Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
FEBS J ; 2024 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-38973142

RESUMO

Accumulating evidence shows that inflammation is essential for embryo implantation and decidualization. Histamine, a proinflammatory factor that is present in almost all mammalian tissues, is synthesized through decarboxylating histidine by histidine decarboxylase (HDC). Although histamine is known to be essential for decidualization, the underlying mechanism remains undefined. In the present study, histamine had no obvious direct effects on in vitro decidualization in mice. However, the obvious differences in HDC protein levels between day 4 of pregnancy and day 4 of pseudopregnancy, as well as between delayed and activated implantation, suggested that the blastocyst may be involved in regulating HDC expression. Furthermore, blastocyst-derived tumor necrosis factor α (TNFα) significantly increased HDC levels in the luminal epithelium. Histamine increased the levels of amphiregulin (AREG) and disintegrin and metalloproteinase domain-containing protein 17 (ADAM17) proteins, which was abrogated by treatment with famotidine, a specific histamine type 2 receptor (H2R) inhibitor, or by TPAI-1 (a specific inhibitor of ADAM17). Intraluminal injection of urocanic acid (HDC inhibitor) on day 4 of pregnancy significantly reduced the number of implantation sites on day 5 of pregnancy. TNFα-stimulated increases in HDC, AREG and ADAM17 protein levels was abrogated by urocanic acid, a specific inhibitor of HDC. Additionally, AREG treatment significantly promoted in vitro decidualization. Collectively, our data suggests that blastocyst-derived TNFα induces luminal epithelial histamine secretion, and histamine increases mouse decidualization through ADAM17-mediated AREG release.

2.
Cells ; 13(3)2024 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-38334598

RESUMO

(1) Background: Inflammatory responses are implicated in embryo implantation, decidualization, pregnancy maintenance and labor. Both embryo implantation and decidualization are essential to successful pregnancy in rodents and primates. S100A6 is involved in inflammation, tumor development, apoptosis and calcium homeostasis. S100A6 is strongly expressed in mouse decidua, but the underlying mechanisms of how S100A6 regulates implantation and decidualization are poorly defined. (2) Methods: Mouse endometrial stromal and epithelial cells are isolated from day 4 pseudopregnant mouse uteri. Both immunofluorescence and Western blotting are used to analyze the expression and localization of proteins. The molecular mechanism is verified in vitro by Western blotting and the quantitative polymerase chain reaction. (3) Results: From days 4 to 8 of pregnancy, S100A6 is specifically expressed in mouse subluminal stromal cells. Blastocyst-derived lactic acid induces AA secretion by activating the luminal epithelial p-cPLA2. The epithelial AA induces stromal S100A6 expression through the COX2/PGI2/PPAR δ pathway. Progesterone regulates S100A6 expression through the progesterone receptor (PR). S100A6/RAGE signaling can regulate decidualization via EGFR/ERK1/2 in vitro. (4) Conclusions: S100A6, as an inflammatory mediator, is important for mouse implantation and decidualization.


Assuntos
Decídua , Útero , Gravidez , Feminino , Animais , Camundongos , Ácido Araquidônico/metabolismo , Útero/metabolismo , Implantação do Embrião/fisiologia , Blastocisto
3.
Photochem Photobiol ; 100(4): 1031-1040, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38190286

RESUMO

Ultraviolet B (UVB) radiation represents a major carcinogen for the development of all skin cancer types. Mechanistically, UVB induces damage to DNA in the form of lesions, including cyclobutane pyrimidine dimers (CPDs). Disruption of the functional repair processes, such as nucleotide excision repair (NER), allows persistence of DNA damage and contributes to skin carcinogenesis. Recent work has implicated m6A RNA methylation and its regulatory proteins as having critical roles in facilitating UVB-induced DNA damage repair. However, the biological functions of the m6A reader YTHDC2 are unknown in this context. Here, we show that YTHDC2 inhibition enhances the repair of UVB-induced DNA damage. We discovered that YTHDC2 inhibition increased the expression of PTEN while it decreased the expression of the PRC2 component SUZ12 and the levels of the histone modification H3K27me3. However, none of these functions were causally linked to the improvements in DNA repair, suggesting that the mechanism utilized by YTHDC2 may be unconventional. Moreover, inhibition of the m6A writer METTL14 reversed the effect of YTHDC2 inhibition on DNA repair while inhibition of the m6A eraser FTO mimicked the effect of YTHDC2 inhibition, indicating that YTHDC2 may regulate DNA repair through the m6A pathway. Finally, compared to normal human skin, YTHDC2 expression was upregulated in human cutaneous squamous cell carcinomas (cSCC), suggesting that it may function as a tumor-promoting factor in skin cancer. Taken together, our findings demonstrate that the m6A reader YTHDC2 plays a role in regulating UVB-induced DNA damage repair and may serve as a potential biomarker in cSCC.


Assuntos
Dano ao DNA , Reparo do DNA , Raios Ultravioleta , Humanos , Histonas/metabolismo , Proteínas de Ligação a RNA/metabolismo , Proteínas de Ligação a RNA/genética , Metiltransferases/metabolismo , Metiltransferases/genética , Neoplasias Cutâneas/metabolismo , Neoplasias Cutâneas/genética , Neoplasias Cutâneas/patologia , PTEN Fosfo-Hidrolase/metabolismo , PTEN Fosfo-Hidrolase/genética , RNA Helicases
4.
Cancer Treat Res ; 190: 95-142, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38113000

RESUMO

An analogous field to epigenetics is referred to as epitranscriptomics, which focuses on the study of post-transcriptional chemical modifications in RNA. RNA molecules, including mRNA, tRNA, rRNA, and other non-coding RNA molecules, can be edited with numerous modifications. The most prevalent modification in eukaryotic mRNA is N6-methyladenosine (m6A), which is a reversible modification found in over 7000 human genes. Recent technological advances have accelerated the characterization of these modifications, and they have been shown to play important roles in many biological processes, including pathogenic processes such as cancer. In this chapter, we discuss the role of m6A mRNA modification in cancer with a focus on solid tumor biology and immunity. m6A RNA methylation and its regulatory proteins can play context-dependent roles in solid tumor development and progression by modulating RNA metabolism to drive oncogenic or tumor-suppressive cellular pathways. m6A RNA methylation also plays dynamic roles within both immune cells and tumor cells to mediate the anti-tumor immune response. Finally, an emerging area of research within epitranscriptomics studies the role of m6A RNA methylation in promoting sensitivity or resistance to cancer therapies, including chemotherapy, targeted therapy, and immunotherapy. Overall, our understanding of m6A RNA methylation in solid tumors has advanced significantly, and continued research is needed both to fill gaps in knowledge and to identify potential areas of focus for therapeutic development.


Assuntos
Neoplasias , RNA , Humanos , RNA/metabolismo , Metilação , RNA Mensageiro/química , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Metilação de RNA , Neoplasias/genética , Neoplasias/terapia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA