free survival in HR+/HER2- breast cancer when combined with anti-hormonals. We sought to discover PAL resistance mechanisms in preclinical models and through analysis of clinical transcriptome specimens, which coalesced on induction of MYC oncogene and Cyclin E/CDK2 activity. We propose that targeting the G1 kinases CDK2, CDK4, and CDK6 with a small-molecule overcomes resistance to CDK4/6 inhibition. We describe the pharmacodynamics and efficacy of PF-06873600 (PF3600), a pyridopyrimidine with potent inhibition of CDK2/4/6 activity and efficacy in multiple in vivo tumor models. Together with the clinical analysis, MYC activity predicts (PF3600) efficacy across multiple cell lineages. Finally, we find that CDK2/4/6 inhibition does not compromise tumor-specific immune checkpoint blockade responses in syngeneic models. We anticipate that (PF3600), currently in phase 1 clinical trials, offers a therapeutic option to cancer patients in whom CDK4/6 inhibition is insufficient to alter disease progression.


Assuntos
Ciclo Celular/efeitos dos fármacos , Quinase 2 Dependente de Ciclina/antagonistas & inibidores , Quinase 4 Dependente de Ciclina/antagonistas & inibidores , Quinase 6 Dependente de Ciclina/antagonistas & inibidores , Neoplasias/tratamento farmacológico , Feminino , Humanos , Masculino , Neoplasias/imunologia
2.
J Med Chem ; 64(13): 9056-9077, 2021 07 08.
Artigo em Inglês | MEDLINE | ID: mdl-34110834

RESUMO

Control of the cell cycle through selective pharmacological inhibition of CDK4/6 has proven beneficial in the treatment of breast cancer. Extending this level of control to additional cell cycle CDK isoforms represents an opportunity to expand to additional tumor types and potentially provide benefits to patients that develop tumors resistant to selective CDK4/6 inhibitors. However, broad-spectrum CDK inhibitors have a long history of failure due to safety concerns. In this approach, we describe the use of structure-based drug design and Free-Wilson analysis to optimize a series of CDK2/4/6 inhibitors. Further, we detail the use of molecular dynamics simulations to provide insights into the basis for selectivity against CDK9. Based on overall potency, selectivity, and ADME profile, PF-06873600 (22) was identified as a candidate for the treatment of cancer and advanced to phase 1 clinical trials.


Assuntos
Antineoplásicos/farmacologia , Descoberta de Drogas , Inibidores de Proteínas Quinases/farmacologia , Administração Oral , Animais , Antineoplásicos/administração & dosagem , Antineoplásicos/química , Proliferação de Células/efeitos dos fármacos , Quinase 2 Dependente de Ciclina/antagonistas & inibidores , Quinase 2 Dependente de Ciclina/metabolismo , Quinase 4 Dependente de Ciclina/antagonistas & inibidores , Quinase 4 Dependente de Ciclina/metabolismo , Quinase 6 Dependente de Ciclina/antagonistas & inibidores , Quinase 6 Dependente de Ciclina/metabolismo , Cães , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Feminino , Humanos , Injeções Intravenosas , Camundongos , Estrutura Molecular , Neoplasias Experimentais/tratamento farmacológico , Neoplasias Experimentais/metabolismo , Neoplasias Experimentais/patologia , Inibidores de Proteínas Quinases/administração & dosagem , Inibidores de Proteínas Quinases/química , Relação Estrutura-Atividade , Células Tumorais Cultivadas
3.
Mol Cancer Ther ; 15(10): 2273-2281, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27496135

RESUMO

Therapeutically targeting aberrant intracellular kinase signaling is attractive from a biological perspective but drug development is often hindered by toxicities and inadequate efficacy. Predicting drug behaviors using cellular and animal models is confounded by redundant kinase activities, a lack of unique substrates, and cell-specific signaling networks. Cyclin-dependent kinase (CDK) drugs exemplify this phenomenon because they are reported to target common processes yet have distinct clinical activities. Tumor cell studies of ATP-competitive CDK drugs (dinaciclib, AG-024322, abemaciclib, palbociclib, ribociclib) indicate similar pharmacology while analyses in untransformed cells illuminates significant differences. To resolve this apparent disconnect, drug behaviors are described at the molecular level. Nonkinase binding studies and kinome interaction analysis (recombinant and endogenous kinases) reveal that proteins outside of the CDK family appear to have little role in dinaciclib/palbociclib/ribociclib pharmacology, may contribute for abemaciclib, and confounds AG-024322 analysis. CDK2 and CDK6 cocrystal structures with the drugs identify the molecular interactions responsible for potency and kinase selectivity. Efficient drug binding to the unique hinge architecture of CDKs enables selectivity toward most of the human kinome. Selectivity between CDK family members is achieved through interactions with nonconserved elements of the ATP-binding pocket. Integrating clinical drug exposures into the analysis predicts that both palbociclib and ribociclib are CDK4/6 inhibitors, abemaciclib inhibits CDK4/6/9, and dinaciclib is a broad-spectrum CDK inhibitor (CDK2/3/4/6/9). Understanding the molecular components of potency and selectivity also facilitates rational design of future generations of kinase-directed drugs. Mol Cancer Ther; 15(10); 2273-81. ©2016 AACR.


Assuntos
Antineoplásicos/farmacologia , Quinases Ciclina-Dependentes/antagonistas & inibidores , Inibidores de Proteínas Quinases/farmacologia , Animais , Antineoplásicos/química , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Análise por Conglomerados , Quinases Ciclina-Dependentes/química , Quinases Ciclina-Dependentes/metabolismo , Interações Medicamentosas , Resistencia a Medicamentos Antineoplásicos , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/metabolismo , Humanos , Leucócitos Mononucleares/efeitos dos fármacos , Leucócitos Mononucleares/metabolismo , Modelos Moleculares , Conformação Molecular , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/metabolismo , Fosforilação , Ligação Proteica , Inibidores de Proteínas Quinases/química , Ratos
4.
Nat Commun ; 7: 11384, 2016 04 28.
Artigo em Inglês | MEDLINE | ID: mdl-27122193

RESUMO

Polycomb repressive complex 2 (PRC2) mediates gene silencing through chromatin reorganization by methylation of histone H3 lysine 27 (H3K27). Overexpression of the complex and point mutations in the individual subunits of PRC2 have been shown to contribute to tumorigenesis. Several inhibitors of the PRC2 activity have shown efficacy in EZH2-mutated lymphomas and are currently in clinical development, although the molecular basis of inhibitor recognition remains unknown. Here we report the crystal structures of the inhibitor-bound wild-type and Y641N PRC2. The structures illuminate an important role played by a stretch of 17 residues in the N-terminal region of EZH2, we call the activation loop, in the stimulation of the enzyme activity, inhibitor recognition and the potential development of the mutation-mediated drug resistance. The work presented here provides new avenues for the design and development of next-generation PRC2 inhibitors through establishment of a structure-based drug design platform.


Assuntos
Antineoplásicos/química , Inibidores Enzimáticos/química , Complexo Repressor Polycomb 2/antagonistas & inibidores , Complexo Repressor Polycomb 2/química , Resistencia a Medicamentos Antineoplásicos , Proteína Potenciadora do Homólogo 2 de Zeste/química , Proteína Potenciadora do Homólogo 2 de Zeste/genética , Proteína Potenciadora do Homólogo 2 de Zeste/metabolismo , Humanos , Modelos Moleculares , Mutação , Neoplasias/genética , Neoplasias/metabolismo , Complexo Repressor Polycomb 2/genética , Complexo Repressor Polycomb 2/metabolismo
5.
Proc Natl Acad Sci U S A ; 106(5): 1542-7, 2009 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-19164557

RESUMO

Most gastrointestinal stromal tumors (GISTs) exhibit aberrant activation of the receptor tyrosine kinase (RTK) KIT. The efficacy of the inhibitors imatinib mesylate and sunitinib malate in GIST patients has been linked to their inhibition of these mutant KIT proteins. However, patients on imatinib can acquire secondary KIT mutations that render the protein insensitive to the inhibitor. Sunitinib has shown efficacy against certain imatinib-resistant mutants, although a subset that resides in the activation loop, including D816H/V, remains resistant. Biochemical and structural studies were undertaken to determine the molecular basis of sunitinib resistance. Our results show that sunitinib targets the autoinhibited conformation of WT KIT and that the D816H mutant undergoes a shift in conformational equilibrium toward the active state. These findings provide a structural and enzymologic explanation for the resistance profile observed with the KIT inhibitors. Prospectively, they have implications for understanding oncogenic kinase mutants and for circumventing drug resistance.


Assuntos
Antineoplásicos/uso terapêutico , Resistencia a Medicamentos Antineoplásicos/genética , Tumores do Estroma Gastrointestinal/tratamento farmacológico , Indóis/uso terapêutico , Mutação , Piperazinas/uso terapêutico , Pirimidinas/uso terapêutico , Pirróis/uso terapêutico , Receptores Proteína Tirosina Quinases/metabolismo , Antineoplásicos/metabolismo , Benzamidas , Tumores do Estroma Gastrointestinal/enzimologia , Tumores do Estroma Gastrointestinal/genética , Humanos , Mesilato de Imatinib , Indóis/metabolismo , Fosforilação , Piperazinas/metabolismo , Pirimidinas/metabolismo , Pirróis/metabolismo , Receptores Proteína Tirosina Quinases/genética , Espectrometria de Fluorescência , Sunitinibe
6.
Mol Pharmacol ; 65(5): 1278-85, 2004 May.
Artigo em Inglês | MEDLINE | ID: mdl-15102956

RESUMO

Cyclophosphamide (CPA) and ifosfamide (IFA) are oxazaphosphorine anticancer prodrugs metabolized by two alternative cytochrome P450 (P450) pathways, drug activation by 4-hydroxylation and drug inactivation by N-dechloroethylation, which generates the neurotoxic and nephrotoxic byproduct chloroacetaldehyde. CPA and IFA metabolism catalyzed by P450s 2B1, 2B4, 2B5, and seven site-specific 2B1 mutants was studied in a reconstituted Escherichia coli expression system to identify residues that contribute to the unique activities and substrate specificities of these enzymes. The catalytic efficiency of CPA 4-hydroxylation by rat P450 2B1 was 10- to 35-fold higher than that of rabbit P450 2B4 or 2B5. With IFA, approximately 50% of metabolism proceeded via N-dechloroethylation for 2B1 and 2B4, whereas CPA N-dechloroethylation corresponded to only approximately 3% of total metabolism (2B1) or was absent (2B4, 2B5). Improved catalytic efficiency of CPA and IFA 4-hydroxylation was obtained upon substitution of 2B1 Ile-114 by Val, and replacement of Val-363 by Leu or Ile selectively suppressed CPA N-dechloroethylation >or=90%. P450 2B1-V367A, containing the Ala replacement found in 2B5, exhibited only approximately 10% of wild-type 2B1 activity for both substrates. Canine P450 2B11, which has Val-114, Leu-363, and Val-367, was therefore predicted to be a regioselective CPA 4-hydroxylase with high catalytic efficiency. Indeed, P450 2B11 was 7- to 8-fold more active as a CPA and IFA 4-hydroxylase than 2B1, exhibited a highly desirable low K(m) (80-160 microM), and catalyzed no CPA N-dechloroethylation. These findings provide insight into the role of specific P450 2B residues in oxazaphosphorine metabolism and pave the way for gene therapeutic applications using P450 enzymes with improved catalytic activity toward these anticancer prodrug substrates.


Assuntos
Ciclofosfamida/metabolismo , Citocromo P-450 CYP2B1/metabolismo , Ifosfamida/metabolismo , Pró-Fármacos/metabolismo , Animais , Antineoplásicos Alquilantes/metabolismo , Antineoplásicos Alquilantes/farmacologia , Hidrocarboneto de Aril Hidroxilases/genética , Hidrocarboneto de Aril Hidroxilases/metabolismo , Biotransformação , Ciclofosfamida/farmacologia , Citocromo P-450 CYP2B1/genética , Família 2 do Citocromo P450 , Ifosfamida/farmacologia , Cinética , Mutação , Pró-Fármacos/farmacologia , Ratos , Esteroide Hidroxilases/genética , Esteroide Hidroxilases/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA