Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Hum Genet ; 127(5): 555-61, 2010 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-20157829

RESUMO

Schizencephaly (SCH) is a clinically and etiologically heterogeneous cerebral malformation presenting as unilateral or bilateral hemispheric cleft with direct connection between the inner and outer liquor spaces. The SCH cleft is usually lined by gray matter, which appears polymicrogyric implying an associated impairment of neuronal migration. The majority of SCH patients are sporadic, but familial SCH has been described. An initial report of heterozygous mutations in the homeobox gene EMX2 could not be confirmed in 52 patients investigated in this study in agreement with two independent SCH patient cohorts published previously. SCH frequently occurs with additional cerebral malformations like hypoplasia or aplasia of the septum pellucidum or optic nerve, suggesting the involvement of genes important for the establishment of midline forebrain structures. We therefore considered holoprosencephaly (HPE)-associated genes as potential SCH candidates and report for the first time heterozygous mutations in SIX3 and SHH in a total of three unrelated patients and one fetus with SCH; one of them without obvious associated malformations of midline forebrain structures. Three of these mutations have previously been reported in independent patients with HPE. SIX3 acts directly upstream of SHH, and the SHH pathway is a key regulator of ventral forebrain patterning. Our data indicate that in a subset of patients SCH may develop as one aspect of a more complex malformation of the ventral forebrain, directly result from mutations in the SHH pathway and hence be considered as yet another feature of the broad phenotypic spectrum of holoprosencephaly.


Assuntos
Proteínas do Olho/genética , Proteínas Hedgehog/genética , Holoprosencefalia/genética , Proteínas de Homeodomínio/genética , Malformações do Desenvolvimento Cortical/genética , Mutação , Proteínas do Tecido Nervoso/genética , Sequência de Bases , Criança , Pré-Escolar , Feminino , Heterozigoto , Humanos , Masculino , Dados de Sequência Molecular , Proteína Homeobox SIX3
2.
Ann Neurol ; 62(6): 656-65, 2007 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-18067136

RESUMO

OBJECTIVE: Hereditary spastic paraplegias (HSPs) comprise a heterogeneous group of neurodegenerative disorders resulting in progressive spasticity of the lower limbs. One form of autosomal recessive hereditary spastic paraplegia (ARHSP) with thin corpus callosum (TCC) was linked to chromosomal region 15q13-21 (SPG11) and associated with mutations in the spatacsin gene. We assessed the long-term course and the mutational spectrum of spatacsin-associated ARHSP with TCC. METHODS: Neurological examination, cerebral magnetic resonance imaging (MRI), 18fluorodeoxyglucose positron emission tomography (PET), nerve biopsy, linkage and mutation analysis are presented. RESULTS: Spastic paraplegia in patients with spatacsin mutations (n = 20) developed during the second decade of life. The Spastic Paraplegia Rating Scale (SPRS) showed severely compromised walking between the second and third decades of life (mean SPRS score, >30). Impaired cognitive function was associated with severe atrophy of the frontoparietal cortex, TCC, and bilateral periventricular white matter lesions. Progressive cortical and thalamic hypometabolism in the 18fluorodeoxyglucose PET was observed. Sural nerve biopsy showed a loss of unmyelinated nerve fibers and accumulation of intraaxonal pleomorphic membranous material. Mutational analysis of spatacsin demonstrated six novel and one previously reported frameshift mutation and two novel nonsense mutations. Furthermore, we report the first two splice mutations to be associated with SPG11. INTERPRETATION: We demonstrate that not only frameshift and nonsense mutations but also splice mutations result in SPG11. Mutations are distributed throughout the spatacsin gene and emerge as major cause for ARHSP with TCC associated with severe motor and cognitive impairment. The clinical phenotype and the ultrastructural analysis suggest a disturbed axonal transport of long projecting neurons.


Assuntos
Mutação , Proteínas/genética , Paraplegia Espástica Hereditária/fisiopatologia , Adulto , Encéfalo/patologia , Córtex Cerebral/diagnóstico por imagem , Córtex Cerebral/metabolismo , Códon sem Sentido , Cognição , Corpo Caloso/patologia , Feminino , Mutação da Fase de Leitura , Genes Recessivos , Humanos , Estudos Longitudinais , Fibras Nervosas Amielínicas/patologia , Linhagem , Tomografia por Emissão de Pósitrons , Índice de Gravidade de Doença , Paraplegia Espástica Hereditária/genética , Paraplegia Espástica Hereditária/metabolismo , Paraplegia Espástica Hereditária/psicologia , Nervo Sural/patologia , Tálamo/diagnóstico por imagem , Tálamo/metabolismo , Caminhada
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA