Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Int J Neonatal Screen ; 9(3)2023 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-37754773

RESUMO

The aim of this study is to evaluate the strategy of the cystic fibrosis newborn screening (CFNBS) programme in Hungary based on the results of the first year of screening. A combined immunoreactive trypsinogen (IRT) and pancreatitis-associated protein (PAP) CFNBS protocol (IRT/IRT×PAP/IRT) was applied with an IRT-dependent safety net (SN). Out of 88,400 newborns, 256 were tested screen-positive. Fourteen cystic fibrosis (CF) and two cystic fibrosis-positive inconclusive diagnosis (CFSPID) cases were confirmed from the screen-positive cases, and two false-negative cases were diagnosed later. Based on the obtained results, a sensitivity of 88% and a positive predictive value (PPV) of 5.9% were calculated. Following the recognition of false-negative cases, the calculation method of the age-dependent cut-off was changed. In purely biochemical CFNBS protocols, a small protocol change, even after a short period, can have a significant positive impact on the performance. CFNBS should be monitored continuously in order to fine-tune the screening strategy and define the best local practices.

2.
RSC Adv ; 10(25): 14928-14936, 2020 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-35497170

RESUMO

Protein labelling has a wide variety of applications in medicinal chemistry and chemical biology. In addition to covalent inhibition, specific labelling of biomolecules with fluorescent dyes is important in both target discovery, validation and diagnostics. Our research was conducted through the fragment-based development of a new benzyl-isothiocyanate-activated fluorescent dye based on the fluorescein scaffold. This molecule was evaluated against fluorescein isothiocyanate, a prevalent labelling agent. The reactivity and selectivity of phenyl- and benzyl isothiocyanate were compared at different pHs, and their activity was tested on several protein targets. Finally, the clinically approved antibody trastuzumab (and it's Fab fragment) were specifically labelled through reaction with free cysteines reductively liberated from their interchain disulfide bonds. The newly developed benzyl-fluorescein isothiocyanate and its optimized labelling protocol stands to be a valuable addition to the tool kit of chemical biology.

3.
Cell Death Dis ; 10(6): 439, 2019 06 05.
Artigo em Inglês | MEDLINE | ID: mdl-31165747

RESUMO

Transglutaminase 2 (TG2) is a multifunctional protein that promotes clearance of apoptotic cells (efferocytosis) acting as integrin ß3 coreceptor. Accumulating evidence indicates that defective efferocytosis contributes to the development of chronic inflammatory diseases. Obesity is characterized by the accumulation of dead adipocytes and inflammatory macrophages in the adipose tissue leading to obesity-related metabolic syndrome. Here, we report that loss of TG2 from bone marrow-derived cells sensitizes for high fat diet (HFD)-induced pathologies. We find that metabolically activated TG2 null macrophages express more phospho-Src and integrin ß3, unexpectedly clear dying adipocytes more efficiently via lysosomal exocytosis, but produce more pro-inflammatory cytokines than the wild type ones. Anti-inflammatory treatment with an LXR agonist reverts the HFD-induced phenotype in mice lacking TG2 in bone marrow-derived cells with less hepatic steatosis than in wild type mice proving enhanced lipid clearance. Thus it is interesting to speculate whether LXR agonist treatment together with enhancing lysosomal exocytosis could be a beneficial therapeutic strategy in obesity.


Assuntos
Proteínas de Ligação ao GTP/metabolismo , Inflamação/metabolismo , Resistência à Insulina/genética , Macrófagos/metabolismo , Obesidade/metabolismo , Transglutaminases/metabolismo , Células 3T3 , Adipócitos/metabolismo , Tecido Adiposo/metabolismo , Animais , Apoptose/genética , Benzoatos/administração & dosagem , Benzilaminas/administração & dosagem , Citocinas/metabolismo , Dieta Hiperlipídica , Fígado Gorduroso/enzimologia , Fígado Gorduroso/genética , Fígado Gorduroso/metabolismo , Proteínas de Ligação ao GTP/genética , Inflamação/imunologia , Receptores X do Fígado/agonistas , Lisossomos/efeitos dos fármacos , Lisossomos/genética , Lisossomos/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Obesidade/etiologia , Obesidade/genética , Proteína 2 Glutamina gama-Glutamiltransferase , Proteínas Proto-Oncogênicas pp60(c-src)/genética , Proteínas Proto-Oncogênicas pp60(c-src)/metabolismo , Transdução de Sinais/genética , Transglutaminases/genética , Triglicerídeos/metabolismo
4.
J Cell Biol ; 216(7): 1937-1947, 2017 07 03.
Artigo em Inglês | MEDLINE | ID: mdl-28483915

RESUMO

Rab7 promotes fusion of autophagosomes and late endosomes with lysosomes in yeast and metazoan cells, acting together with its effector, the tethering complex HOPS. Here we show that another small GTPase, Rab2, is also required for autophagosome and endosome maturation and proper lysosome function in Drosophila melanogaster We demonstrate that Rab2 binds to HOPS, and that its active, GTP-locked form associates with autolysosomes. Importantly, expression of active Rab2 promotes autolysosomal fusions unlike that of GTP-locked Rab7, suggesting that its amount is normally rate limiting. We also demonstrate that RAB2A is required for autophagosome clearance in human breast cancer cells. In conclusion, we identify Rab2 as a key factor for autophagic and endocytic cargo delivery to and degradation in lysosomes.


Assuntos
Autofagossomos/enzimologia , Autofagia , Neoplasias da Mama/enzimologia , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/enzimologia , Endocitose , Endossomos/enzimologia , Lisossomos/enzimologia , Proteína rab2 de Ligação ao GTP/metabolismo , Animais , Animais Geneticamente Modificados , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Feminino , Humanos , Fusão de Membrana , Proteólise , Interferência de RNA , Transdução de Sinais , Transfecção , Proteínas rab de Ligação ao GTP/genética , Proteínas rab de Ligação ao GTP/metabolismo , Proteína rab2 de Ligação ao GTP/genética , proteínas de unión al GTP Rab7
5.
Autophagy ; 12(2): 273-86, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26312549

RESUMO

Autophagy is a major molecular mechanism that eliminates cellular damage in eukaryotic organisms. Basal levels of autophagy are required for maintaining cellular homeostasis and functioning. Defects in the autophagic process are implicated in the development of various age-dependent pathologies including cancer and neurodegenerative diseases, as well as in accelerated aging. Genetic activation of autophagy has been shown to retard the accumulation of damaged cytoplasmic constituents, delay the incidence of age-dependent diseases, and extend life span in genetic models. This implies that autophagy serves as a therapeutic target in treating such pathologies. Although several autophagy-inducing chemical agents have been identified, the majority of them operate upstream of the core autophagic process, thereby exerting undesired side effects. Here, we screened a small-molecule library for specific inhibitors of MTMR14, a myotubularin-related phosphatase antagonizing the formation of autophagic membrane structures, and isolated AUTEN-67 (autophagy enhancer-67) that significantly increases autophagic flux in cell lines and in vivo models. AUTEN-67 promotes longevity and protects neurons from undergoing stress-induced cell death. It also restores nesting behavior in a murine model of Alzheimer disease, without apparent side effects. Thus, AUTEN-67 is a potent drug candidate for treating autophagy-related diseases.


Assuntos
Envelhecimento/efeitos dos fármacos , Autofagia/efeitos dos fármacos , Naftoquinonas/farmacologia , Fármacos Neuroprotetores/farmacologia , Sulfonamidas/farmacologia , Precursor de Proteína beta-Amiloide/metabolismo , Animais , Drosophila melanogaster/efeitos dos fármacos , Drosophila melanogaster/metabolismo , Corpo Adiposo/efeitos dos fármacos , Corpo Adiposo/metabolismo , Feminino , Células HeLa , Humanos , Longevidade/efeitos dos fármacos , Masculino , Camundongos , Naftoquinonas/química , Comportamento de Nidação/efeitos dos fármacos , Neuroproteção/efeitos dos fármacos , Fármacos Neuroprotetores/química , Estresse Oxidativo/efeitos dos fármacos , Monoéster Fosfórico Hidrolases/metabolismo , Sulfonamidas/química , Peixe-Zebra
6.
Mol Biol Cell ; 25(8): 1338-54, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24554766

RESUMO

Homotypic fusion and vacuole protein sorting (HOPS) is a tethering complex required for trafficking to the vacuole/lysosome in yeast. Specific interaction of HOPS with certain SNARE (soluble NSF attachment protein receptor) proteins ensures the fusion of appropriate vesicles. HOPS function is less well characterized in metazoans. We show that all six HOPS subunits (Vps11 [vacuolar protein sorting 11]/CG32350, Vps18/Dor, Vps16A, Vps33A/Car, Vps39/CG7146, and Vps41/Lt) are required for fusion of autophagosomes with lysosomes in Drosophila. Loss of these genes results in large-scale accumulation of autophagosomes and blocks autophagic degradation under basal, starvation-induced, and developmental conditions. We find that HOPS colocalizes and interacts with Syntaxin 17 (Syx17), the recently identified autophagosomal SNARE required for fusion in Drosophila and mammals, suggesting their association is critical during tethering and fusion of autophagosomes with lysosomes. HOPS, but not Syx17, is also required for endocytic down-regulation of Notch and Boss in developing eyes and for proper trafficking to lysosomes and eye pigment granules. We also show that the formation of autophagosomes and their fusion with lysosomes is largely unaffected in null mutants of Vps38/UVRAG (UV radiation resistance associated), a suggested binding partner of HOPS in mammals, while endocytic breakdown and lysosome biogenesis is perturbed. Our results establish the role of HOPS and its likely mechanism of action during autophagy in metazoans.


Assuntos
Lisossomos/metabolismo , Fusão de Membrana , Fagossomos/metabolismo , Proteínas Qa-SNARE/metabolismo , Proteínas de Transporte Vesicular/metabolismo , Animais , Autofagia/fisiologia , Linhagem Celular , Regulação para Baixo , Drosophila , Proteínas de Drosophila/biossíntese , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Olho/embriologia , Proteínas do Olho/biossíntese , Proteína 1 de Membrana Associada ao Lisossomo/metabolismo , Glicoproteínas de Membrana/biossíntese , Mutação , Epitélio Pigmentado Ocular/metabolismo , Proteínas R-SNARE/genética , Interferência de RNA , RNA Interferente Pequeno , Receptores Notch/biossíntese , Receptores de Peptídeos/biossíntese , Proteínas Supressoras de Tumor/genética , Proteínas de Transporte Vesicular/genética
7.
Autophagy ; 10(3): 453-67, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24419107

RESUMO

Phagophore-derived autophagosomes deliver cytoplasmic material to lysosomes for degradation and reuse. Autophagy mediated by the incompletely characterized actions of Atg proteins is involved in numerous physiological and pathological settings including stress resistance, immunity, aging, cancer, and neurodegenerative diseases. Here we characterized Atg17/FIP200, the Drosophila ortholog of mammalian RB1CC1/FIP200, a proposed functional equivalent of yeast Atg17. Atg17 disruption inhibits basal, starvation-induced and developmental autophagy, and interferes with the programmed elimination of larval salivary glands and midgut during metamorphosis. Upon starvation, Atg17-positive structures appear at aggregates of the selective cargo Ref(2)P/p62 near lysosomes. This location may be similar to the perivacuolar PAS (phagophore assembly site) described in yeast. Drosophila Atg17 is a member of the Atg1 kinase complex as in mammals, and we showed that it binds to the other subunits including Atg1, Atg13, and Atg101 (C12orf44 in humans, 9430023L20Rik in mice and RGD1359310 in rats). Atg17 is required for the kinase activity of endogenous Atg1 in vivo, as loss of Atg17 prevents the Atg1-dependent shift of endogenous Atg13 to hyperphosphorylated forms, and also blocks punctate Atg1 localization during starvation. Finally, we found that Atg1 overexpression induces autophagy and reduces cell size in Atg17-null mutant fat body cells, and that overexpression of Atg17 promotes endogenous Atg13 phosphorylation and enhances autophagy in an Atg1-dependent manner in the fat body. We propose a model according to which the relative activity of Atg1, estimated by the ratio of hyper- to hypophosphorylated Atg13, contributes to setting low (basal) vs. high (starvation-induced) autophagy levels in Drosophila.


Assuntos
Autofagia/fisiologia , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Lisossomos/metabolismo , Proteínas Nucleares/metabolismo , Fagossomos/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Animais , Proteína Homóloga à Proteína-1 Relacionada à Autofagia , Proteínas de Transporte/metabolismo , Proteínas de Ligação a DNA , Ligação Proteica
8.
Mol Biol Cell ; 25(4): 522-31, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24356450

RESUMO

During autophagy, double-membrane autophagosomes deliver sequestered cytoplasmic content to late endosomes and lysosomes for degradation. The molecular mechanism of autophagosome maturation is still poorly characterized. The small GTPase Rab11 regulates endosomal traffic and is thought to function at the level of recycling endosomes. We show that loss of Rab11 leads to accumulation of autophagosomes and late endosomes in Drosophila melanogaster. Rab11 translocates from recycling endosomes to autophagosomes in response to autophagy induction and physically interacts with Hook, a negative regulator of endosome maturation. Hook anchors endosomes to microtubules, and we show that Rab11 facilitates the fusion of endosomes and autophagosomes by removing Hook from mature late endosomes and inhibiting its homodimerization. Thus induction of autophagy appears to promote autophagic flux by increased convergence with the endosomal pathway.


Assuntos
Autofagia/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Endossomos/metabolismo , Lisossomos/metabolismo , Proteínas de Transporte Vesicular/metabolismo , Proteínas rab de Ligação ao GTP/metabolismo , Animais , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Endossomos/ultraestrutura , Células Epiteliais/citologia , Células Epiteliais/metabolismo , Regulação da Expressão Gênica , Lisossomos/ultraestrutura , Microtúbulos/metabolismo , Microtúbulos/ultraestrutura , Ligação Proteica , Multimerização Proteica , Transporte Proteico , Transdução de Sinais , Proteínas de Transporte Vesicular/genética , Proteínas rab de Ligação ao GTP/genética
9.
PLoS Genet ; 9(8): e1003664, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23950728

RESUMO

Autophagy, a lysosomal self-degradation and recycling pathway, plays dual roles in tumorigenesis. Autophagy deficiency predisposes to cancer, at least in part, through accumulation of the selective autophagy cargo p62, leading to activation of antioxidant responses and tumor formation. While cell growth and autophagy are inversely regulated in most cells, elevated levels of autophagy are observed in many established tumors, presumably mediating survival of cancer cells. Still, the relationship of autophagy and oncogenic signaling is poorly characterized. Here we show that the evolutionarily conserved transcription factor Myc (dm), a proto-oncogene involved in cell growth and proliferation, is also a physiological regulator of autophagy in Drosophila melanogaster. Loss of Myc activity in null mutants or in somatic clones of cells inhibits autophagy. Forced expression of Myc results in cell-autonomous increases in cell growth, autophagy induction, and p62 (Ref2P)-mediated activation of Nrf2 (cnc), a transcription factor promoting antioxidant responses. Mechanistically, Myc overexpression increases unfolded protein response (UPR), which leads to PERK-dependent autophagy induction and may be responsible for p62 accumulation. Genetic or pharmacological inhibition of UPR, autophagy or p62/Nrf2 signaling prevents Myc-induced overgrowth, while these pathways are dispensable for proper growth of control cells. In addition, we show that the autophagy and antioxidant pathways are required in parallel for excess cell growth driven by Myc. Deregulated expression of Myc drives tumor progression in most human cancers, and UPR and autophagy have been implicated in the survival of Myc-dependent cancer cells. Our data obtained in a complete animal show that UPR, autophagy and p62/Nrf2 signaling are required for Myc-dependent cell growth. These novel results give additional support for finding future approaches to specifically inhibit the growth of cancer cells addicted to oncogenic Myc.


Assuntos
Elementos de Resposta Antioxidante/genética , Autofagia/genética , Carcinogênese/genética , Proteínas Proto-Oncogênicas c-myc/genética , Resposta a Proteínas não Dobradas/genética , Animais , Linhagem Celular Tumoral , Proliferação de Células , Drosophila melanogaster/genética , Drosophila melanogaster/crescimento & desenvolvimento , Regulação Neoplásica da Expressão Gênica , Humanos , Mutação , Fator 2 Relacionado a NF-E2/genética , Fator 2 Relacionado a NF-E2/metabolismo , Proto-Oncogene Mas , Proteínas Proto-Oncogênicas c-myc/metabolismo , Transdução de Sinais/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA