Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
Int J Radiat Oncol Biol Phys ; 118(1): 231-241, 2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-37552151

RESUMO

PURPOSE: The aim of this study was to investigate the dosimetric and clinical effects of 4-dimensional computed tomography (4DCT)-based longitudinal dose accumulation in patients with locally advanced non-small cell lung cancer treated with standard-fractionated intensity-modulated radiation therapy (IMRT). METHODS AND MATERIALS: Sixty-seven patients were retrospectively selected from a randomized clinical trial. Their original IMRT plan, planning and verification 4DCTs, and ∼4-month posttreatment follow-up CTs were imported into a commercial treatment planning system. Two deformable image registration algorithms were implemented for dose accumulation, and their accuracies were assessed. The planned and accumulated doses computed using average-intensity images or phase images were compared. At the organ level, mean lung dose and normal-tissue complication probability (NTCP) for grade ≥2 radiation pneumonitis were compared. At the region level, mean dose in lung subsections and the volumetric overlap between isodose intervals were compared. At the voxel level, the accuracy in estimating the delivered dose was compared by evaluating the fit of a dose versus radiographic image density change (IDC) model. The dose-IDC model fit was also compared for subcohorts based on the magnitude of NTCP difference (|ΔNTCP|) between planned and accumulated doses. RESULTS: Deformable image registration accuracy was quantified, and the uncertainty was considered for the voxel-level analysis. Compared with planned doses, accumulated doses on average resulted in <1-Gy lung dose increase and <2% NTCP increase (up to 8.2 Gy and 18.8% for a patient, respectively). Volumetric overlap of isodose intervals between the planned and accumulated dose distributions ranged from 0.01 to 0.93. Voxel-level dose-IDC models demonstrated a fit improvement from planned dose to accumulated dose (pseudo-R2 increased 0.0023) and a further improvement for patients with ≥2% |ΔNTCP| versus for patients with <2% |ΔNTCP|. CONCLUSIONS: With a relatively large cohort, robust image registrations, multilevel metric comparisons, and radiographic image-based evidence, we demonstrated that dose accumulation more accurately represents the delivered dose and can be especially beneficial for patients with greater longitudinal response.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Radioterapia de Intensidade Modulada , Humanos , Carcinoma Pulmonar de Células não Pequenas/diagnóstico por imagem , Carcinoma Pulmonar de Células não Pequenas/radioterapia , Radioterapia de Intensidade Modulada/efeitos adversos , Radioterapia de Intensidade Modulada/métodos , Neoplasias Pulmonares/diagnóstico por imagem , Neoplasias Pulmonares/radioterapia , Estudos Retrospectivos , Dosagem Radioterapêutica , Planejamento da Radioterapia Assistida por Computador/métodos , Tomografia Computadorizada Quadridimensional/métodos
2.
Oncol Lett ; 25(6): 252, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37153037

RESUMO

Undifferentiated carcinoma with osteoclast-like giant cells of the pancreas (UCOGCP) is a rare pancreatic tumor that accounts for <1% of all primary pancreatic malignant tumors. Although the tumor is considered a variant of pancreatic ductal adenocarcinoma, there are substantial differences in the clinicopathological characteristics between UCOGCP and pancreatic ductal adenocarcinoma. Imaging examinations are useful in making a correct diagnosis, and providing a reasonable and effective surgical treatment regimen; however, the imaging characteristics of UCOGCP require further investigation. The present report describes a rare case of UCOGCP with rapid progression and poor prognosis. The patient could not undergo surgery and received chemotherapy drugs only. Chemotherapy did not markedly improve the outcome, and a follow-up 6 months after discharge showed that the patient had died. The present report describes this case and summarizes the available imaging findings to increase awareness, and to improve early diagnosis of this rare disease and therapeutic outcomes.

3.
Adv Radiat Oncol ; 8(4): 101164, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36798731

RESUMO

Purpose: To determine the dosimetric limitations of daily online adaptive pancreas stereotactic body radiation treatment by using an automated dose escalation approach. Methods and Materials: We collected 108 planning and daily computed tomography (CT) scans from 18 patients (18 patients × 6 CT scans) who received 5-fraction pancreas stereotactic body radiation treatment at MD Anderson Cancer Center. Dose metrics from the original non-dose-escalated clinical plan (non-DE), the dose-escalated plan created on the original planning CT (DE-ORI), and the dose-escalated plan created on daily adaptive radiation therapy CT (DE-ART) were analyzed. We developed a dose-escalation planning algorithm within the radiation treatment planning system to automate the dose-escalation planning process for efficiency and consistency. In this algorithm, the prescription dose of the dose-escalation plan was escalated before violating any organ-at-risk (OAR) dose constraint. Dose metrics for 3 targets (gross target volume [GTV], tumor vessel interface [TVI], and dose-escalated planning target volume [DE-PTV]) and 9 OARs (duodenum, large bowel, small bowel, stomach, spinal cord, kidneys, liver, and skin) for the 3 plans were compared. Furthermore, we evaluated the effectiveness of the online adaptive dose-escalation planning process by quantifying the effect of the interfractional dose distribution variations among the DE-ART plans. Results: The median D95% dose to the GTV/TVI/DE-PTV was 33.1/36.2/32.4 Gy, 48.5/50.9/40.4 Gy, and 53.7/58.2/44.8 Gy for non-DE, DE-ORI, and DE-ART, respectively. Most OAR dose constraints were not violated for the non-DE and DE-ART plans, while OAR constraints were violated for the majority of the DE-ORI patients due to interfractional motion and lack of adaptation. The maximum difference per fraction in D95%, due to interfractional motion, was 2.5 ± 2.7 Gy, 3.0 ± 2.9 Gy, and 2.0 ± 1.8 Gy for the TVI, GTV, and DE-PTV, respectively. Conclusions: Most patients require daily adaptation of the radiation planning process to maximally escalate delivered dose to the pancreatic tumor without exceeding OAR constraints. Using our automated approach, patients can receive higher target dose than standard of care without violating OAR constraints.

4.
Med Phys ; 50(1): 323-329, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-35978544

RESUMO

BACKGROUND: Successful generation of biomechanical-model-based deformable image registration (BM-DIR) relies on user-defined parameters that dictate surface mesh quality. The trial-and-error process to determine the optimal parameters can be labor-intensive and hinder DIR efficiency and clinical workflow. PURPOSE: To identify optimal parameters in surface mesh generation as boundary conditions for a BM-DIR in longitudinal liver and lung CT images to facilitate streamlined image registration processes. METHODS: Contrast-enhanced CT images of 29 colorectal liver cancer patients and end-exhale four-dimensional CT images of 26 locally advanced non-small cell lung cancer patients were collected. Different combinations of parameters that determine the triangle mesh quality (voxel side length and triangle edge length) were investigated. The quality of DIRs generated using these parameters was evaluated with metrics for geometric accuracy, robustness, and efficiency. Metrics for geometric accuracy included target registration error (TRE) of internal vessel bifurcations, dice similar coefficient (DSC), mean distance to agreement (MDA), Hausdorff distance (HD) for organ contours, and number of vertices in the triangle mesh. American Association of Physicists in Medicine Task Group 132 was used to ensure parameters met TRE, DSC, MDA recommendations before the comparison among the parameters. Robustness was evaluated as the success rate of DIR generation, and efficiency was evaluated as the total time to generate boundary conditions and compute finite element analysis. RESULTS: Voxel side length of 0.2 cm and triangle edge length of 3 were found to be the optimal parameters for both liver and lung, with success rate of 1.00 and 0.98 and average DIR computation time of 100 and 143 s, respectively. For this combination, the average TRE, DSC, MDA, and HD were 0.38-0.40, 0.96-0.97, 0.09-0.12, and 0.87-1.17 mm, respectively. CONCLUSION: The optimal parameters were found for the analyzed patients. The decision-making process described in this study serves as a recommendation for BM-DIR algorithms to be used for liver and lung. These parameters can facilitate consistence in the evaluation of published studies and more widespread utilization of BM-DIR in clinical practice.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Humanos , Processamento de Imagem Assistida por Computador/métodos , Planejamento da Radioterapia Assistida por Computador/métodos , Algoritmos , Tomografia Computadorizada Quadridimensional
5.
Front Cardiovasc Med ; 9: 812765, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35187128

RESUMO

Cardiac myxoma is a common benign primary intracardiac tumor in the general population, and it is generally characterized as a benign tumor, and the morbidity of biatrial myxoma is low. Cases of biatrial myxoma in young patients are extremely rare. Furthermore, severe complications of cardiac myxoma, such as cerebral embolism, can have fatal consequences. Imaging can effectively assist in making a correct diagnosis and a safe and efficient surgical treatment plan. In this case report, we describe a unique case of a young woman who presented with biatrial myxoma accompanied by pulmonary embolism and cerebral embolism. Computed tomography pulmonary angiography (CTPA) detected multiple filling defects in the bilateral cardiac and bilateral inferior pulmonary artery basal branches. Transthoracic echocardiography (TTE) revealed irregular isoechoic masses in the bilateral atrium. Postoperative histopathology confirmed a biatrial myxoma. The patient was discharged on the ninth day after surgery.

6.
Eur J Radiol ; 144: 109964, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34619617

RESUMO

Despite tremendous advancements in in vivo imaging modalities, there remains substantial uncertainty with respect to tumor delineation on in these images. Histopathology remains the gold standard for determining the extent of malignancy, with in vivo imaging to histopathologic correlation enabling spatial comparisons. In this review, the steps necessary for successful imaging to histopathologic correlation are described, including in vivo imaging, resection, fixation, specimen sectioning (sectioning technique, securing technique, orientation matching, slice matching), microtome sectioning and staining, correlation (including image registration) and performance evaluation. The techniques used for each of these steps are also discussed. Hundreds of publications from the past 20 years were surveyed, and 62 selected for detailed analysis. For these 62 publications, each stage of the correlative pathology process (and the sub-steps of specimen sectioning) are listed. A statistical analysis was conducted based on 19 studies that reported target registration error as their performance metric. While some methods promise greater accuracy, they may be expensive. Due to the complexity of the processes involved, correlative pathology studies generally include a small number of subjects, which hinders advanced developments in this field.


Assuntos
Diagnóstico por Imagem , Testes Diagnósticos de Rotina , Humanos
7.
J Appl Clin Med Phys ; 22(8): 156-167, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34310827

RESUMO

PURPOSE: Re-planning for four-dimensional computed tomography (4DCT)-based lung adaptive radiotherapy commonly requires deformable dose mapping between the planning average-intensity image (AVG) and the newly acquired AVG. However, such AVG-AVG deformable image registration (DIR) lacks accuracy assessment. The current work quantified and compared geometric accuracies of AVG-AVG DIR and corresponding phase-phase DIRs, and subsequently investigated the clinical impact of such AVG-AVG DIR on deformable dose mapping. METHODS AND MATERIALS: Hybrid intensity-based AVG-AVG and phase-phase DIRs were performed between the planning and mid-treatment 4DCTs of 28 non-small cell lung cancer patients. An automated landmark identification algorithm detected vessel bifurcation pairs in both lungs. Target registration error (TRE) of these landmark pairs was calculated for both DIR types. The correlation between TRE and respiratory-induced landmark motion in the planning 4DCT was analyzed. Global and local dose metrics were used to assess the clinical implications of AVG-AVG deformable dose mapping with both DIR types. RESULTS: TRE of AVG-AVG and phase-phase DIRs averaged 3.2 ± 1.0 and 2.6 ± 0.8 mm respectively (p < 0.001). Using AVG-AVG DIR, TREs for landmarks with <10 mm motion averaged 2.9 ± 2.0 mm, compared to 3.1 ± 1.9 mm for the remaining landmarks (p < 0.01). Comparatively, no significant difference was demonstrated for phase-phase DIRs. Dosimetrically, no significant difference in global dose metrics was observed between doses mapped with AVG-AVG DIR and the phase-phase DIR, but a positive linear relationship existed (p = 0.04) between the TRE of AVG-AVG DIR and local dose difference. CONCLUSIONS: When the region of interest experiences <10 mm respiratory-induced motion, AVG-AVG DIR may provide sufficient geometric accuracy; conversely, extra attention is warranted, and phase-phase DIR is recommended. Dosimetrically, the differences in geometric accuracy between AVG-AVG and phase-phase DIRs did not impact global lung-based metrics. However, as more localized dose metrics are needed for toxicity assessment, phase-phase DIR may be required as its lower mean TRE improved voxel-based dosimetry.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Algoritmos , Carcinoma Pulmonar de Células não Pequenas/diagnóstico por imagem , Carcinoma Pulmonar de Células não Pequenas/radioterapia , Tomografia Computadorizada Quadridimensional , Humanos , Processamento de Imagem Assistida por Computador , Neoplasias Pulmonares/diagnóstico por imagem , Neoplasias Pulmonares/radioterapia , Planejamento da Radioterapia Assistida por Computador
8.
Ann Transl Med ; 8(10): 653, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32566590

RESUMO

Primary neuroendocrine tumors (NETs) in the heart are exceptionally rare. Here, we report a case found at our hospital of a 51-year-old woman with a primary left ventricular NET. The patient presented with non-causal recurrent diarrhea for 2 years, abdominal pain, and vomiting. Endoscopy revealed chronic proctitis and duodenal ulcer but found no explanation for the clinical symptoms. Comprehensive cardiovascular tests were conducted, and a mass measuring 26 mm × 41 mm × 30 mm was detected in the left ventricle. The patient underwent complete surgical resection to remove the tumor. Postoperative pathological results indicated a NET. No recurrence or other signs of metastasis were experienced during a 13-month follow-up observation period. Herein, we report this case and describe the imaging manifestations and clinical diagnosis strategy of this rare tumor. A diagnosis of NET of the heart may be considered when there are unexplained abdominal symptoms and without an abdominal or pelvic mass.

9.
Med Phys ; 47(4): 1670-1679, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-31958147

RESUMO

PURPOSE: Response assessment of radiotherapy for the treatment of intrahepatic cholangiocarcinoma (IHCC) across longitudinal images is challenging due to anatomical changes. Advanced deformable image registration (DIR) techniques are required to correlate corresponding tissues across time. In this study, the accuracy of five commercially available DIR algorithms in four treatment planning systems (TPS) was investigated for the registration of planning images with posttreatment follow-up images for response assessment or re-treatment purposes. METHODS: Twenty-nine IHCC patients treated with hypofractionated radiotherapy and with pretreatment and posttreatment contrast-enhanced computed tomography (CT) images were analyzed. Liver segmentations were semiautomatically generated on all CTs and the posttreatment CT was then registered to the pretreatment CT using five commercially available algorithms (Demons, B-splines, salient feature-based, anatomically constrained and finite element-based) in four TPSs. This was followed by an in-depth analysis of 10 DIR strategies (plus global and liver-focused rigid registration) in one of the TPSs. Eight of the strategies were variants of the anatomically constrained DIR while the two were based on a finite element-based biomechanical registration. The anatomically constrained techniques were combinations of: (a) initializations with the two rigid registrations; (b) two similarity metrics - correlation coefficient (CC) and mutual information (MI); and (c) with and without a controlling region of interest (ROI) - the liver. The finite element-based techniques were initialized by the two rigid registrations. The accuracy of each registration was evaluated using target registration error (TRE) based on identified vessel bifurcations. The results were statistically analyzed with a one-way analysis of variance (ANOVA) and pairwise comparison tests. Stratified analysis was conducted on the inter-TPS data (plus the liver-focused rigid registration) using treatment volume changes, slice thickness, time between scans, and abnormal lab values as stratifying factors. RESULTS: The complex deformation observed following treatment resulted in average TRE exceeding the image voxel size for all techniques. For the inter-TPS comparison, the Demons algorithm had the lowest TRE, which was significantly superior to all the other algorithms. The respective mean (standard deviation) TRE (in mm) for the Demons, B-splines, salient feature-based, anatomically constrained, and finite element-based algorithms were 4.6 (2.0), 7.4 (2.7), 7.2 (2.6), 6.3 (2.3), and 7.5 (4.0). In the follow-up comparison of the anatomically constrained DIR, the strategy with liver-focused rigid registration initialization, CC as similarity metric and liver as a controlling ROI had the lowest mean TRE - 6.0 (2.0). The maximum TRE for all techniques exceeded 10 mm. Selection of DIR strategy was found to be a statistically significant factor for registration accuracy. Tumor volume change had a significant effect on TRE for finite element-based registration and B-splines DIR. Time between scans had a substantial effect on TRE for all registrations but was only significant for liver-focused rigid, finite element-based and salient feature-based DIRs. CONCLUSIONS: This study demonstrates the limitations of commercially available DIR techniques in TPSs for alignment of longitudinal images of liver cancer presenting complex anatomical changes including local hypertrophy and fibrosis/necrosis. DIR in this setting should be used with caution and careful evaluation.


Assuntos
Neoplasias dos Ductos Biliares/diagnóstico por imagem , Colangiocarcinoma/diagnóstico por imagem , Processamento de Imagem Assistida por Computador/métodos , Tomografia Computadorizada por Raios X , Adulto , Idoso , Feminino , Humanos , Estudos Longitudinais , Masculino , Pessoa de Meia-Idade
10.
Sci Rep ; 9(1): 1198, 2019 02 04.
Artigo em Inglês | MEDLINE | ID: mdl-30718607

RESUMO

Conventional radiation therapy of brain tumors often produces cognitive deficits, particularly in children. We investigated the potential efficacy of merging Orthovoltage X-ray Minibeams (OXM). It segments the beam into an array of parallel, thin (~0.3 mm), planar beams, called minibeams, which are known from synchrotron x-ray experiments to spare tissues. Furthermore, the slight divergence of the OXM array make the individual minibeams gradually broaden, thus merging with their neighbors at a given tissue depth to produce a solid beam. In this way the proximal tissues, including the cerebral cortex, can be spared. Here we present experimental results with radiochromic films to characterize the method's dosimetry. Furthermore, we present our Monte Carlo simulation results for physical absorbed dose, and a first-order biologic model to predict tissue tolerance. In particular, a 220-kVp orthovoltage beam provides a 5-fold sharper lateral penumbra than a 6-MV x-ray beam. The method can be implemented in arc-scan, which may include volumetric-modulated arc therapy (VMAT). Finally, OXM's low beam energy makes it ideal for tumor-dose enhancement with contrast agents such as iodine or gold nanoparticles, and its low cost, portability, and small room-shielding requirements make it ideal for use in the low-and-middle-income countries.


Assuntos
Radioterapia/métodos , Neoplasias Encefálicas/cirurgia , Simulação por Computador , Ouro , Humanos , Nanopartículas Metálicas , Modelos Biológicos , Método de Monte Carlo , Radiografia/métodos , Radiometria/métodos , Radiocirurgia/métodos , Dosagem Radioterapêutica , Terapia por Raios X/métodos , Raios X
11.
J Appl Clin Med Phys ; 19(6): 306-315, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30272385

RESUMO

A large number of surveys have been sent to the medical physics community addressing many clinical topics for which the medical physicist is, or may be, responsible. Each survey provides an insight into clinical practice relevant to the medical physics community. The goal of this study was to create a summary of these surveys giving a snapshot of clinical practice patterns. Surveys used in this study were created using SurveyMonkey and distributed between February 6, 2013 and January 2, 2018 via the MEDPHYS and MEDDOS listserv groups. The format of the surveys included questions that were multiple choice and free response. Surveys were included in this analysis if they met the following criteria: more than 20 responses, relevant to radiation therapy physics practice, not single-vendor specific, and formatted as multiple-choice questions (i.e., not exclusively free-text responses). Although the results of free response questions were not explicitly reported, they were carefully reviewed, and the responses were considered in the discussion of each topic. Two-hundred and fifty-two surveys were available, of which 139 passed the inclusion criteria. The mean number of questions per survey was 4. The mean number of respondents per survey was 63. Summaries were made for the following topics: simulation, treatment planning, electron treatments, linac commissioning and quality assurance, setup and treatment verification, IMRT and VMAT treatments, SRS/SBRT, breast treatments, prostate treatments, brachytherapy, TBI, facial lesion treatments, clinical workflow, and after-hours/emergent treatments. We have provided a coherent overview of medical physics practice according to surveys conducted over the last 5 yr, which will be instructive for medical physicists.


Assuntos
Braquiterapia/normas , Física Médica , Neoplasias/radioterapia , Padrões de Prática Médica/normas , Planejamento da Radioterapia Assistida por Computador/métodos , Fluxo de Trabalho , Braquiterapia/métodos , Humanos , Neoplasias/diagnóstico por imagem , Aceleradores de Partículas , Dosagem Radioterapêutica , Radioterapia de Intensidade Modulada/métodos , Inquéritos e Questionários
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA