Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Front Microbiol ; 12: 818414, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35095822

RESUMO

Biochemical processes are a key element of natural cycles occurring in the environment and enabling life on earth. With regard to microbially catalyzed iron transformation, research predominantly has focused on iron oxidation in acidophiles, whereas iron reduction played a minor role. Microbial conversion of ferric to ferrous iron has however become more relevant in recent years. While there are several reviews on neutrophilic iron reducers, this article summarizes the research on extreme acidophilic iron reducers. After the first reports of dissimilatory iron reduction by acidophilic, chemolithoautotrophic Acidithiobacillus strains and heterotrophic Acidiphilium species, many other prokaryotes were shown to reduce iron as part of their metabolism. Still, little is known about the exact mechanisms of iron reduction in extreme acidophiles. Initially, hypotheses and postulations for the occurring mechanisms relied on observations of growth behavior or predictions based on the genome. By comparing genomes of well-studied neutrophilic with acidophilic iron reducers (e.g., Ferroglobus placidus and Sulfolobus spp.), it became clear that the electron transport for iron reduction proceeds differently in acidophiles. Moreover, transcriptomic investigations indicated an enzymatically-mediated process in Acidithiobacillus ferrooxidans using respiratory chain components of the iron oxidation in reverse. Depending on the strain of At. ferrooxidans, further mechanisms were postulated, e.g., indirect iron reduction by hydrogen sulfide, which may form by disproportionation of elemental sulfur. Alternative scenarios include Hip, a high potential iron-sulfur protein, and further cytochromes. Apart from the anaerobic iron reduction mechanisms, sulfur-oxidizing acidithiobacilli have been shown to mediate iron reduction at low pH (< 1.3) under aerobic conditions. This presumably non-enzymatic process may be attributed to intermediates formed during sulfur/tetrathionate and/or hydrogen oxidation and has already been successfully applied for the reductive bioleaching of laterites. The aim of this review is to provide an up-to-date overview on ferric iron reduction by acidophiles. The importance of this process in anaerobic habitats will be demonstrated as well as its potential for application.

2.
Int J Syst Evol Microbiol ; 70(5): 3348-3354, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32375942

RESUMO

A novel acidophilic member of the phylum Actinobacteria was isolated from an acidic, metal-contaminated stream draining from an abandoned underground coal mine (Trongol mine), situated close to Curanilahue, Biobío Region, Chile. The isolate (USS-CCA1T) was demonstrated to be a heterotroph that catalysed under aerobic conditions the oxidation of ferrous iron and the reduction of ferric iron under anaerobic conditions, but not the oxidation of sulfur nor hydrogen. USS-CCA1T is a Gram-positive, motile, short rod-shaped, mesophilic bacterium with a temperature growth optimum at 30 °C (range 20-39 °C). It was categorized as an extreme acidophile growing between 1.7 and 4.5 and optimally at pH 3.0. The G+C content of the chromosomal DNA of the isolate was 74.1 mol%, which is highly related to Aciditerrimonas ferrireducens IC-180T , (the most closely related genus; 94.4 % 16S rRNA gene identity), and higher than other acidophilic actinobacteria. The isolate (USS-CCA1T) was shown to form a distinct 16S rRNA clade from characterized acidophilic actinobacteria, well separated from the genera Acidimicrobium, Ferrimicrobium, Ferrithrix, 'Acidithrix' and Aciditerrimonas. Genomic indexes (ANIb, DDH, AAI, POCP) derived from the USS-CCA1T draft genome sequence (deposited at DDBJ/ENA/GenBank under the accession WJHE00000000) support assignment of the isolate to a new species and a new genus within the Acidimicrobiaceae family. Isolate USS-CCA1T is the designated type strain of the novel species Acidiferrimicrobium australe (=DSM 106828T,=RGM 2506T).


Assuntos
Actinobacteria/classificação , Processos Heterotróficos , Ferro/metabolismo , Mineração , Filogenia , Microbiologia da Água , Ácidos , Actinobacteria/isolamento & purificação , Técnicas de Tipagem Bacteriana , Composição de Bases , Chile , DNA Bacteriano/genética , Ácidos Graxos/química , Concentração de Íons de Hidrogênio , Oxirredução , RNA Ribossômico 16S/genética , Análise de Sequência de DNA
3.
Front Microbiol ; 8: 211, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28239375

RESUMO

Experiments were carried out to examine redox transformations of copper and chromium by acidophilic bacteria (Acidithiobacillus, Leptospirillum, and Acidiphilium), and also of iron (III) reduction by Acidithiobacillus spp. under aerobic conditions. Reduction of iron (III) was found with all five species of Acidithiobacillus tested, grown aerobically on elemental sulfur. Cultures maintained at pH 1.0 for protracted periods displayed increasing propensity for aerobic iron (III) reduction, which was observed with cell-free culture liquors as well as those containing bacteria. At. caldus grown on hydrogen also reduced iron (III) under aerobic conditions, confirming that the unknown metabolite(s) responsible for iron (III) reduction were not (exclusively) sulfur intermediates. Reduction of copper (II) by aerobic cultures of sulfur-grown Acidithiobacillus spp. showed similar trends to iron (III) reduction in being more pronounced as culture pH declined, and occurring in both the presence and absence of cells. Cultures of Acidithiobacillus grown anaerobically on hydrogen only reduced copper (II) when iron (III) (which was also reduced) was also included; identical results were found with Acidiphilium cryptum grown micro-aerobically on glucose. Harvested biomass of hydrogen-grown At. ferridurans oxidized iron (II) but not copper (I), and copper (I) was only oxidized by growing cultures of Acidithiobacillus spp. when iron (II) was also included. The data confirmed that oxidation and reduction of copper were both mediated by acidophilic bacteria indirectly, via iron (II) and iron (III). No oxidation of chromium (III) by acidophilic bacteria was observed even when, in the case of Leptospirillum spp., the redox potential of oxidized cultures exceeded +900 mV. Cultures of At. ferridurans and A. cryptum reduced chromium (VI), though only when iron (III) was also present, confirming an indirect mechanism and contradicting an earlier report of direct chromium reduction by A. cryptum. Measurements of redox potentials of iron, copper and chromium couples in acidic, sulfate-containing liquors showed that these differed from situations where metals are not complexed by inorganic ligands, and supported the current observations of indirect copper oxido-reduction and chromium reduction mediated by acidophilic bacteria. The implications of these results for both industrial applications of acidophiles and for exobiology are discussed.

4.
Res Microbiol ; 165(9): 753-60, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25154051

RESUMO

The iron-oxidizing acidithiobacilli cluster into at least four groups, three of which (Acidithiobacillus ferrooxidans, Acidithiobacillus ferridurans and Acidithiobacillus ferrivorans) have been designated as separate species. While these have many physiological traits in common, they differ in some phenotypic characteristics including motility, and pH and temperature minima. In contrast to At. ferrooxidans and At. ferridurans, all At. ferrivorans strains analysed to date possess the iro gene (encoding an iron oxidase) and, with the exception of strain CF27, the rusB gene encoding an iso-rusticyanin whose exact function is uncertain. Strain CF27 differs from other acidithiobacilli by its marked propensity to form macroscopic biofilms in liquid media. To identify the genetic determinants responsible for the oxidation of ferrous iron and sulfur and for the formation of extracellular polymeric substances, the genome of At. ferrivorans CF27 strain was sequenced and comparative genomic studies carried out with other Acidithiobacillus spp.. Genetic disparities were detected that indicate possible differences in ferrous iron and reduced inorganic sulfur compounds oxidation pathways among iron-oxidizing acidithiobacilli. In addition, strain CF27 is the only sequenced Acidithiobacillus spp. to possess genes involved in the biosynthesis of fucose, a sugar known to confer high thickening and flocculating properties to extracellular polymeric substances.


Assuntos
Acidithiobacillus/genética , Acidithiobacillus/metabolismo , Biofilmes/crescimento & desenvolvimento , Genoma Bacteriano , Ferro/metabolismo , Redes e Vias Metabólicas , Enxofre/metabolismo , Carboidratos/análise , Análise por Conglomerados , Citosol/química , DNA Bacteriano/química , DNA Bacteriano/genética , Eucariotos , Concentração de Íons de Hidrogênio , Dados de Sequência Molecular , Oxirredução , Filogenia , Análise de Sequência de DNA , Homologia de Sequência
5.
Appl Environ Microbiol ; 80(2): 672-80, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24242243

RESUMO

A betaproteobacterium, shown by molecular techniques to have widespread global distribution in extremely acidic (pH 2 to 4) ferruginous mine waters and also to be a major component of "acid streamer" growths in mine-impacted water bodies, has proven to be recalcitrant to enrichment and isolation. A modified "overlay" solid medium was devised and used to isolate this bacterium from a number of mine water samples. The physiological and phylogenetic characteristics of a pure culture of an isolate from an abandoned copper mine ("Ferrovum myxofaciens" strain P3G) have been elucidated. "F. myxofaciens" is an extremely acidophilic, psychrotolerant obligate autotroph that appears to use only ferrous iron as an electron donor and oxygen as an electron acceptor. It appears to use the Calvin-Benson-Bassham pathway to fix CO2 and is diazotrophic. It also produces copious amounts of extracellular polymeric materials that cause cells to attach to each other (and to form small streamer-like growth in vitro) and to different solid surfaces. "F. myxofaciens" can catalyze the oxidative dissolution of pyrite and, like many other acidophiles, is tolerant of many (cationic) transition metals. "F. myxofaciens" and related clone sequences form a monophyletic group within the Betaproteobacteria distantly related to classified orders, with genera of the family Nitrosomonadaceae (lithoautotrophic, ammonium-oxidizing neutrophiles) as the closest relatives. On the basis of the phylogenetic and phenotypic differences of "F. myxofaciens" and other Betaproteobacteria, a new family, "Ferrovaceae," and order, "Ferrovales," within the class Betaproteobacteria are proposed. "F. myxofaciens" is the first extreme acidophile to be described in the class Betaproteobacteria.


Assuntos
Betaproteobacteria/genética , Betaproteobacteria/isolamento & purificação , Betaproteobacteria/metabolismo , Ferro/metabolismo , Betaproteobacteria/crescimento & desenvolvimento , Carbono/metabolismo , Meios de Cultura , Concentração de Íons de Hidrogênio , Mineração , Dados de Sequência Molecular , Nitrogênio/metabolismo , Oxirredução , Filogenia , Sulfetos/metabolismo , Temperatura , Microbiologia da Água
6.
Int J Syst Evol Microbiol ; 63(Pt 11): 4018-4025, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23710060

RESUMO

Twelve strains of iron-oxidizing acidithiobacilli isolated from acidic sites throughout the world, including some previously shown by multi-locus sequence analyses and DNA-DNA hybridization to comprise a distinct species, were characterized in terms of their physiologies. The bacteria were shown to be obligately chemolithotrophic, acidophilic and mesophilic, and grew in both oxic and anoxic environments, using ferrous iron, reduced sulfur or hydrogen as electron donors and oxygen or ferric iron as electron acceptors. Some of the strains grew at lower pH than those reported for the two recognized iron-oxidizing Acidithiobacillus species, Acidithiobacillus ferrooxidans and Acidithiobacillus ferrivorans. Tolerance of transition metals and aluminium, and also specific rates of iron oxidation and reduction, were more similar to those of A. ferrooxidans (to which the strains are more closely related) than to A. ferrivorans. The name Acidithiobacillus ferridurans sp. nov. is proposed to accommodate the 12 strains, with the type strain being JCM 18981(T) ( = ATCC 33020(T)).


Assuntos
Acidithiobacillus/classificação , Hidrogênio/metabolismo , Ferro/metabolismo , Enxofre/metabolismo , Acidithiobacillus/genética , Acidithiobacillus/isolamento & purificação , Técnicas de Tipagem Bacteriana , Composição de Bases , Crescimento Quimioautotrófico , Ácidos Graxos/química , Genes Bacterianos , Dados de Sequência Molecular , Tipagem de Sequências Multilocus , Hibridização de Ácido Nucleico , Oxirredução , Ubiquinona/química
7.
Front Microbiol ; 3: 96, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22438853

RESUMO

Many different species of acidophilic prokaryotes, widely distributed within the domains Bacteria and Archaea, can catalyze the dissimilatory oxidation of ferrous iron or reduction of ferric iron, or can do both. Microbially mediated cycling of iron in extremely acidic environments (pH < 3) is strongly influenced by the enhanced chemical stability of ferrous iron and far greater solubility of ferric iron under such conditions. Cycling of iron has been demonstrated in vitro using both pure and mixed cultures of acidophiles, and there is considerable evidence that active cycling of iron occurs in acid mine drainage streams, pit lakes, and iron-rich acidic rivers, such as the Rio Tinto. Measurements of specific rates of iron oxidation and reduction by acidophilic microorganisms show that different species vary in their capacities for iron oxido-reduction, and that this is influenced by the electron donor provided and growth conditions used. These measurements, and comparison with corresponding data for oxidation of reduced sulfur compounds, also help explain why ferrous iron is usually used preferentially as an electron donor by acidophiles that can oxidize both iron and sulfur, even though the energy yield from oxidizing iron is much smaller than that available from sulfur oxidation. Iron-oxidizing acidophiles have been used in biomining (a technology that harness their abilities to accelerate the oxidative dissolution of sulfidic minerals and thereby facilitate the extraction of precious and base metals) for several decades. More recently they have also been used to simultaneously remediate iron-contaminated surface and ground waters and produce a useful mineral by-product (schwertmannite). Bioprocessing of oxidized mineral ores using acidophiles that catalyze the reductive dissolution of ferric iron minerals such as goethite has also recently been demonstrated, and new biomining technologies based on this approach are being developed.

8.
Bioresour Technol ; 106: 44-9, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22197072

RESUMO

A novel modular bioremediation system which facilitates the selective removal of soluble iron from extremely acidic (pH ∼2) metal-rich wastewaters by ferrous iron oxidation and selective precipitation of the ferric iron produced is described. In the first of the three modules, rapid ferrous iron oxidation was mediated by the recently-characterized iron-oxidizing autotrophic acidophile, "Ferrovum myxofaciens", which grew as long "streamers" within the reactor. Over 90% of the iron present in influent test liquors containing 280mg/L iron was oxidized at a dilution rate of 0.41h(-1), in a proton-consuming reaction. The ferric iron-rich solutions produced were pumped into a second reactor where controlled addition of sodium hydroxide caused the water pH to increase to 3.5 and ferric iron to precipitate as the mineral schwertmannite. Addition of a flocculating agent promoted rapid aggregation and settling of the fine-grain schwertmannite particles. A third passive module (a packed-bed bioreactor, also inoculated with "Fv. myxofaciens") acted as a polishing reactor, lowering soluble iron concentrations in the processed water to <1mg/L. The system was highly effective in selectively removing iron from a synthetic acidic (pH 2.1) mine water that contained soluble aluminum, copper, manganese and zinc in addition to iron. Schwertmannite was again produced, with little or no co-precipitation of other metals.


Assuntos
Reatores Biológicos , Compostos de Ferro/isolamento & purificação , Ferro/metabolismo , Reologia/instrumentação , Poluentes Químicos da Água/isolamento & purificação , Purificação da Água/instrumentação , Purificação da Água/métodos , Biodegradação Ambiental , Precipitação Química , Concentração de Íons de Hidrogênio , Mineração , Oxirredução , Solubilidade
9.
Microbiology (Reading) ; 157(Pt 6): 1551-1564, 2011 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-21511765

RESUMO

The 'iron bacteria' are a collection of morphologically and phylogenetically heterogeneous prokaryotes. They include some of the first micro-organisms to be observed and described, and continue to be the subject of a considerable body of fundamental and applied microbiological research. While species of iron-oxidizing bacteria can be found in many different phyla, most are affiliated with the Proteobacteria. The latter can be subdivided into four main physiological groups: (i) acidophilic, aerobic iron oxidizers; (ii) neutrophilic, aerobic iron oxidizers; (iii) neutrophilic, anaerobic (nitrate-dependent) iron oxidizers; and (iv) anaerobic photosynthetic iron oxidizers. Some species (mostly acidophiles) can reduce ferric iron as well as oxidize ferrous iron, depending on prevailing environmental conditions. This review describes what is currently known about the phylogenetic and physiological diversity of the iron-oxidizing proteobacteria, their significance in the environment (on the global and micro scales), and their increasing importance in biotechnology.


Assuntos
Ferro/metabolismo , Filogenia , Proteobactérias/fisiologia , Biotecnologia , Microbiologia Ambiental , Oxirredução , Proteobactérias/classificação , Proteobactérias/genética
10.
Extremophiles ; 15(2): 271-9, 2011 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-21311931

RESUMO

A comprehensive physiological and phylogenetic characterisation was carried out of "Thiobacillus ferrooxidans" m-1, an acidophilic iron-oxidizing bacterium first described over 25 years ago. Phylogenetically, strain m-1 is a gammaproteobacterium, most closely related to alkaliphilic Ectothiorhodospira spp. and only distantly to iron-oxidizing acidithiobacilli. Physiological examination confirmed that strain m-1 can grow autotrophically not only by ferrous iron oxidation but also, in contrast to previous reports, by oxidation of elemental sulfur, sulfide and tetrathionate, using either oxygen or ferric iron as terminal electron acceptor. The bacterium was also found to be thermo-tolerant, growing optimally at 38°C and up to a maximum of 47°C. Growth in liquid media required an external osmotic potential of >2 bar, and was optimal at ~5 bar, though no growth occurred where the medium osmotic potential was close to that of sea water (~26 bar). From this, it was concluded that strain m-1 is a moderate osmophile. Strain m-1 was also shown to be diazotrophic and tolerant of elevated concentrations of many metals typically found in mine-impacted environments. On the basis of these data, m-1 is proposed as the type strain of a new genus and species of bacteria, Acidiferrobacter thiooxydans (DSM 2392, JCM 17358).


Assuntos
Ectothiorhodospiraceae/enzimologia , Ectothiorhodospiraceae/genética , Ferro/química , Enxofre/química , Carbono/química , Meios de Cultura/química , Concentração de Íons de Hidrogênio , Metais/química , Nitrogênio/química , Fixação de Nitrogênio , Osmose , Filogenia , Água do Mar , Especificidade da Espécie , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA