Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Aging Cell ; 22(4): e13782, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36734200

RESUMO

Cardiomyopathy is a progressive disease of the myocardium leading to impaired contractility. Genotoxic cancer therapies are known to be potent drivers of cardiomyopathy, whereas causes of spontaneous disease remain unclear. To test the hypothesis that endogenous genotoxic stress contributes to cardiomyopathy, we deleted the DNA repair gene Ercc1 specifically in striated muscle using a floxed allele of Ercc1 and mice expressing Cre under control of the muscle-specific creatinine kinase (Ckmm) promoter or depleted systemically (Ercc1-/D mice). Ckmm-Cre+/- ;Ercc1-/fl mice expired suddenly of heart disease by 7 months of age. As young adults, the hearts of Ckmm-Cre+/- ;Ercc1-/fl mice were structurally and functionally normal, but by 6-months-of-age, there was significant ventricular dilation, wall thinning, interstitial fibrosis, and systolic dysfunction indicative of dilated cardiomyopathy. Cardiac tissue from the tissue-specific or systemic model showed increased apoptosis and cardiac myocytes from Ckmm-Cre+/- ;Ercc1-/fl mice were hypersensitive to genotoxins, resulting in apoptosis. p53 levels and target gene expression, including several antioxidants, were increased in cardiac tissue from Ckmm-Cre+/- ;Ercc1-/fl and Ercc1-/D mice. Despite this, cardiac tissue from older mutant mice showed evidence of increased oxidative stress. Genetic or pharmacologic inhibition of p53 attenuated apoptosis and improved disease markers. Similarly, overexpression of mitochondrial-targeted catalase improved disease markers. Together, these data support the conclusion that DNA damage produced endogenously can drive cardiac disease and does so mechanistically via chronic activation of p53 and increased oxidative stress, driving cardiac myocyte apoptosis, dilated cardiomyopathy, and sudden death.


Assuntos
Cardiomiopatia Dilatada , Miócitos Cardíacos , Camundongos , Animais , Miócitos Cardíacos/metabolismo , Cardiomiopatia Dilatada/genética , Cardiomiopatia Dilatada/metabolismo , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo , Miocárdio/metabolismo , Reparo do DNA
2.
J Mol Cell Cardiol ; 49(5): 801-11, 2010 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-20692266

RESUMO

Following myocardial infarction, the prognosis for females is better than males. Estrogen is thought to be protective, but clinical trials with hormone replacement failed to show protection. Here, we sought to identify novel mechanisms that might explain this sex-based difference. By diverging from the traditional focus on sex hormones, we employed a conceptually novel approach to this question by using a non-biased approach to measure global changes in gene expression following infarction. We hypothesized that specific gene programs are initiated in the heart following infarction that might account for this sex-based difference. We induced small, medium, and large infarcts in male and female mice and measured changes in gene expression by microarray following infarction. Regardless of infarct size, survival was better in females, while mortality occurred 3-10 days following infarction in males. Two days following infarction, males developed significant ventricular dilation, the best predictor of mortality in humans. Three days following infarction, we measured gene expression by microarray, comparing male versus female and sham versus surgery/infarction. In general, our results indicate a higher relative level of gene induction in females versus males and identified programs for angiogenesis, extracellular matrix remodeling, and immune response. This pattern of gene expression was linked to less pathologic remodeling in female hearts, including increased capillary density and decreased fibrosis. In summary, our results suggest an association between improved survival and less pathologic remodeling and the relative induction of gene expression in females following myocardial infarction.


Assuntos
Regulação da Expressão Gênica , Infarto do Miocárdio/genética , Caracteres Sexuais , Animais , Capilares/patologia , Feminino , Fibrose , Testes de Função Cardíaca , Ventrículos do Coração/patologia , Ventrículos do Coração/fisiopatologia , Masculino , Camundongos , Infarto do Miocárdio/mortalidade , Infarto do Miocárdio/patologia , Infarto do Miocárdio/fisiopatologia , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/patologia , Análise de Sobrevida , Remodelação Ventricular/genética
3.
Circ Res ; 103(9): 992-1000, 2008 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-18802028

RESUMO

We previously identified an alpha1-AR-ERK (alpha1A-adrenergic receptor-extracellular signal-regulated kinase) survival signaling pathway in adult cardiac myocytes. Here, we investigated localization of alpha1-AR subtypes (alpha1A and alpha1B) and how their localization influences alpha1-AR signaling in cardiac myocytes. Using binding assays on myocyte subcellular fractions or a fluorescent alpha1-AR antagonist, we localized endogenous alpha1-ARs to the nucleus in wild-type adult cardiac myocytes. To clarify alpha1 subtype localization, we reconstituted alpha1 signaling in cultured alpha1A- and alpha1B-AR double knockout cardiac myocytes using alpha1-AR-green fluorescent protein (GFP) fusion proteins. Similar to endogenous alpha1-ARs and alpha1A- and alpha1B-GFP colocalized with LAP2 at the nuclear membrane. alpha1-AR nuclear localization was confirmed in vivo using alpha1-AR-GFP transgenic mice. The alpha1-signaling partners Galphaq and phospholipase Cbeta1 also colocalized with alpha1-ARs only at the nuclear membrane. Furthermore, we observed rapid catecholamine uptake mediated by norepinephrine-uptake-2 and found that alpha1-mediated activation of ERK was not inhibited by a membrane impermeant alpha1-blocker, suggesting alpha1 signaling is initiated at the nucleus. Contrary to prior studies, we did not observe alpha1-AR localization to caveolae, but we found that alpha1-AR signaling initiated at the nucleus led to activated ERK localized to caveolae. In summary, our results show that nuclear alpha1-ARs transduce signals to caveolae at the plasma membrane in cardiac myocytes.


Assuntos
Cavéolas/enzimologia , Núcleo Celular/enzimologia , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Miócitos Cardíacos/enzimologia , Receptores Adrenérgicos alfa 1/metabolismo , Transdução de Sinais , Antagonistas de Receptores Adrenérgicos alfa 1 , Antagonistas Adrenérgicos alfa/farmacologia , Animais , Catecolaminas/metabolismo , Cavéolas/efeitos dos fármacos , Fracionamento Celular , Núcleo Celular/efeitos dos fármacos , Células Cultivadas , Proteínas de Ligação a DNA/metabolismo , Subunidades alfa Gq-G11 de Proteínas de Ligação ao GTP/metabolismo , Proteínas de Fluorescência Verde/metabolismo , Proteínas de Membrana/metabolismo , Camundongos , Camundongos Knockout , Microscopia Confocal , Miócitos Cardíacos/efeitos dos fármacos , Proteínas de Transporte de Cátions Orgânicos/metabolismo , Fosfolipase C beta/metabolismo , Fosforilação , Prazosina/farmacologia , Receptores Adrenérgicos alfa 1/genética , Proteínas Recombinantes de Fusão/metabolismo , Transdução de Sinais/efeitos dos fármacos , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA