Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 52
Filtrar
1.
Pharmaceuticals (Basel) ; 17(8)2024 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-39204153

RESUMO

The establishment and utilization of preclinical animal models constitute a pivotal aspect across all facets of cancer research, indispensably contributing to the comprehension of disease initiation and progression mechanisms, as well as facilitating the development of innovative anti-cancer therapeutic approaches. These models have emerged as crucial bridges between basic and clinical research, offering multifaceted support to clinical investigations. This study initially focuses on the importance and benefits of establishing preclinical animal models, discussing the different types of preclinical animal models and recent advancements in cancer research. It then delves into cancer treatment, studying the characteristics of different stages of tumor development and the development of anti-cancer drugs. By integrating tumor hallmarks and preclinical research, we elaborate on the path of anti-cancer drug development and provide guidance on personalized cancer therapy strategies, including synthetic lethality approaches and novel drugs widely adopted in the field. Ultimately, we summarize a strategic framework for selecting preclinical safety experiments, tailored to experimental modalities and preclinical animal species, and present an outlook on the prospects and challenges associated with preclinical animal models. These models undoubtedly offer new avenues for cancer research, encompassing drug development and personalized anti-cancer protocols. Nevertheless, the road ahead continues to be lengthy and fraught with obstacles. Hence, we encourage researchers to persist in harnessing advanced technologies to refine preclinical animal models, thereby empowering these emerging paradigms to positively impact cancer patient outcomes.

2.
Int J Mol Sci ; 25(12)2024 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-38928450

RESUMO

Abnormal cell proliferation and growth leading to cancer primarily result from cumulative genome mutations. Single gene mutations alone do not fully explain cancer onset and progression; instead, clustered mutations-simultaneous occurrences of multiple mutations-are considered to be pivotal in cancer development and advancement. These mutations can affect different genes and pathways, resulting in cells undergoing malignant transformation with multiple functional abnormalities. Clustered mutations influence cancer growth rates, metastatic potential, and drug treatment sensitivity. This summary highlights the various types and characteristics of clustered mutations to understand their associations with carcinogenesis and discusses their potential clinical significance in cancer. As a unique mutation type, clustered mutations may involve genomic instability, DNA repair mechanism defects, and environmental exposures, potentially correlating with responsiveness to immunotherapy. Understanding the characteristics and underlying processes of clustered mutations enhances our comprehension of carcinogenesis and cancer progression, providing new diagnostic and therapeutic approaches for cancer.


Assuntos
Carcinogênese , Mutação , Neoplasias , Humanos , Neoplasias/genética , Neoplasias/patologia , Carcinogênese/genética , Instabilidade Genômica , Transformação Celular Neoplásica/genética , Reparo do DNA/genética , Animais
3.
Sci China Life Sci ; 67(8): 1563-1578, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38613742

RESUMO

Since its identification as a marker for advanced melanoma in the 1980s, CD146 has been found to have multiple functions in both physiological and pathological processes, including embryonic development, tissue repair and regeneration, tumor progression, fibrosis disease, and inflammations. Subsequent research has revealed that CD146 is involved in various signaling pathways as a receptor or co-receptor in these processes. This correlation between CD146 and multiple diseases has sparked interest in its potential applications in diagnosis, prognosis, and targeted therapy. To better comprehend the versatile roles of CD146, we have summarized its research history and synthesized findings from numerous reports, proposing that cell plasticity serves as the underlying mechanism through which CD146 contributes to development, regeneration, and various diseases. Targeting CD146 would consequently halt cell state shifting during the onset and progression of these related diseases. Therefore, the development of therapy targeting CD146 holds significant practical value.


Assuntos
Antígeno CD146 , Plasticidade Celular , Transdução de Sinais , Humanos , Antígeno CD146/metabolismo , Animais , Neoplasias/metabolismo , Neoplasias/terapia , Neoplasias/patologia , Terapia de Alvo Molecular/métodos
4.
Cancer Cell ; 42(5): 780-796.e6, 2024 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-38518774

RESUMO

Emerging as the most potent and durable combinational immunotherapy, dual anti-PD-1 and CTLA-4 immune checkpoint blockade (ICB) therapy notoriously increases grade 3-5 immune-related adverse events (irAEs) in patients. Accordingly, attempts to improve the antitumor potency of anti-PD-1+CTLA-4 ICB by including additional therapeutics have been largely discouraged due to concerns of further increasing fatal toxicity. Here, we screened ∼3,000 Food and Drug Administration (FDA)-approved drugs and identified clofazimine as a potential third agent to optimize anti-PD-1+CTLA-4 ICB. Remarkably, clofazimine outperforms ICB dose reduction or steroid treatment in reversing lethality of irAEs, but unlike the detrimental effect of steroids on antitumor efficacy, clofazimine potentiates curative responses in anti-PD-1+CTLA-4 ICB. Mechanistically, clofazimine promotes E2F1 activation in CD8+ T cells to overcome resistance and counteracts pathogenic Th17 cells to abolish irAEs. Collectively, clofazimine potentiates the antitumor efficacy of anti-PD-1+CTLA-4 ICB, curbs intractable irAEs, and may fill a desperate clinical need to improve patient survival.


Assuntos
Antígeno CTLA-4 , Clofazimina , Inibidores de Checkpoint Imunológico , Receptor de Morte Celular Programada 1 , Animais , Humanos , Camundongos , Linfócitos T CD8-Positivos/efeitos dos fármacos , Linfócitos T CD8-Positivos/imunologia , Linhagem Celular Tumoral , Clofazimina/farmacologia , Clofazimina/uso terapêutico , Antígeno CTLA-4/antagonistas & inibidores , Antígeno CTLA-4/imunologia , Inibidores de Checkpoint Imunológico/efeitos adversos , Inibidores de Checkpoint Imunológico/farmacologia , Imunoterapia/métodos , Camundongos Endogâmicos C57BL , Receptor de Morte Celular Programada 1/antagonistas & inibidores , Receptor de Morte Celular Programada 1/imunologia , Células Th17/efeitos dos fármacos , Células Th17/imunologia
5.
Int J Mol Sci ; 25(3)2024 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-38338839

RESUMO

Autophagy, a complex and highly regulated cellular process, is critical for the maintenance of cellular homeostasis by lysosomal degradation of cellular debris, intracellular pathogens, and dysfunctional organelles. It has become an interesting and attractive topic in cancer because of its dual role as a tumor suppressor and cell survival mechanism. As a highly conserved pathway, autophagy is strictly regulated by diverse non-coding RNAs (ncRNAs), ranging from short and flexible miRNAs to lncRNAs and even circRNAs, which largely contribute to autophagy regulatory networks via complex RNA interactions. The potential roles of RNA interactions during autophagy, especially in cancer procession and further anticancer treatment, will aid our understanding of related RNAs in autophagy in tumorigenesis and cancer treatment. Herein, we mainly summarized autophagy-related mRNAs and ncRNAs, also providing RNA-RNA interactions and their potential roles in cancer prognosis, which may deepen our understanding of the relationships between various RNAs during autophagy and provide new insights into autophagy-related therapeutic strategies in personalized medicine.


Assuntos
MicroRNAs , Neoplasias , RNA Longo não Codificante , Humanos , RNA não Traduzido/genética , MicroRNAs/genética , MicroRNAs/metabolismo , Neoplasias/genética , RNA Mensageiro/genética , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Autofagia/genética
6.
Nat Commun ; 15(1): 1442, 2024 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-38365882

RESUMO

Kaposi's sarcoma-associated herpesvirus (KSHV) is the causative agent of Kaposi's sarcoma (KS) and multiple types of B cell malignancies. Emerging evidence demonstrates that KSHV reprograms host-cell central carbon metabolic pathways, which contributes to viral persistence and tumorigenesis. However, the mechanisms underlying KSHV-mediated metabolic reprogramming remain poorly understood. Carbamoyl-phosphate synthetase 2, aspartate transcarbamoylase, and dihydroorotase (CAD) is a key enzyme of the de novo pyrimidine synthesis, and was recently identified to deamidate the NF-κB subunit RelA to promote aerobic glycolysis and cell proliferation. Here we report that KSHV infection exploits CAD for nucleotide synthesis and glycolysis. Mechanistically, KSHV vCyclin binds to and hijacks cyclin-dependent kinase CDK6 to phosphorylate Ser-1900 on CAD, thereby activating CAD-mediated pyrimidine synthesis and RelA-deamidation-mediated glycolytic reprogramming. Correspondingly, genetic depletion or pharmacological inhibition of CDK6 and CAD potently impeded KSHV lytic replication and thwarted tumorigenesis of primary effusion lymphoma (PEL) cells in vitro and in vivo. Altogether, our work defines a viral metabolic reprogramming mechanism underpinning KSHV oncogenesis, which may spur the development of new strategies to treat KSHV-associated malignancies and other diseases.


Assuntos
Herpesvirus Humano 8 , Sarcoma de Kaposi , Humanos , Herpesvirus Humano 8/metabolismo , Glicólise , Carcinogênese , Pirimidinas/farmacologia , Pirimidinas/uso terapêutico , Nucleotídeos/metabolismo
7.
Adv Mater ; 36(7): e2310033, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37994246

RESUMO

Single-atom nanozymes (SANzymes) emerge as promising alternatives to conventional enzymes. However, chemical instability limits their application. Here, a systematic synthesis of highly active and stable SANzymes is presented by leveraging noble metal-porphyrins. Four noble metal-porphyrins are successfully synthesized to mimic the active site of natural peroxidases through atomic metal-N coordination anchored to the porphyrin center. These noble metal-porphyrins are integrated into a stable and biocompatible Zr-based metal-organic framework (MxP, x denoting Ir, Ru, Pt, and Pd). Among these, MIrP demonstrates superior peroxidase-like activity (685.61 U mg-1 ), catalytic efficiency, and selectivity compared to horseradish peroxidase (267.71 U mg-1 ). Mechanistic investigations unveil heightened catalytic activity of MIrP arises from its robust H2 O2 adsorption capacity, unique rate-determining step, and low energy threshold. Crucially, MIrP exhibits remarkable chemical stability under both room temperature and high H2 O2 concentrations. Further, through modification with (-)-Epigallocatechin-3-Gallate, a natural ligand for Epstein-Barr virus (EBV)-encoded latent membrane protein 1, targeted SANzyme (MIrPHE) tailored for EBV-associated nasopharyngeal carcinoma is engineered. This study not only presents an innovative strategy for augmenting the catalytic activity and chemical stability of SANzymes but also highlights the substantial potential of MIrP as a potent nanomedicine for targeted catalytic tumor therapy.


Assuntos
Infecções por Vírus Epstein-Barr , Neoplasias Nasofaríngeas , Humanos , Carcinoma Nasofaríngeo , Herpesvirus Humano 4 , Engenharia , Catálise , Metais
8.
PLoS Pathog ; 18(3): e1010390, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35286345

RESUMO

[This corrects the article DOI: 10.1371/journal.ppat.1004253.].

9.
Biosens Bioelectron ; 204: 114057, 2022 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-35168025

RESUMO

The efficient detection of cancer markers has faced many challenges, such as severe interference, complicated and time-consuming operation, low sensitivity and so on. In this paper, a microfluidic chip integrated with electrodes for dielectrophoretic (DEP) separation, microchannels for electrochemical nanoprobes binding and differential pulse voltammetry (DPV) detection was proposed for the sensitive and rapid detection of prostate specific antigen (PSA) in whole blood. The functional units, which could realize cell separation, PSA derivatization (binding of electrochemical nanoprobes), capture and detection, were integrated on the microfluidic chip. The well-designed V-shaped interdigital electrode arrays provided DEP separation for blood cells with efficiency as high as 98%. Particularly, DEP effect significantly improved the sensitivity of PSA detection and reduced the detection limit by two orders of magnitude. In order to achieve sensitive detection of PSA, binding of electrochemical nanoprobes and then DPV detection was selected and integrated following the DEP separation. A sandwich structure based on electrochemical nanoprobes and dual-aptamers for on-chip DPV detection was proposed, which included self-synthesized electrochemical nanoprobes bovine serum albumin/detection aptamer 2/polythionine@gold nanoparticles (BSA/Apt2/PThi@Au NPs), target PSA, and sensing interface 6-mercaptohexanol/capture aptamer 1/gold nanoparticles on gold electrode (MCH/Apt1/Au NPs/Au). The method of quantitative detection of PSA in whole blood was then established. The excellent performance of the microfluidic chip allowed the determination of PSA in whole blood in the range of 1 pg/mL ∼10 ng/mL with an ultralow limit of detection of 0.25 pg/mL, which was better than the results obtained by conventional methods.


Assuntos
Aptâmeros de Nucleotídeos , Técnicas Biossensoriais , Nanopartículas Metálicas , Antígeno Prostático Específico/sangue , Aptâmeros de Nucleotídeos/química , Técnicas Biossensoriais/métodos , Técnicas Eletroquímicas/métodos , Ouro/química , Humanos , Limite de Detecção , Masculino , Nanopartículas Metálicas/química , Microfluídica/instrumentação , Neoplasias da Próstata/diagnóstico
10.
Science ; 370(6521): 1186-1191, 2020 12 04.
Artigo em Inglês | MEDLINE | ID: mdl-33273096

RESUMO

Definitive hematopoietic stem and progenitor cells (HSPCs) arise from the transdifferentiation of hemogenic endothelial cells (hemECs). The mechanisms of this endothelial-to-hematopoietic transition (EHT) are poorly understood. We show that microRNA-223 (miR-223)-mediated regulation of N-glycan biosynthesis in endothelial cells (ECs) regulates EHT. miR-223 is enriched in hemECs and in oligopotent nascent HSPCs. miR-223 restricts the EHT of lymphoid-myeloid lineages by suppressing the mannosyltransferase alg2 and sialyltransferase st3gal2, two enzymes involved in protein N-glycosylation. ECs that lack miR-223 showed a decrease of high mannose versus sialylated sugars on N-glycoproteins such as the metalloprotease Adam10. EC-specific expression of an N-glycan Adam10 mutant or of the N-glycoenzymes phenocopied miR-223 mutant defects. Thus, the N-glycome is an intrinsic regulator of EHT, serving as a key determinant of the hematopoietic fate.


Assuntos
Transdiferenciação Celular , Células Endoteliais/citologia , Glicoproteínas/metabolismo , Células-Tronco Hematopoéticas/citologia , MicroRNAs/fisiologia , Polissacarídeos/biossíntese , Proteína ADAM10/genética , Proteína ADAM10/metabolismo , Animais , Animais Geneticamente Modificados , Linhagem da Célula , Células Endoteliais/metabolismo , Genes Reporter , Glicômica , Glicosilação , Células-Tronco Hematopoéticas/metabolismo , Manosiltransferases/metabolismo , MicroRNAs/genética , Sialiltransferases/metabolismo , Peixe-Zebra , beta-Galactosídeo alfa-2,3-Sialiltransferase
11.
Fish Shellfish Immunol ; 100: 238-245, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32135341

RESUMO

Licorice is a widely used herbal medicine for the treatment of various diseases in southern Europe and parts of Asia. It has been reported that the isoliquiritin (ISL) from Glycyrrhiza root has the activity of promoting angiogenesis. The purpose of this study was to investigate the effect of ISL on the wound healing activity of zebrafish and its mechanism. 6-month-old zebrafish were injured in the skin (2 mm in diameter) and then treated with ISL. By measuring wound size and by histological examination, we found that ISL improved wound healing. In addition, 4-day-old zebrafish embryos of double transgenic line [Tg(fli-1:EGFP)]/[Tg(mpeg:mCherry)] were suffered from tissue traumas and then treated with ISL. Through fluorescent microscopy, we found that ISL promoted macrophage recruitment and angiogenesis in the wound area. Through qPCR analysis, we found that ISL up-regulated the expression of genes related to inflammation and angiogenesis in zebrafish embryos. These results showed that ISL could promote inflammatory response and angiogenesis, which played key roles in promoting wound healing. Therefore, ISL can be used as a promising candidate to promote wound healing.


Assuntos
Chalcona/análogos & derivados , Glucosídeos/farmacologia , Macrófagos/imunologia , Neovascularização Fisiológica/efeitos dos fármacos , Extratos Vegetais/farmacologia , Cicatrização/efeitos dos fármacos , Peixe-Zebra/imunologia , Animais , Chalcona/farmacologia , Inflamação/genética , Plantas Medicinais/química , Pele/efeitos dos fármacos , Pele/lesões , Peixe-Zebra/lesões
12.
Life Sci ; 247: 117402, 2020 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-32035930

RESUMO

AIMS: Gastric cancer (GC) is one of the most common malignant tumors in the world. Anti-angiogenic therapy is a useful strategy for the treatment of advanced GC. This study was aimed to systemically compare the anti-angiogenesis, anti-cancer efficacy, as well as the safety of four known anti-angiogenic drugs, namely ramucirumab, apatinib, regorafenib and cabozantinib. MAIN METHODS: Anti-angiogenic effect was evaluated for the intersegmental vessels (ISVs) and subintestinal veins (SIVs) formation in the Tg (fli-1: EGFP) zebrafish embryos. Anti-cancer efficacy was tested for the in vivo cell proliferation in cell line derived tumor xenograft (CDX) model based on Tg (fli-1: EGFP) zebrafish embryos. KEY FINDINGS: All four drugs exhibited anti-angiogenic abilities and tumor inhibition effects in fli-1: EGFP transgenic zebrafish. Using zebrafish xenografted model, we found that effectiveness of ramucirumab in anti-GC-proliferation is better than apatinib, regorafenib and cabozantinib. The combination of anti-angiogenic drugs and cisplatin showed no significant benefit in tumors. Meanwhile, toxicity assay showed that all tested anti-angiogenic drugs could cause cardiovascular-related side effects. The therapeutic index (LD50/ED50) of cabozantinib is higher than apatinib and regorafenib, suggesting a potential as an anti-GC drug. SIGNIFICANCE: The comparison of GC-related anti-angiogenic drugs was first reported. It was found that cabozantinib had a potential as an anti-GC drug. Zebrafish model was an ideal animal model for the research of anti-angiogenic behaviors.


Assuntos
Inibidores da Angiogênese/farmacologia , Anilidas/farmacologia , Anticorpos Monoclonais Humanizados/farmacologia , Antineoplásicos/farmacologia , Neovascularização Patológica/tratamento farmacológico , Compostos de Fenilureia/farmacologia , Piridinas/farmacologia , Animais , Animais Geneticamente Modificados , Modelos Animais de Doenças , Feminino , Masculino , Neovascularização Fisiológica/efeitos dos fármacos , Neoplasias Gástricas/irrigação sanguínea , Neoplasias Gástricas/tratamento farmacológico , Peixe-Zebra/embriologia , Ramucirumab
13.
Life Sci ; 235: 116791, 2019 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-31465732

RESUMO

AIMS: Prostate cancer (PCa) incidence rates are rising in China currently. Cancer-associated fibroblasts (CAFs), as a major component of tumor microenvironment, are crucial for tumor progression. This study was aimed to explore the promotion effect of patient-derived CAFs on the proliferation and migration of prostate cancer cells. MAIN METHODS: CAFs were isolated from tumor tissues of PCa patients. The promotion effect of CAFs on the proliferation and migration of PC-3 and LNCaP cells were evaluated in vitro and in vivo. The concentration of TGF-ß1 was measured by Luminex assay. The blocking activity of LY2109761 on the promotion effect of CAFs was also evaluated. KEY FINDINGS: CAFs could significantly promote the proliferation and migration of PC-3 and LNCaP cells both in vitro and in vivo. TGF-ß1 was identified as a highly increased factor in CAFs-CM compared with the normal culture medium of these two cancer cell lines. TGF-ß receptor inhibitor LY2109761 could suppress the CAFs-induced cellular proliferation and migration of PC-3 cells but not LNCaP cells. SIGNIFICANCE: Our study suggested a crucial role for CAFs and TGF-ß signaling in the progression of PCa. Zebrafish xenograft model was an ideal animal model for the study of CAFs and cancer cell interaction.


Assuntos
Fibroblastos Associados a Câncer , Movimento Celular , Proliferação de Células , Embrião não Mamífero/patologia , Neoplasias da Próstata/patologia , Pirazóis/farmacologia , Pirróis/farmacologia , Fator de Crescimento Transformador beta1/metabolismo , Animais , Embrião não Mamífero/efeitos dos fármacos , Embrião não Mamífero/metabolismo , Regulação Neoplásica da Expressão Gênica , Humanos , Masculino , Neoplasias da Próstata/tratamento farmacológico , Neoplasias da Próstata/metabolismo , Receptores de Fatores de Crescimento Transformadores beta/antagonistas & inibidores , Transdução de Sinais , Fator de Crescimento Transformador beta1/genética , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de Xenoenxerto , Peixe-Zebra
14.
Life Sci ; 223: 128-136, 2019 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-30876941

RESUMO

AIMS: Liquorice is a widely used herbal medicine for treating various diseases native to southern Europe and parts of Asia. Isoliquiritin (ISL), a licorice root-derived flavonoid, has been reported to exhibit antioxidant, anti-inflammatory, anti-genotoxic activity and anti-depression activities. This study was aimed to explore the pro-angiogenic activity of ISL and explicate the underlying mechanism. MAIN METHODS: In vitro, ISL-treated human umbilical vein endothelial cells (HUVECs) were analyzed for cell viability, cell migration and tube formation. In vivo, pro-angiogenic effects were evaluated for the intersegmental vessels (ISVs) formation in transgenic zebrafish embryos [Tg(fli-1: EGFP)]. Furthermore, a blocking assay with eight pathways-specific kinase inhibitors were also used to determine the potential pro-angiogenic mechanism of ISL. KEY FINDINGS: ISL counteracted tyrosine kinase inhibitor II (VRI)-induced endothelial cell apoptosis and promoted cell migration and tube formation in HUVECs. ISL markedly rescued ISVs loss induced by VRI in zebrafish embryos, probably by activating vascular endothelial growth factor receptor-2 (VEGFR-2), phosphoinositide 3-kinase (PI3K), Raf and mitogen-activated protein kinase (MEK)-dependent signaling pathways. SIGNIFICANCE: Our study first discovered and confirmed the pro-angiogenic activity of ISL both in HUVECs and zebrafish. Thus, ISL could be developed as a potential therapeutic agent by the role of pro-angiogenic activity for the treatment of cardiovascular diseases, cerebrovascular diseases and other vascular diseases.


Assuntos
Vasos Sanguíneos/efeitos dos fármacos , Chalcona/análogos & derivados , Desenvolvimento Embrionário/efeitos dos fármacos , Glucosídeos/farmacologia , Neovascularização Fisiológica/efeitos dos fármacos , Peixe-Zebra/embriologia , Quinases raf/metabolismo , Animais , Animais Geneticamente Modificados , Vasos Sanguíneos/embriologia , Técnicas de Cultura de Células , Sobrevivência Celular/efeitos dos fármacos , Chalcona/farmacologia , Embrião não Mamífero/efeitos dos fármacos , Embrião não Mamífero/enzimologia , Células Endoteliais da Veia Umbilical Humana , Humanos , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Transdução de Sinais , Peixe-Zebra/genética
15.
J Immunol ; 202(3): 760-769, 2019 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-30567733

RESUMO

SRC3, a highly conserved member of the steroid receptor coactivator (SRC) family, is recruited by transcription factors to regulate cellular function. Previously, we demonstrated that SRC1, another highly conserved member of the SRC family, interacts with RORγt to regulate Th17 differentiation. However, the relationship between SRC1 and SRC3 in the regulation of Th17 cell function remains unknown. In this study, we demonstrate that mouse SRC3 interacts with RORγt in Th17 cells but not in thymocytes. In addition, Src3-/- mice exhibited defective Th17 differentiation and induction of experimental autoimmune encephalomyelitis but normal thymocyte development. Furthermore, a K313 to arginine mutation of RORγt (RORγt-K313R), which disrupts the interaction of RORγt with SRC3 but not with SRC1, impairs Th17 differentiation but not thymocyte development. These data suggest that SRC3 works with SRC1 to regulate RORγt-dependent Th17 differentiation but is not essential for RORγt-dependent thymocyte development.


Assuntos
Diferenciação Celular , Coativador 3 de Receptor Nuclear/genética , Membro 3 do Grupo F da Subfamília 1 de Receptores Nucleares/genética , Células Th17/imunologia , Timócitos/citologia , Animais , Encefalomielite Autoimune Experimental/imunologia , Regulação da Expressão Gênica , Ativação Linfocitária , Camundongos , Camundongos Knockout , Células Th17/citologia , Timócitos/imunologia
16.
Nat Immunol ; 18(10): 1128-1138, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28846085

RESUMO

The transcription factor RORγt regulates differentiation of the TH17 subset of helper T cells, thymic T cell development and lymph-node genesis. Although elimination of RORγt prevents TH17 cell-mediated experimental autoimmune encephalomyelitis (EAE), it also disrupts thymocyte development, which could lead to lethal thymic lymphoma. Here we identified a two-amino-acid substitution in RORγt (RORγtM) that 'preferentially' disrupted TH17 differentiation but not thymocyte development. Mice expressing RORγtM were resistant to EAE associated with defective TH17 differentiation but maintained normal thymocyte development and normal lymph-node genesis, except for Peyer's patches. RORγtM showed less ubiquitination at Lys69 that was selectively required for TH17 differentiation but not T cell development. This study will inform the development of treatments that selectively target TH17 cell-mediated autoimmunity but do not affect thymocyte development or induce lymphoma.


Assuntos
Substituição de Aminoácidos , Diferenciação Celular/genética , Mutação , Membro 3 do Grupo F da Subfamília 1 de Receptores Nucleares/genética , Células Th17/citologia , Células Th17/metabolismo , Timócitos/citologia , Timócitos/metabolismo , Animais , Biomarcadores , Diferenciação Celular/imunologia , Análise por Conglomerados , Encefalomielite Autoimune Experimental/genética , Encefalomielite Autoimune Experimental/imunologia , Encefalomielite Autoimune Experimental/metabolismo , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Imunofenotipagem , Linfonodos/imunologia , Linfonodos/metabolismo , Camundongos , Camundongos Knockout , Nódulos Linfáticos Agregados/imunologia , Nódulos Linfáticos Agregados/metabolismo , Subpopulações de Linfócitos T/citologia , Subpopulações de Linfócitos T/imunologia , Subpopulações de Linfócitos T/metabolismo , Células Th17/imunologia , Timócitos/imunologia , Ubiquitinação
17.
PLoS Pathog ; 12(10): e1005900, 2016 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-27760204

RESUMO

Kaposi's sarcoma (KS)-associated herpesvirus (KSHV) is an oncogenic pathogen that displays latent and lytic life cycles. In KS lesions, infiltrated immune cells, secreted viral and/or cellular cytokines, and hypoxia orchestrate a chronic pro-lytic microenvironment that can promote KSHV reactivation. However, only a small subset of viruses spontaneously undergoes lytic replication in this pro-lytic microenvironment while the majority remains in latency. Here, we show that the expression of the Notch ligand JAG1 is induced by KSHV-encoded replication and transcription activator (RTA) during reactivation. JAG1 up-regulation activates Notch signaling in neighboring cells and prevents viral lytic replication. The suppression of JAG1 and Notch1 with inhibitors or small interfering RNA promotes lytic replication in the presence of RTA induction or under conditions of hypoxia. The underlying mechanism involves the Notch downstream effector hairy and enhancer of split 1 (Hes1), which directly binds lytic gene promoters and attenuates viral lytic gene expression. RTA interacts with lymphoid enhancer-binding factor 1 (LEF1), disrupts LEF1/Groucho/TLE suppressive complexes and releases LEF1 to activate JAG1 expression. Taken together, our results suggest that cells with viral lytic replication can inhibit KSHV reactivation in neighboring cells through an RTA-JAG1-Notch pathway. These data provide insight into the mechanism by which the virus maintains the balance between lytic and latent infection in the pro-lytic tumor microenvironment.


Assuntos
Herpesvirus Humano 8/fisiologia , Proteínas Imediatamente Precoces/metabolismo , Proteína Jagged-1/metabolismo , Receptores Notch/metabolismo , Transativadores/metabolismo , Latência Viral/fisiologia , Western Blotting , Linhagem Celular , Imunoprecipitação da Cromatina , Técnicas de Cocultura , Citometria de Fluxo , Imunofluorescência , Humanos , Reação em Cadeia da Polimerase em Tempo Real , Sarcoma de Kaposi/virologia , Transdução de Sinais/fisiologia , Transfecção , Ativação Viral/fisiologia
18.
Mech Dev ; 142: 40-49, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27794491

RESUMO

A fundamental issue in organogenesis is how dichotomous fate decisions are made securing proper allocation of multipotent progenitors to their respective descendants. Previous lineage tracing analyses showing Isl1+/VEGFR2+ cardiac progenitors in the second heart field give rise to both endocardium and myocardium suggest VEGF plays a role in this fate decision, conceivably promoting an endocardial fate. Isl1+ multipotent progenitors and lineage-committed descendants thereof were visualized and quantified within their transition zone in the outflow tract. Forced VEGF expression during the critical E8.5-E10.5 interval tilted the balance between myocardial- and endocardial-committed progenitors towards the latter, culminating in generation of surplus endocardium developing at the expense of a much thinner myocardium. Experiments ruled-out that surplus endocardium is due to VEGF-induced endocardial proliferation and that reduced myocardium is due to myocardial apoptosis. Inducing VEGF after most Isl1+ progenitors have been exhausted had no effect on the normal endocardia/myocardial ratio but instead produced an unrelated coronary phenotype. Together, these results uncover a novel role for VEGF in controlling proper allocation of Isl1+ cardiac progenitors to their respective descending lineages.


Assuntos
Proliferação de Células/genética , Proteínas com Homeodomínio LIM/genética , Organogênese/genética , Fatores de Transcrição/genética , Fator A de Crescimento do Endotélio Vascular/genética , Animais , Apoptose/genética , Linhagem da Célula/genética , Endocárdio/citologia , Endocárdio/metabolismo , Camundongos , Camundongos Transgênicos , Miocárdio/citologia , Miocárdio/metabolismo , Células-Tronco/metabolismo
19.
Reprod Toxicol ; 63: 161-8, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27288890

RESUMO

Gambogic acid (GA), the major active ingredient of gamboge, has been approved by the Chinese Food and Drug Administration for clinical trials in cancer patients due to its strong anticancer activity. However, our previous research showed that GA was teratogenic against zebrafish fin development. To explore the teratogenicity and the underlying mechanisms, zebrafish (Danio rerio) embryos were used. The morphological observations revealed that GA caused fin defects in zebrafish embryos in a concentration-dependent manner. The critical exposure time of GA to reveal teratogenicity was before 8 hpf (hours post fertilization). LC/MS/MS analysis revealed that a maximum bioconcentration of GA was occurred at 4 hpf. Q-PCR data showed that GA treatment resulted in significant inactivation of RA signaling which could be partially rescued by the exogenous supply of RA. These results indicate the potential teratogenicity of GA and provide evidence for a caution in its future clinic use.


Assuntos
Nadadeiras de Animais/efeitos dos fármacos , Antineoplásicos/toxicidade , Tretinoína/metabolismo , Xantonas/toxicidade , Nadadeiras de Animais/embriologia , Animais , Embrião não Mamífero/efeitos dos fármacos , Embrião não Mamífero/embriologia , Embrião não Mamífero/metabolismo , Desenvolvimento Embrionário/efeitos dos fármacos , Regulação da Expressão Gênica no Desenvolvimento/efeitos dos fármacos , Retinal Desidrogenase/genética , Ácido Retinoico 4 Hidroxilase/genética , Transdução de Sinais/efeitos dos fármacos , Peixe-Zebra , Proteínas de Peixe-Zebra/genética
20.
Clin Endocrinol (Oxf) ; 84(1): 3-12, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26118628

RESUMO

Radioactive iodine (RAI) ablation is a beneficial, adjuvant therapy for the management of differentiated thyroid cancer (DTC) after thyroidectomy. The goal of RAI is to destroy remnant thyroid and microscopic cancerous tissue. Radioactive iodine uptake is enhanced by elevating TSH levels and initiating a low iodine diet (LID) prior to ablation. An ideal LID should preferably not exceed 50 mcg/day of dietary iodine for 1-2 weeks, although the duration may be shortened to a week with a structured patient education programme. A pre-ablation spot urinary iodine concentration (UIC) of <100 mcg/l and/or a urinary iodine to creatinine ratio (UICR) of <100 mcg/gCr would support an adequate LID preparation. Hyponatraemia, most likely due to iatrogenic hypothyroidism, is a potential side effect associated with LID and occurs during and a few days after the LID. Although the overall incidence of hyponatraemia is low, patients at high risk (older age, female sex, use of thiazide diuretics) may benefit from serum sodium monitoring. The existing evidence on the impact of LID on RAI ablation has been largely inconsistent due to retrospective study designs and the lack of an objective measurement of urinary iodine levels. Future large prospective randomized control trials are needed to elucidate and confirm the crucial role of LID in achieving successful RAI ablation and greater disease-free survival in DTC.


Assuntos
Dieta , Radioisótopos do Iodo/uso terapêutico , Iodo/administração & dosagem , Neoplasias da Glândula Tireoide/dietoterapia , Neoplasias da Glândula Tireoide/radioterapia , Terapia Combinada , Humanos , Iodo/urina , Guias de Prática Clínica como Assunto , Fatores de Risco , Neoplasias da Glândula Tireoide/cirurgia , Tireoidectomia , Resultado do Tratamento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA