Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 83
Filtrar
1.
Front Nutr ; 11: 1366553, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38549751

RESUMO

Background: Numerous studies have already identified an association between excessive consumption of red meat and colorectal cancer (CRC). However, there has been a lack of detailed understanding regarding the disease burden linked to diet high in red meat and CRC. Objective: We aim to offer evidence-based guidance for developing effective strategies that can mitigate the elevated CRC burden in certain countries. Methods: We used the data from the Global Burden of Disease (GBD) Study 2019 to evaluate global, regional, and national mortality rates and disability-adjusted Life years (DALYs) related to diet high in red meat. We also considered factors such as sex, age, the socio-demographic index (SDI), and evaluated the cross-national inequalities. Furthermore, we utilized DALYs data from 204 countries and regions to measure cross-country inequalities of CRC by calculating the slope index of inequality and concentration index as standard indicators of absolute and relative inequalities. Discussion: The results show that globally, the age-standardized mortality rate (ASMR) and age-standardized disability adjusted life year rate (ASDR) related to CRC due to diet high in red meat have decreased, with estimated annual percent change (EAPCs) of -0.32% (95% CI -0.37 to -0.28) and-0.18% (95% CI -0.25 to -0.11). Notably, the burden was higher among males and the elderly. The slope index of inequality rose from 22.0 (95% CI 18.1 to 25.9) in 1990 to 32.9 (95% CI 28.3 to 37.5) in 2019 and the concentration index fell from 59.5 (95% CI 46.4 to 72.6) in 1990 to 48.9 (95% CI 34.6 to 63.1) in 2019. Also, according to our projections, global ASDR and ASMR might tend to increase up to 2030. Conclusion: ASMR and ASDR for CRC associated with high red meat diets declined globally from 1990 to 2019, but the absolute number of cases is still rising, with men and the elderly being more affected. CRC associated with diets high in red meat exhibits significant income inequality, placing a disproportionate burden on wealthier countries. Moreover, according to our projections, ASMR and ASDR are likely to increase globally by 2030. In order to address this intractable disease problem, understanding changes in global and regional epidemiologic trends is critical for policy makers and others.

2.
CNS Neurosci Ther ; 30(2): e14610, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38334013

RESUMO

AIMS: Hepatic ischemia-reperfusion injury (HIRI) resulting from hepatic inflow occlusion, which is a common procedure in liver surgery is inevitable. Previous research has confirmed that the cognitive dysfunction induced by HIRI is closely related to dysbiosis of the gut microbiota. This research aims to investigate the mechanisms underlying this complication. METHODS: C57BL/6 mice underwent hepatic ischemia experimentally through the occlusion of the left hepatic artery and portal vein. To assess the HDAC2-ACSS2 axis, gut microbiota transplantation. Enzyme-linked immunosorbent assay and LC/MS short-chain fatty acid detection were utilized. RESULTS: The findings indicated a notable decline in ACSS2 expression in the hippocampus of mice experiencing hepatic ischemia-reperfusion injury, emphasizing the compromised acetate metabolism in this particular area. Furthermore, the cognitive impairment phenotype and the dysregulation of the HDAC2-ACSS2 axis could also be transmitted to germ-free mice via fecal microbial transplantation. Enzyme-linked immunosorbent assay revealed reduced Acetyl-coenzyme A (acetyl-CoA) and Acetylated lysine levels in the hippocampus. CONCLUSION: These findings suggest that acetate metabolism is impaired in the hippocampus of HIRI-induced cognitive impairment mice and related to dysbiosis, leading to compromised histone acetylation.


Assuntos
Disfunção Cognitiva , Microbioma Gastrointestinal , Traumatismo por Reperfusão , Animais , Camundongos , Acetatos/metabolismo , Disfunção Cognitiva/etiologia , Disfunção Cognitiva/metabolismo , Disbiose/complicações , Fígado/metabolismo , Camundongos Endogâmicos C57BL , Traumatismo por Reperfusão/complicações , Traumatismo por Reperfusão/metabolismo
3.
bioRxiv ; 2024 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-38328239

RESUMO

Fluid flow transport through the trabecular meshwork tissues is a major regulator of intraocular pressure (IOP) modulation in healthy and glaucomatous individuals. Microbead occlusion models of ocular hypertension regulate aqueous humor drainage to induce high IOP to allow for in vivo study of pressure-related glaucomatous pathology. However, the reliability and application of current injectable microbeads are hindered by inadequate design of the beads-tissue interfaces to maintain a stable IOP elevation over the long term. Considering the graded, porous architecture and fluid transport of the trabecular meshwork, we developed a tailored, injectable "viscobeads" technique, which induced a sustained elevation of IOP for at least 8 weeks. These composite viscobeads contain a non-degradable polystyrene (PS) core for structural support and a biodegradable polylactic-co-glycolic acid (PLGA) viscoelastic surface. This approach enhances the obstruction of aqueous humor drainage through heterogeneous sizes of trabecular meshwork fenestrations and reliably modulates the magnitude and duration of ocular hypertension. In a mouse model, a single viscobeads injection resulted in sustained IOP elevation (average 21.4±1.39 mm Hg), leading to a 34% retinal ganglion cell (RGC) loss by 56 days. In an earlier stage of glaucoma progression, we conducted non-invasive electroretinography (ERG) recording and revealed glaucomatous progression by analyzing high-frequency oscillatory potentials. To further explore the application of the viscobeads glaucoma models, we assayed a series of genes through adeno-associated virus (AAV)-mediated screening in mice and assessed the impact of genetic manipulation on RGC survivals. CRISPR mediated disruption of the genes, PTEN, ATF3 and CHOP enhanced RGC survival while LIN 28 disruption negatively impacted RGC survival. This biologically driven viscobeads design provides an accessible approach to investigate chronic intraocular hypertension and glaucoma-like neurodegeneration and ultimately tenders the opportunity to evaluate genetic and pharmacological therapeutics.

4.
Int J Med Sci ; 21(2): 265-276, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38169586

RESUMO

Melanoma is a highly malignant tumor in the body. Long non-coding RNAs (lncRNAs) have been reported to be involved in the development of various tumors. Emerging evidence demonstrates the critical role of lncRNAs in melanoma development. In this study, we aimed to investigate the expression, biological function and regulatory mechanism of LINC00662 in melanomas. First, we found that LINC00662 was up-regulated in melanoma tissues and cell lines. High expression of LINC00662 in melanomas was associated with a poor patient prognosis. Silencing of LINC00662 suppressed the proliferation, migration, and invasion of melanoma cells in vitro and in vivo, while overexpression of LINC00662 promoted melanoma cell proliferation in vitro. Bioinformatics analysis, dual-luciferase assay, and RIP assay confirmed that LINC00662 competitively regulated miR-107. Silencing of LINC00662 upregulated miR-107 expression in a melanoma cell line. Inhibition of miR-107 significantly reversed the inhibitory effect of LINC00662 silencing on cell proliferation and migration. Furthermore, POU3F2 was validated as a downstream target of LINC00662/miR107 and was downregulated when LINC00662 was silenced. Overexpressing POU3F2 attenuated the effect of si-LINC00662 on cellular functions. In addition, the results also showed that the ß-catenin pathway was involved in a si-LINC00662-induced function in melanoma. Overall, our results confirmed that LINC00662 promoted melanoma progression by sponging miR107 and inducing POU3F2, highlighting the mechanism of the LINC00662/miR-107/POU3F2 axis in melanoma cell proliferation and invasion.


Assuntos
Melanoma , MicroRNAs , RNA Longo não Codificante , Humanos , MicroRNAs/genética , MicroRNAs/metabolismo , Melanoma/genética , beta Catenina/genética , beta Catenina/metabolismo , Linhagem Celular Tumoral , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Transdução de Sinais/genética , Proliferação de Células/genética , Movimento Celular/genética , Regulação Neoplásica da Expressão Gênica
5.
Arch Med Sci ; 19(3): 626-632, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37313191

RESUMO

Introduction: Translocase of the inner mitochondrial membrane 50 (TIMM50) is universally considered to play a key role in several malignancies. However, its role in predicting colorectal cancer (CRC) patient prognosis remains unclear. Material and methods: A total of 192 CRC patients (123 men and 69 women) who underwent radical resection participated in this study. The patients were followed up every 3 months after surgery for 5 years. TIMM50 expression in tumour tissues was measured by quantitative real-time PCR, Western blotting and immunohistochemistry. TIMM50 expression was studied to assess correlations with clinicopathological factors and survival time. Results: TIMM50 expression increased significantly in CRC tumour tissues. Moreover, high TIMM50 expression was related to pathologic stage (p = 0.043), N stage (p = 0.048) and distant metastasis (p = 0.015), but TIMM50 expression was not related to other clinical factors. A Kaplan-Meier survival analysis indicated that patients with low TIMM50 expression had a longer overall survival than those with high TIMM50 expression (p = 0.002). Furthermore, distant metastasis and high TIMM50 expression were confirmed as independent prognostic factors for the overall survival of CRC patients in a multivariate analysis (p = 0.003). Conclusions: TIMM50 may be a key factor for monitoring CRC and a new prognosis indicator for CRC patients.

6.
Hepatol Int ; 17(6): 1645-1658, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37004699

RESUMO

BACKGROUND: Hepatic ischemia-reperfusion injury (HIRI) is a common complication of liver surgery, which can lead to extrahepatic metabolic disorders, such as cognitive impairment. Recent observations have emphasized the critical effects of gut microbial metabolites in regulating the development of liver injury. Herein, we investigated the potential contribution of gut microbiota to HIRI-related cognitive impairment. METHODS: HIRI murine models were established by ischemia-reperfusion surgery in the morning (ZT0, 08:00) and evening (ZT12, 20:00), respectively. Antibiotic-induced pseudo-germ-free mice were gavaged with fecal bacteria of the HIRI models. Behavioral test was used to assess cognitive function. 16S rRNA gene sequencing and metabolomics were used for microbial and hippocampal analysis. RESULTS: Our results established that cognitive impairment caused by HIRI underwent diurnal oscillations; HIRI mice performed poorly on the Y-maze test and the novel object preference test when surgery occurred in the evening compared with the morning. In addition, fecal microbiota transplantation (FMT) from the ZT12-HIRI was demonstrated to induce cognitive impairment behavior. The specific composition and metabolites of gut microbiota were analyzed between the ZT0-HIRI and ZT12-HIRI, and bioinformatic analysis showed that the differential fecal metabolites were significantly enriched in lipid metabolism pathways. After FMT, the hippocampal lipid metabolome between the P-ZT0-HIRI and P-ZT12-HIRI groups was analyzed to reveal a series of lipid molecules with significant differences. CONCLUSIONS: Our findings indicate that gut microbiota are involved in circadian differences of HIRI-related cognitive impairment by affecting hippocampal lipid metabolism.


Assuntos
Disfunção Cognitiva , Microbioma Gastrointestinal , Hepatopatias , Traumatismo por Reperfusão , Camundongos , Animais , RNA Ribossômico 16S , Metabolismo dos Lipídeos , Hepatopatias/genética , Traumatismo por Reperfusão/genética , Traumatismo por Reperfusão/metabolismo , Disfunção Cognitiva/etiologia , Hipocampo/metabolismo , Lipídeos
7.
Nat Immunol ; 24(4): 700-713, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36807640

RESUMO

Non-neuronal cells are key to the complex cellular interplay that follows central nervous system insult. To understand this interplay, we generated a single-cell atlas of immune, glial and retinal pigment epithelial cells from adult mouse retina before and at multiple time points after axonal transection. We identified rare subsets in naive retina, including interferon (IFN)-response glia and border-associated macrophages, and delineated injury-induced changes in cell composition, expression programs and interactions. Computational analysis charted a three-phase multicellular inflammatory cascade after injury. In the early phase, retinal macroglia and microglia were reactivated, providing chemotactic signals concurrent with infiltration of CCR2+ monocytes from the circulation. These cells differentiated into macrophages in the intermediate phase, while an IFN-response program, likely driven by microglia-derived type I IFN, was activated across resident glia. The late phase indicated inflammatory resolution. Our findings provide a framework to decipher cellular circuitry, spatial relationships and molecular interactions following tissue injury.


Assuntos
Macrófagos , Retina , Animais , Camundongos , Retina/lesões , Retina/metabolismo , Microglia , Sistema Nervoso Central , Monócitos
8.
Biomedicines ; 12(1)2023 Dec 25.
Artigo em Inglês | MEDLINE | ID: mdl-38255161

RESUMO

Circadian rhythm oscillation and the gut microbiota play important roles in several physiological functions and pathology regulations. In this study, we aimed to elucidate the characteristics of diabetic hepatic ischemia-reperfusion injury (HIRI) and the role of the intestinal microbiota in diabetic mice with HIRI. Hepatic ischemia-reperfusion injury surgery was performed at ZT0 or ZT12. The liver pathological score and the serum levels of alanine aminotransferase (ALT) and aspartate aminotransferase (AST) were analyzed to evaluate liver injury. We conducted an FMT experiment to examine the role of intestinal microbiota in diabetic mice with HIRI. The 16S rRNA gene sequencing of fecal samples was performed for microbial analysis. Our results showed that hyperglycemia aggravated HIRI in diabetic mice, but there was no diurnal variation seen in diabetic HIRI. We also demonstrated that there were significant alterations in the gut microbiota composition between the diabetic and control mice and that gut microbiota transplantation from diabetic mice had obvious harmful effects on HIRI. These findings provide some useful information for the future research of diabetic mice with HIRI.

9.
Nat Commun ; 13(1): 4096, 2022 07 14.
Artigo em Inglês | MEDLINE | ID: mdl-35835751

RESUMO

Traumatic spinal cord injury (SCI) triggers a neuro-inflammatory response dominated by tissue-resident microglia and monocyte derived macrophages (MDMs). Since activated microglia and MDMs are morphologically identical and express similar phenotypic markers in vivo, identifying injury responses specifically coordinated by microglia has historically been challenging. Here, we pharmacologically depleted microglia and use anatomical, histopathological, tract tracing, bulk and single cell RNA sequencing to reveal the cellular and molecular responses to SCI controlled by microglia. We show that microglia are vital for SCI recovery and coordinate injury responses in CNS-resident glia and infiltrating leukocytes. Depleting microglia exacerbates tissue damage and worsens functional recovery. Conversely, restoring select microglia-dependent signaling axes, identified through sequencing data, in microglia depleted mice prevents secondary damage and promotes recovery. Additional bioinformatics analyses reveal that optimal repair after SCI might be achieved by co-opting key ligand-receptor interactions between microglia, astrocytes and MDMs.


Assuntos
Traumatismos da Medula Espinal , Regeneração da Medula Espinal , Animais , Macrófagos/patologia , Camundongos , Camundongos Endogâmicos C57BL , Microglia/patologia , Medula Espinal/patologia
10.
Oxid Med Cell Longev ; 2021: 2492286, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34880964

RESUMO

In this study, we investigated whether chemical 6-hydroxydopamine (6-OHDA) stimuli caused cardiac sympathetic denervation (SD), and we analyzed gene expression profiles to determine the changes in the lncRNA/circRNAs-miRNA-mRNA network in the affected spinal cord segments to identify putative target genes and molecular pathways in rats with myocardial ischemia-reperfusion injury (MIRI). Our results showed that cardiac sympathetic denervation induced by 6-OHDA alleviated MIRI. Compared with the ischemia reperfusion (IR, MIRI model) group, there were 148 upregulated and 51 downregulated mRNAs, 165 upregulated and 168 downregulated lncRNAs, 70 upregulated and 52 downregulated circRNAs, and 12 upregulated and 11 downregulated miRNAs in the upper thoracic spinal cord of the SD-IR group. Furthermore, we found that the differential genes related to cellular components were mainly enriched in extracellular and cortical cytoskeleton, and molecular functions were mainly enriched in chemokine activity. Pathway analysis showed that the differentially expressed genes were mainly related to the interaction of cytokines and cytokine receptors, sodium ion reabsorption, cysteine and methionine metabolism, mucoglycan biosynthesis, cGMP-PKG signaling pathway, and MAPK signaling pathway. In conclusion, the lncRNA/circRNAs-miRNA-mRNA networks in the upper thoracic spinal cord play an important role in the preventive effect of cardiac sympathetic denervation induced by 6-OHDA on MIRI, which offers new insights into the pathogenesis of MIRI and provides new targets for MIRI.


Assuntos
Redes Reguladoras de Genes/genética , Traumatismo por Reperfusão Miocárdica/patologia , Oxidopamina/farmacologia , Medula Espinal/metabolismo , Animais , Quimiocinas/metabolismo , Vasos Coronários/cirurgia , Regulação para Baixo/efeitos dos fármacos , Ontologia Genética , Masculino , MicroRNAs/metabolismo , Traumatismo por Reperfusão Miocárdica/prevenção & controle , Oxidopamina/uso terapêutico , Mapas de Interação de Proteínas/genética , RNA Circular/metabolismo , RNA Longo não Codificante/metabolismo , RNA Mensageiro/metabolismo , Ratos , Ratos Sprague-Dawley , Transdução de Sinais , Simpatectomia , Regulação para Cima/efeitos dos fármacos
11.
Gastroenterol Res Pract ; 2021: 5527387, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34394345

RESUMO

Pleckstrin-2 (PLEK2) is a crucial mediator of cytoskeletal reorganization. However, the potential roles of PLEK2 in gastric cancer are still unknown. PLEK2 expression in gastric cancer was examined by western blotting and real-time PCR. Survival analysis was utilized to test the clinical impacts of the levels of PLEK2 in gastric cancer patients. In vitro and in vivo studies were used to estimate the potential roles played by PLEK2 in modulating gastric cancer proliferation, self-renewal, and tumourigenicity. Bioinformatics approaches were used to monitor the effect of PLEK2 on epithelial-mesenchymal transition (EMT) signalling pathways. PLEK2 expression was significantly upregulated in gastric cancer as compared with nontumour samples. Kaplan-Meier plotter analysis revealed that gastric cancer patients with higher PLEK2 levels had substantially poorer overall survival compared with gastric cancer patients with lower PLEK2 levels. The upregulation or downregulation of PLEK2 in gastric cancer cell lines effectively enhanced or inhibited cell proliferation and proinvasive behaviour, respectively. Additionally, we also found that PLEK2 enhanced EMT through downregulating E-cadherin expression and upregulating Vimentin expression. Our findings demonstrated that PLEK2 plays a potential role in gastric cancer and may be a novel therapeutic target for gastric cancer.

12.
Nat Commun ; 12(1): 781, 2021 02 03.
Artigo em Inglês | MEDLINE | ID: mdl-33536416

RESUMO

After complete spinal cord injuries (SCI), spinal segments below the lesion maintain inter-segmental communication via the intraspinal propriospinal network. However, it is unknown whether selective manipulation of these circuits can restore locomotor function in the absence of brain-derived inputs. By taking advantage of the compromised blood-spinal cord barrier following SCI, we optimized a set of procedures in which AAV9 vectors administered via the tail vein efficiently transduce neurons in lesion-adjacent spinal segments after a thoracic crush injury in adult mice. With this method, we used chemogenetic actuators to alter the excitability of propriospinal neurons in the thoracic cord of the adult mice with a complete thoracic crush injury. We showed that activating these thoracic neurons enables consistent and significant hindlimb stepping improvement, whereas direct manipulations of the neurons in the lumbar spinal cord led to muscle spasms without meaningful locomotion. Strikingly, manipulating either excitatory or inhibitory propriospinal neurons in the thoracic levels leads to distinct behavioural outcomes, with preferential effects on standing or stepping, two key elements of the locomotor function. These results demonstrate a strategy of engaging thoracic propriospinal neurons to improve hindlimb function and provide insights into optimizing neuromodulation-based strategies for treating SCI.


Assuntos
Dependovirus/genética , Membro Posterior/fisiopatologia , Locomoção/fisiologia , Neurônios/metabolismo , Traumatismos da Medula Espinal/fisiopatologia , Animais , Antipsicóticos/administração & dosagem , Clozapina/administração & dosagem , Clozapina/análogos & derivados , Vetores Genéticos/genética , Membro Posterior/inervação , Locomoção/efeitos dos fármacos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Medula Espinal/efeitos dos fármacos , Medula Espinal/metabolismo , Medula Espinal/fisiopatologia , Traumatismos da Medula Espinal/terapia
13.
Data Brief ; 34: 106699, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33457476

RESUMO

The optic nerve is part of the mammalian adult central nervous system (CNS) and has limited capability to regenerate after injury. Deletion of phosphatase and tensin homolog (PTEN), a negative regulator of the PI3 kinase/Akt pathway, has been shown to promote regeneration in retinal ganglion cells (RGCs) after optic nerve injury [1]. We present the lipidome of adult PTENloxP/loxP mice subjected to intravitreal injection of adeno-associated viruses expressing Cre (AAV-Cre) as a model of CNS neuroregeneration. At 4 weeks old, PTENloxP/loxP mice were intravitreally-injected with 2-3 µl of either AAV-Cre (KO) or AAV-PLAP (control), and two weeks later optic nerve crush was performed. At indicated time-points after crush (0 days, 7 days, 14 days), mice were euthanized and optic nerves were immediately dissected out, and then flash frozen on dry ice. A modified Bligh and Dyer [2] method was used for lipid extraction from the optic nerves, followed by liquid chromatography-mass spectrometry (LC MS-MS) lipid profiling using a Q-Exactive Orbitrap instrument coupled with Accela 600 HPLC. The raw scans were analysed with LipidSearch 4.2 and the statistical analysis was conducted through Metaboanalyst 4.0. This data is available at Metabolomics Workbench, study ID ST001477.

14.
Inflamm Bowel Dis ; 27(2): 242-255, 2021 01 19.
Artigo em Inglês | MEDLINE | ID: mdl-32507895

RESUMO

BACKGROUND: Intestinal fibrosis is the final pathological outcome of chronic intestinal inflammation without specific therapeutic drugs, which leads to ileus and surgical intervention. Intestinal fibrosis is characterized by excessive deposition of extracellular matrix (ECM). The role of mast cells (MCs), which are members of the sentinel immune cell population, is unknown in intestinal fibrosis. METHODS: In this study, we analyzed changes in MCs, tryptase proteins, and ECM components in human fibrotic and control patient intestines. We constructed dextran sodium sulfate-induced intestinal fibrosis models using wild-type mice, MC-reconstituted mice, and MC-deficient mice to explore the role of MCs and tryptase in intestinal fibrosis. The roles and mechanisms of MCs and tryptase on fibroblasts were evaluated using human MCs (HMC-1 and LAD-2), commercial tryptase proteins, human colon fibroblasts (CCD-18Co fibroblasts), the tryptase inhibitor APC366, and the protease-activated receptor-2 (PAR-2) antagonist ENMD-1068. RESULTS: Regardless of whether the colon was a human colon or a mouse colon, the fibrotic intestinal tissue had increased MC infiltration and a higher expression of ECM proteins or genes than that of the control group. The dextran sodium sulfate-induced intestinal fibrosis in MC-deficient mice was alleviated compared with that in wild-type mice. After MC reconstruction in MC-deficient mice, the alleviating effect disappeared. Tryptase, as a content stored in MC granules, was released into fibrotic intestinal tissues in the form of degranulation, resulting in an increased expression of tryptase. Compared with the control group, the tryptase inhibition group (the APC366 group) had reduced intestinal fibrosis. The CCD-18Co fibroblasts, when cocultured with MCs or treated with tryptase proteins, were activated to differentiate into myofibroblasts and secrete more ECM proteins (such as collagen and fibronectin). The underlying mechanism of fibroblast activation by tryptase was the activation of the PAR-2/Akt/mTOR pathway. CONCLUSIONS: We found that MC tryptase promotes inflammatory bowel disease-induced intestinal fibrosis. The underlying mechanism is that tryptase promotes the differentiation of fibroblasts into fibrotic-phenotype myofibroblasts by activating the PAR-2/Akt/ mTOR pathway of fibroblasts.


Assuntos
Colite , Doenças Inflamatórias Intestinais , Intestinos/patologia , Triptases/efeitos adversos , Animais , Colite/induzido quimicamente , Colite/patologia , Dextranos , Fibroblastos/citologia , Fibrose , Humanos , Inflamação/patologia , Doenças Inflamatórias Intestinais/induzido quimicamente , Doenças Inflamatórias Intestinais/patologia , Mastócitos/enzimologia , Camundongos , Proteínas Proto-Oncogênicas c-akt , Receptor PAR-2 , Serina-Treonina Quinases TOR
15.
Nature ; 588(7836): 124-129, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33268865

RESUMO

Ageing is a degenerative process that leads to tissue dysfunction and death. A proposed cause of ageing is the accumulation of epigenetic noise that disrupts gene expression patterns, leading to decreases in tissue function and regenerative capacity1-3. Changes to DNA methylation patterns over time form the basis of ageing clocks4, but whether older individuals retain the information needed to restore these patterns-and, if so, whether this could improve tissue function-is not known. Over time, the central nervous system (CNS) loses function and regenerative capacity5-7. Using the eye as a model CNS tissue, here we show that ectopic expression of Oct4 (also known as Pou5f1), Sox2 and Klf4 genes (OSK) in mouse retinal ganglion cells restores youthful DNA methylation patterns and transcriptomes, promotes axon regeneration after injury, and reverses vision loss in a mouse model of glaucoma and in aged mice. The beneficial effects of OSK-induced reprogramming in axon regeneration and vision require the DNA demethylases TET1 and TET2. These data indicate that mammalian tissues retain a record of youthful epigenetic information-encoded in part by DNA methylation-that can be accessed to improve tissue function and promote regeneration in vivo.


Assuntos
Envelhecimento/genética , Reprogramação Celular/genética , Metilação de DNA , Epigênese Genética , Olho , Regeneração Nervosa/genética , Visão Ocular/genética , Visão Ocular/fisiologia , Envelhecimento/fisiologia , Animais , Axônios/fisiologia , Linhagem Celular Tumoral , Sobrevivência Celular , Proteínas de Ligação a DNA/genética , Dependovirus/genética , Dioxigenases , Modelos Animais de Doenças , Olho/citologia , Olho/inervação , Olho/patologia , Feminino , Vetores Genéticos/genética , Glaucoma/genética , Glaucoma/patologia , Humanos , Fator 4 Semelhante a Kruppel , Fatores de Transcrição Kruppel-Like/genética , Camundongos , Camundongos Endogâmicos C57BL , Fator 3 de Transcrição de Octâmero/genética , Traumatismos do Nervo Óptico/genética , Proteínas Proto-Oncogênicas/genética , Células Ganglionares da Retina/citologia , Fatores de Transcrição SOXB1/genética , Transcriptoma/genética
16.
Stem Cell Res Ther ; 11(1): 491, 2020 11 23.
Artigo em Inglês | MEDLINE | ID: mdl-33225962

RESUMO

Photoaging is mainly induced by continuous exposure to sun light, causing multiple unwanted skin characters and accelerating skin aging. Adipose-derived stem cells(ADSCs) are promising in supporting skin repair because of their significant antioxidant capacity and strong proliferation, differentiation, and migration ability, as well as their enriched secretome containing various growth factors and cytokines. The identification of the mechanisms by which ADSCs perform these functions for photoaging has great potential to explore therapeutic applications and combat skin aging. We also review the basic mechanisms of UV-induced skin aging and recent improvement in pre-clinical applications of ADSCs associated with photoaging. Results showed that ADSCs are potential to address photoaging problem and might treat skin cancer. Compared with ADSCs alone, the secretome-based approaches and different preconditionings of ADSCs are more promising to overcome the current limitations and enhance the anti-photoaging capacity.


Assuntos
Envelhecimento da Pele , Adipócitos , Tecido Adiposo , Proliferação de Células , Pele , Células-Tronco
17.
Opt Lett ; 45(19): 5416-5419, 2020 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-33001908

RESUMO

Narrow-band terahertz (THz) Cherenkov radiation can be excited as a relativistic electron bunch passes through the dielectric capillary with sub-millimeter radius. However, due to the diffraction effect, the radiation will enter free space with a large divergence angle, which makes it difficult to collect the radiation energy efficiently. In this Letter, to deal with this challenge, we propose to add a new dielectric layer, which satisfies a special relationship with the electron velocity, between the metal coating and original dielectric layer in the capillary. According to numerical simulation and theoretical analysis results, the divergence angle of radiation is significantly suppressed, and the peak power density is also enhanced by over two orders. As a result, the transmission efficiency from the radiation source to the optical system can be increased to over 90%. We expect that this method will provide a new way to generate THz Cherenkov radiation.

18.
Opt Lett ; 45(17): 4674-4677, 2020 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-32870828

RESUMO

It is of scientific significance to explore the terahertz radiation source with the performances of high power, tunable frequency, and controllable chirp for the realization of coherent control of quantum systems. How to realize frequency chirp control of terahertz synchrotron radiation is the last puzzle to be completed. In this Letter, we propose a method to control the radiation frequency chirp with precision. A novel photomixing scheme is presented to generate a longitudinally modulated laser pulse with non-uniform time intervals between the adjacent micro-peaks, which means that there is a chirp in the modulation frequency, and this chirp can be continuously tuned. The interaction is made to occur between an electron beam and the modulated laser pulse in a modulator (an undulator tuned at the laser wavelength), then terahertz synchrotron radiation with the same spectrum characteristics as the modulated laser will be generated when the electron beam passes through the following bending magnet. We expect that this method will open a new way for the coherent control of quantum systems in the terahertz regime.

19.
Annu Rev Vis Sci ; 6: 195-213, 2020 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-32936739

RESUMO

The damage or loss of retinal ganglion cells (RGCs) and their axons accounts for the visual functional defects observed after traumatic injury, in degenerative diseases such as glaucoma, or in compressive optic neuropathies such as from optic glioma. By using optic nerve crush injury models, recent studies have revealed the cellular and molecular logic behind the regenerative failure of injured RGC axons in adult mammals and suggested several strategies with translational potential. This review summarizes these findings and discusses challenges for developing clinically applicable neural repair strategies.


Assuntos
Regeneração Nervosa/fisiologia , Traumatismos do Nervo Óptico/fisiopatologia , Células Ganglionares da Retina/fisiologia , Animais , Sobrevivência Celular , Modelos Animais de Doenças , Humanos , Compressão Nervosa , Doenças do Nervo Óptico
20.
Invest Ophthalmol Vis Sci ; 61(2): 31, 2020 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-32084268

RESUMO

Purpose: To investigate the possible role of activating transcription factor 3 (ATF3) in retinal ganglion cell (RGC) neuroprotection and optic nerve regeneration after optic nerve crush (ONC). Methods: Overexpression of proteins of interest (ATF3, phosphatase and tensin homolog [PTEN], placental alkaline phosphatase, green fluorescent protein) in the retina was achieved by intravitreal injections of recombinant adenovirus-associated viruses (rAAVs) expressing corresponding proteins. The number of RGCs and αRGCs was evaluated by immunostaining retinal sections and whole-mount retinas with antibodies against RNA binding protein with multiple splicing (RBPMS) and osteopontin, respectively. Axonal regeneration was assessed via fluorophore-coupled cholera toxin subunit B labeling. RGC function was evaluated by recording positive scotopic threshold response. Results: The level of ATF3 is preferentially elevated in osteopontin+/RBPMS+ αRGCs following ONC. Overexpression of ATF3 by intravitreal injection of rAAV 2 weeks before ONC promoted RBPMS+ RGC survival and preserved RGC function as assessed by positive scotopic threshold response recordings 2 weeks after ONC. However, overexpression of ATF3 and simultaneous downregulation of PTEN, a negative regulator of the mTOR pathway, combined with ONC, only moderately promoted short distance RGC axon regeneration (200 µm from the lesion site) but did not provide additional RGC neuroprotection compared with PTEN downregulation alone. Conclusions: These results reveal a neuroprotective effect of ATF3 in the retina following injury and identify ATF3 as a promising agent for potential treatments of optic neuropathies.


Assuntos
Fator 3 Ativador da Transcrição/fisiologia , Neuroproteção/fisiologia , Traumatismos do Nervo Óptico/fisiopatologia , Células Ganglionares da Retina/fisiologia , Fator 3 Ativador da Transcrição/metabolismo , Animais , Axônios/patologia , Camundongos , Camundongos Endogâmicos C57BL , Compressão Nervosa , Regeneração Nervosa/fisiologia , Traumatismos do Nervo Óptico/metabolismo , Traumatismos do Nervo Óptico/patologia , Células Ganglionares da Retina/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA