Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 23(20)2022 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-36293341

RESUMO

Aphids (Hemiptera: Aphidoidea) are among the most detrimental insects for agricultural plants, and their management is a great challenge in agronomical research. A new class of proteins, called Bacteriocyte-specific Cysteine-Rich (BCR) peptides, provides an alternative to chemical insecticides for pest control. BCRs were initially identified in the pea aphid Acyrthosiphon pisum. They are small disulfide bond-rich proteins expressed exclusively in aphid bacteriocytes, the insect cells that host intracellular symbiotic bacteria. Here, we show that one of the A. pisum BCRs, BCR4, displays prominent insecticidal activity against the pea aphid, impairing insect survival and nymphal growth, providing evidence for its potential use as a new biopesticide. Our comparative genomics and phylogenetic analyses indicate that BCRs are restricted to the aphid lineage. The 3D structure of BCR4 reveals that this peptide belongs to an as-yet-unknown structural class of peptides and defines a new superfamily of defensins.


Assuntos
Afídeos , Inseticidas , Animais , Afídeos/metabolismo , Filogenia , Inseticidas/farmacologia , Inseticidas/metabolismo , Cisteína/metabolismo , Agentes de Controle Biológico/metabolismo , Simbiose , Peptídeos/farmacologia , Peptídeos/metabolismo , Dissulfetos/metabolismo , Defensinas/genética , Defensinas/farmacologia , Defensinas/metabolismo
2.
mBio ; 12(6): e0073021, 2021 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-34781749

RESUMO

The acquisition of nutritional obligate primary endosymbionts (P-symbionts) allowed phloemo-phageous insects to feed on plant sap and thus colonize novel ecological niches. P-symbionts often coexist with facultative secondary endosymbionts (S-symbionts), which may also influence their hosts' niche utilization ability. The whitefly Bemisia tabaci is a highly diversified species complex harboring, in addition to the P-symbiont "Candidatus Portiera aleyrodidarum," seven S-symbionts whose roles remain poorly understood. Here, we compare the phenotypic and metabolic responses of three B. tabaci lines differing in their S-symbiont community, reared on three different host plants, hibiscus, tobacco, or lantana, and address whether and how S-symbionts influence insect capacity to feed and produce offspring on those plants. We first show that hibiscus, tobacco, and lantana differ in their free amino acid composition. Insects' performance, as well as free amino acid profile and symbiotic load, were shown to be plant dependent, suggesting a critical role for the plant nutritional properties. Insect fecundity was significantly lower on lantana, indicating that it is the least favorable plant. Remarkably, insects reared on this plant show a specific amino acid profile and a higher symbiont density compared to the two other plants. In addition, this plant was the only one for which fecundity differences were observed between lines. Using genetically homogeneous hybrids, we demonstrate that cytotype (mitochondria and symbionts), and not genotype, is a major determinant of females' fecundity and amino acid profile on lantana. As cytotypes differ in their S-symbiont community, we propose that these symbionts may mediate their hosts' suitable plant range. IMPORTANCE Microbial symbionts are universal in eukaryotes, and it is now recognized that symbiotic associations represent major evolutionary driving forces. However, the extent to which symbionts contribute to their hosts' ecological adaptation and subsequent diversification is far from being fully elucidated. The whitefly Bemisia tabaci is a sap feeder associated with multiple coinfecting intracellular facultative symbionts. Here, we show that plant species simultaneously affect whiteflies' performance, amino acid profile, and symbiotic density, which could be partially explained by differences in plant nutritional properties. We also demonstrate that, on lantana, the least favorable plant used in our study, whiteflies' performance is determined by their cytotype. We propose that the host plant utilization in B. tabaci is influenced by its facultative symbiont community composition, possibly through its impact on the host dietary requirements. Altogether, our data provide new insights into the impact of intracellular microorganisms on their animal hosts' ecological niche range and diversification.


Assuntos
Hemípteros/fisiologia , Hibiscus/parasitologia , Lantana/parasitologia , Nicotiana/parasitologia , Aminoácidos/química , Animais , Comportamento Alimentar , Fertilidade , Hemípteros/classificação , Hibiscus/química , Hibiscus/fisiologia , Especificidade de Hospedeiro , Lantana/química , Lantana/fisiologia , Mitocôndrias/metabolismo , Oviposição , Simbiose , Nicotiana/química , Nicotiana/fisiologia
3.
Science ; 334(6054): 362-5, 2011 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-22021855

RESUMO

Vertically transmitted endosymbionts persist for millions of years in invertebrates and play an important role in animal evolution. However, the functional basis underlying the maintenance of these long-term resident bacteria is unknown. We report that the weevil coleoptericin-A (ColA) antimicrobial peptide selectively targets endosymbionts within the bacteriocytes and regulates their growth through the inhibition of cell division. Silencing the colA gene with RNA interference resulted in a decrease in size of the giant filamentous endosymbionts, which escaped from the bacteriocytes and spread into insect tissues. Although this family of peptides is commonly linked with microbe clearance, this work shows that endosymbiosis benefits from ColA, suggesting that long-term host-symbiont coevolution might have shaped immune effectors for symbiont maintenance.


Assuntos
Gammaproteobacteria/fisiologia , Proteínas de Insetos/metabolismo , Simbiose , Gorgulhos/metabolismo , Gorgulhos/microbiologia , Animais , Proteínas da Membrana Bacteriana Externa/metabolismo , Proteínas de Bactérias/metabolismo , Chaperonina 60/genética , Chaperonina 60/metabolismo , Citoplasma/metabolismo , Células Epiteliais/metabolismo , Escherichia coli/citologia , Escherichia coli/efeitos dos fármacos , Corpo Adiposo/metabolismo , Gammaproteobacteria/citologia , Gammaproteobacteria/efeitos dos fármacos , Gammaproteobacteria/metabolismo , Proteínas de Insetos/genética , Proteínas de Insetos/farmacologia , Micrococcus luteus/efeitos dos fármacos , Oócitos/metabolismo , Interferência de RNA , Saccharomyces cerevisiae/efeitos dos fármacos , Gorgulhos/citologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA