Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Annu Rev Pathol ; 17: 47-72, 2022 01 24.
Artigo em Inglês | MEDLINE | ID: mdl-34425055

RESUMO

Desmosomal cadherins are a recent evolutionary innovation that make up the adhesive core of highly specialized intercellular junctions called desmosomes. Desmosomal cadherins, which are grouped into desmogleins and desmocollins, are related to the classical cadherins, but their cytoplasmic domains are tailored for anchoring intermediate filaments instead of actin to sites of cell-cell adhesion. The resulting junctions are critical for resisting mechanical stress in tissues such as the skin and heart. Desmosomal cadherins also act as signaling hubs that promote differentiation and facilitate morphogenesis, creating more complex and effective tissue barriers in vertebrate tissues. Interference with desmosomal cadherin adhesive and supra-adhesive functions leads to a variety of autoimmune, hereditary, toxin-mediated, and malignant diseases. We review our current understanding of how desmosomal cadherins contribute to human health and disease, highlight gaps in our knowledge about their regulation and function, and introduce promising new directions toward combatting desmosome-related diseases.


Assuntos
Desmocolinas , Desmossomos , Caderinas/fisiologia , Adesão Celular/fisiologia , Desmossomos/fisiologia , Humanos , Transdução de Sinais
2.
Curr Biol ; 31(15): 3275-3291.e5, 2021 08 09.
Artigo em Inglês | MEDLINE | ID: mdl-34107301

RESUMO

The epidermis is a stratified epithelium in which structural and functional features are polarized across multiple cell layers. This type of polarity is essential for establishing the epidermal barrier, but how it is created and sustained is poorly understood. Previous work identified a role for the classic cadherin/filamentous-actin network in establishment of epidermal polarity. However, little is known about potential roles of the most prominent epidermal intercellular junction, the desmosome, in establishing epidermal polarity, in spite of the fact that desmosome constituents are patterned across the apical to basal cell layers. Here, we show that desmosomes and their associated intermediate filaments (IFs) are key regulators of mechanical polarization in epidermis, whereby basal and suprabasal cells experience different forces that drive layer-specific functions. Uncoupling desmosomes and IF or specific targeting of apical desmosomes through depletion of the superficial desmosomal cadherin, desmoglein 1, impedes basal stratification in an in vitro competition assay and suprabasal tight junction barrier functions in 3D reconstructed epidermis. Surprisingly, disengaging desmosomes from IF also accelerated the expression of differentiation markers, through precocious activation of the mechanosensitive transcriptional regulator serum response factor (SRF) and downstream activation of epidermal growth factor receptor family member ErbB2 by Src family kinase (SFK)-mediated phosphorylation. This Dsg1-SFK-ErbB2 axis also helps maintain tight junctions and barrier function later in differentiation. Together, these data demonstrate that the desmosome-IF network is a critical contributor to the cytoskeletal-adhesive machinery that supports the polarized function of the epidermis.


Assuntos
Desmossomos , Epiderme , Caderinas , Desmoplaquinas , Desmossomos/fisiologia , Células Epidérmicas , Epiderme/fisiologia
3.
J Invest Dermatol ; 140(3): 556-567.e9, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31465738

RESUMO

An effective epidermal barrier requires structural and functional integration of adherens junctions, tight junctions, gap junctions (GJ), and desmosomes. Desmosomes govern epidermal integrity while GJs facilitate small molecule transfer across cell membranes. Some patients with severe dermatitis, multiple allergies, and metabolic wasting (SAM) syndrome, caused by biallelic desmoglein 1 (DSG1) mutations, exhibit skin lesions reminiscent of erythrokeratodermia variabilis, caused by mutations in connexin (Cx) genes. We, therefore, examined whether SAM syndrome-causing DSG1 mutations interfere with Cx expression and GJ function. Lesional skin biopsies from SAM syndrome patients (n = 7) revealed decreased Dsg1 and Cx43 plasma membrane localization compared with control and nonlesional skin. Cultured keratinocytes and organotypic skin equivalents depleted of Dsg1 exhibited reduced Cx43 expression, rescued upon re-introduction of wild-type Dsg1, but not Dsg1 constructs modeling SAM syndrome-causing mutations. Ectopic Dsg1 expression increased cell-cell dye transfer, which Cx43 silencing inhibited, suggesting that Dsg1 promotes GJ function through Cx43. As GJA1 gene expression was not decreased upon Dsg1 loss, we hypothesized that Cx43 reduction was due to enhanced protein degradation. Supporting this, PKC-dependent Cx43 S368 phosphorylation, which signals Cx43 turnover, increased after Dsg1 depletion, while lysosomal inhibition restored Cx43 levels. These data reveal a role for Dsg1 in regulating epidermal Cx43 turnover.


Assuntos
Conexina 43/metabolismo , Dermatite/genética , Desmogleína 1/metabolismo , Hipersensibilidade/genética , Pele/patologia , Síndrome de Emaciação/genética , Adolescente , Adulto , Biópsia , Linhagem Celular , Criança , Pré-Escolar , Dermatite/imunologia , Dermatite/patologia , Desmogleína 1/genética , Feminino , Seguimentos , Junções Comunicantes/metabolismo , Junções Comunicantes/patologia , Humanos , Hipersensibilidade/imunologia , Hipersensibilidade/patologia , Queratinócitos , Lisossomos/metabolismo , Masculino , Mutação , Fosforilação , Cultura Primária de Células , Proteína Quinase C/metabolismo , Estabilidade Proteica , Proteólise , Pele/imunologia , Síndrome de Emaciação/imunologia , Síndrome de Emaciação/patologia , Adulto Jovem
4.
Mol Biol Cell ; 28(23): 3156-3164, 2017 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-28495795

RESUMO

The translation of mechanical forces into biochemical signals plays a central role in guiding normal physiological processes during tissue development and homeostasis. Interfering with this process contributes to cardiovascular disease, cancer progression, and inherited disorders. The actin-based cytoskeleton and its associated adherens junctions are well-established contributors to mechanosensing and transduction machinery; however, the role of the desmosome-intermediate filament (DSM-IF) network is poorly understood in this context. Because a force balance among different cytoskeletal systems is important to maintain normal tissue function, knowing the relative contributions of these structurally integrated systems to cell mechanics is critical. Here we modulated the interaction between DSMs and IFs using mutant forms of desmoplakin, the protein bridging these structures. Using micropillar arrays and atomic force microscopy, we demonstrate that strengthening the DSM-IF interaction increases cell-substrate and cell-cell forces and cell stiffness both in cell pairs and sheets of cells. In contrast, disrupting the interaction leads to a decrease in these forces. These alterations in cell mechanics are abrogated when the actin cytoskeleton is dismantled. These data suggest that the tissue-specific variability in DSM-IF network composition provides an opportunity to differentially regulate tissue mechanics by balancing and tuning forces among cytoskeletal systems.


Assuntos
Desmoplaquinas/metabolismo , Desmoplaquinas/fisiologia , Filamentos Intermediários/metabolismo , Citoesqueleto de Actina/metabolismo , Junções Aderentes/metabolismo , Fenômenos Biomecânicos/fisiologia , Caderinas/metabolismo , Adesão Celular/fisiologia , Citoesqueleto/metabolismo , Desmossomos/metabolismo , Humanos , Filamentos Intermediários/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA