Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 10(1): 5210, 2020 03 23.
Artigo em Inglês | MEDLINE | ID: mdl-32251357

RESUMO

Estrogens have been shown to regulate the immune system and modulate multiple autoimmune diseases. 17α-ethinyl estradiol (EE), a synthetic analog of 17ß-estradiol, is prescribed commonly and found in oral contraceptives and hormone replacement therapies. Surprisingly, few studies have investigated the immunoregulatory effects of exposure to EE, especially in autoimmunity. In this study, we exposed autoimmune-prone female MRL/lpr mice to a human-relevant dose of EE through the oral route of exposure. Since lupus patients are prone to infections, groups of mice were injected with viral (Imiquimod, a TLR7 agonist) or bacterial (ODN 2395, a TLR9 agonist) surrogates. We then evaluated autoimmune disease parameters, kidney disease, and response to in vivo TLR7/9 pathogenic signals. EE-exposed mice had increased proteinuria as early as 7 weeks of age. Proteinuria, blood urea nitrogen, and glomerular immune complex deposition were also exacerbated when compared to controls. Production of cytokines by splenic leukocytes were altered in EE-exposed mice. Our study shows that oral exposure to EE, even at a very low dose, can exacerbate azotemia, increase clinical markers of renal disease, enhance glomerular immune complex deposition, and modulate TLR7/9 cytokine production in female MRL/lpr mice. This study may have implications for EE-exposure risk for genetically lupus-prone individuals.


Assuntos
Etinilestradiol/toxicidade , Doenças do Complexo Imune/imunologia , Nefrite Lúpica/imunologia , Glicoproteínas de Membrana/agonistas , Receptor 7 Toll-Like/agonistas , Receptor Toll-Like 9/agonistas , Animais , Autoanticorpos/análise , Nitrogênio da Ureia Sanguínea , Creatinina/sangue , Citocinas/biossíntese , Etinilestradiol/administração & dosagem , Feminino , Imiquimode/farmacologia , Doenças do Complexo Imune/induzido quimicamente , Doenças do Complexo Imune/tratamento farmacológico , Doenças do Complexo Imune/genética , Imunoglobulina G/análise , Glomérulos Renais/imunologia , Glomérulos Renais/patologia , Leucócitos/metabolismo , Nefrite Lúpica/induzido quimicamente , Nefrite Lúpica/tratamento farmacológico , Camundongos , Camundongos Endogâmicos MRL lpr , Proteinúria/etiologia , Baço/patologia
2.
Endocrinology ; 160(1): 101-118, 2019 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-30418530

RESUMO

17α-Ethinyl estradiol (EE), a synthetic analog of natural estrogen 17ß-estradiol (E2), is extensively used in hormonal contraceptives and estrogen replacement therapy, and it has also been found in sewage effluents. Given that E2 is a well-known immunomodulator, surprisingly there has been only limited information on the cellular and molecular immunologic consequences of exposure to EE. To address this fundamental gap, we directly compared the effects of EE with E2 on splenic leukocytes of New Zealand Black × New Zealand White F1 progeny (NZB/WF1) mice during the preautoimmune period. We found that EE and E2 have common, as well as distinctive, immunologic effects, with EE exposure resulting in more profound effects. Both EE and E2 increased numbers of splenic neutrophils, enhanced neutrophil serine proteases and myeloperoxidase expression, promoted the production of nitric oxide and monocyte chemoattractant protein-1, and altered adaptive immune T cell subsets. However, activation of splenic leukocytes through the T cell receptor or Toll-like receptor (TLR)4 revealed not only common (IL-10), but also hormone-specific alterations of cytokines (IFNγ, IL-1ß, ΤΝFα, IL-2). Furthermore, in EE-exposed mice, TLR9 stimulation suppressed IFNα, in contrast to increased IFNα from E2-exposed mice. EE and E2 regulated common and hormone-specific expression of immune-related genes. Furthermore, EE exposure resulted in more marked alterations in miRNA expression levels than for E2. Only EE was able to reduce global DNA methylation significantly in splenic leukocytes. Taken together, our novel data revealed that EE and E2 exposure confers more similar effects in innate immune system-related cell development and responses, but has more differential regulatory effects in adaptive immune-related cell development and responses.


Assuntos
Epigênese Genética/efeitos dos fármacos , Estradiol/farmacologia , Etinilestradiol/farmacologia , Fatores Imunológicos/farmacologia , Animais , Citocinas/genética , Citocinas/imunologia , Metilação de DNA/efeitos dos fármacos , Feminino , Leucócitos/efeitos dos fármacos , Leucócitos/imunologia , Masculino , Camundongos , Camundongos Endogâmicos NZB , Neutrófilos/efeitos dos fármacos , Neutrófilos/imunologia , Coelhos , Receptor 4 Toll-Like/genética , Receptor 4 Toll-Like/imunologia
3.
Dis Model Mech ; 10(12): 1517-1527, 2017 12 19.
Artigo em Inglês | MEDLINE | ID: mdl-29259025

RESUMO

Eosinophilic esophagitis (EoE) is an allergic disease of the esophagus driven by T cell and eosinophil responses to dietary allergens, resulting in chronic mucosal inflammation. Few spontaneous animal models of esophageal eosinophilia exist, with most studies relying on artificial sensitization procedures. NF-κB-inducing kinase (NIK; MAP3K14) is a key signaling molecule of the noncanonical NF-κB (NFKB1) pathway, an alternative signaling cascade producing chemokines involved in lymphoid stroma development and leukocyte trafficking. Nik-/- mice have been shown to develop a hypereosinophilic syndrome in peripheral blood and major filtering organs; however, the gastrointestinal mucosa of these mice has not been well characterized. We show that Nik-/- mice develop significant, localized eosinophilic esophagitis that mimics human EoE, including features such as severe eosinophil accumulation, degranulation, mucosal thickening, fibrosis and basal cell hyperplasia. The remainder of the GI tract, including the caudal stomach, small intestine and colon, in mice with active EoE are unaffected, also similar to human patients. Gene expression patterns in esophageal tissue of Nik-/- mice mimics human EoE, with thymic stromal lymphopoetin (TSLP) in particular also elevated at the protein level. In gene expression data sets from human biopsy specimens, we further show that many genes associated with noncanonical NF-κB signaling are significantly dysregulated in EoE patients, most notably a paradoxical upregulation of NIK itself with concurrent upregulation of powerful protein-level destabilizers of NIK. These findings suggest that Nik-/- mice could be useful as a spontaneous model of specific features of EoE and highlight a novel role for noncanonical NF-κB signaling in human patients.


Assuntos
Esofagite Eosinofílica/enzimologia , NF-kappa B/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Transdução de Sinais , Animais , Citocinas/metabolismo , Esofagite Eosinofílica/complicações , Esofagite Eosinofílica/genética , Esofagite Eosinofílica/patologia , Eosinófilos/patologia , Esôfago/patologia , Fibrose , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Humanos , Inflamação/complicações , Inflamação/patologia , Camundongos , Mucosa/patologia , Fenótipo , Proteínas Serina-Treonina Quinases/deficiência , Linfopoietina do Estroma do Timo , Quinase Induzida por NF-kappaB
4.
PLoS One ; 12(2): e0172105, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28192517

RESUMO

Estrogen, a natural immunomodulator, regulates the development and function of diverse immune cell types. There is now renewed attention on neutrophils and neutrophil serine proteases (NSPs) such as neutrophil elastase (NE), proteinase 3 (PR3), and cathepsin G (CG) in inflammation and autoimmunity. In this study, we found that although estrogen treatment significantly reduced total splenocytes number, it markedly increased the splenic neutrophil absolute numbers in estrogen-treated C57BL/6 (B6) mice when compared to placebo controls. Concomitantly, the levels of NSPs and myeloperoxidase (MPO) were highly upregulated in the splenocytes from estrogen-treated mice. Despite the critical role of NSPs in the regulation of non-infectious inflammation, by employing NE-/-/PR3-/-/CG-/- triple knock out mice, we demonstrated that the absence of NSPs affected neither estrogen's ability to increase splenic neutrophils nor the induction of inflammatory mediators (IFNγ, IL-1ß, IL-6, TNFα, MCP-1, and NO) from ex vivo activated splenocytes. Depletion of neutrophils in vitro in splenocytes with anti-Ly6G antibody also had no obvious effect on NSP expression or LPS-induced IFNγ and MCP-1. These data suggest that estrogen augments NSPs, which appears to be independent of enhancing ex vivo inflammatory responses. Since estrogen has been implicated in regulating several experimental autoimmune diseases, we extended our observations in estrogen-treated B6 mice to spontaneous autoimmune-prone female MRL-lpr, B6-lpr and NZB/WF1 mice. There was a remarkable commonality with regards to the increase of neutrophils and concomitant increase of NSPs and MPO in the splenic cells of different strains of autoimmune-prone mice and estrogen-treated B6 mice. Collectively, since NSPs and neutrophils are involved in diverse pro-inflammatory activities, these data suggest a potential pathologic implication of increased neutrophils and NSPs that merits further investigation.


Assuntos
Estrogênios/farmacologia , Neutrófilos/efeitos dos fármacos , Serina Proteases/metabolismo , Baço/efeitos dos fármacos , Animais , Western Blotting , Catepsina G/genética , Catepsina G/metabolismo , Células Cultivadas , Citocinas/metabolismo , Estrogênios/administração & dosagem , Feminino , Citometria de Fluxo , Expressão Gênica/efeitos dos fármacos , Mediadores da Inflamação/metabolismo , Elastase de Leucócito/genética , Elastase de Leucócito/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos MRL lpr , Camundongos Endogâmicos NZB , Camundongos Knockout , Mieloblastina/genética , Mieloblastina/metabolismo , Neutrófilos/enzimologia , Neutrófilos/metabolismo , Peroxidase/genética , Peroxidase/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Serina Proteases/genética , Especificidade da Espécie , Baço/citologia , Baço/metabolismo
5.
Oncotarget ; 7(22): 33096-110, 2016 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-27105514

RESUMO

Histiocytic sarcoma is an uncommon malignancy in both humans and veterinary species. Research exploring the pathogenesis of this disease is scarce; thus, diagnostic and therapeutic options for patients are limited. Recent publications have suggested a role for the NLR, NLRX1, in acting as a tumor suppressor. Based on these prior findings, we hypothesized that NLRX1 would function to inhibit tumorigenesis and thus the development of histiocytic sarcoma. To test this, we utilized Nlrx1-/- mice and a model of urethane-induced tumorigenesis. Nlrx1-/- mice exposed to urethane developed splenic histiocytic sarcoma that was associated with significant up-regulation of the NF-κB signaling pathway. Additionally, development of these tumors was also significantly associated with the increased regulation of genes associated with AKT signaling, cell death and autophagy. Together, these data show that NLRX1 suppresses tumorigenesis and reveals new genetic pathways involved in the pathobiology of histiocytic sarcoma.


Assuntos
Sarcoma Histiocítico/metabolismo , Proteínas Mitocondriais/metabolismo , NF-kappa B/metabolismo , Animais , Carcinogênese , Modelos Animais de Doenças , Feminino , Sarcoma Histiocítico/genética , Sarcoma Histiocítico/patologia , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Proteínas Mitocondriais/genética , NF-kappa B/genética , Transdução de Sinais
6.
J Immunol ; 194(7): 3369-80, 2015 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-25725098

RESUMO

Nucleotide-binding domain and leucine-rich repeat (NLR) proteins are a diverse family of pattern recognition receptors that are essential mediators of inflammation and host defense in the gastrointestinal system. Recent studies have identified a subgroup of inflammasome forming NLRs that modulate the mucosal immune response during inflammatory bowel disease (IBD) and colitis associated tumorigenesis. To better elucidate the contribution of NLR family members in IBD and cancer, we conducted a retrospective analysis of gene expression metadata from human patients. These data revealed that NLRP1, an inflammasome forming NLR, was significantly dysregulated in IBD and colon cancer. To better characterize the function of NLRP1 in disease pathogenesis, we used Nlrp1b(-/-) mice in colitis and colitis-associated cancer models. In this paper, we report that NLRP1 attenuates gastrointestinal inflammation and tumorigenesis. Nlrp1b(-/-) mice demonstrated significant increases in morbidity, inflammation, and tumorigenesis compared with wild-type animals. Similar to data previously reported for related inflammasome forming NLRs, the increased inflammation and tumor burden was correlated with attenuated levels of IL-1ß and IL-18. Further mechanistic studies using bone marrow reconstitution experiments revealed that the increased disease pathogenesis in the Nlrp1b(-/-) mice was associated with nonhematopoietic-derived cells and suggests that NLRP1 functions in the colon epithelial cell compartment to attenuate tumorigenesis. Taken together, these data identify NLRP1 as an essential mediator of the host immune response during IBD and cancer. These findings are consistent with a model whereby multiple NLR inflammasomes attenuate disease pathobiology through modulating IL-1ß and IL-18 levels in the colon.


Assuntos
Transformação Celular Neoplásica/metabolismo , Colite/complicações , Colite/metabolismo , Neoplasias do Colo/etiologia , Inflamassomos/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Animais , Proteínas Reguladoras de Apoptose/genética , Proteínas Reguladoras de Apoptose/metabolismo , Biópsia , Colite/induzido quimicamente , Colite/genética , Colite/patologia , Colite Ulcerativa/complicações , Colite Ulcerativa/genética , Colite Ulcerativa/metabolismo , Colite Ulcerativa/patologia , Neoplasias do Colo/metabolismo , Neoplasias do Colo/mortalidade , Neoplasias do Colo/patologia , Modelos Animais de Doenças , Progressão da Doença , Expressão Gênica , Humanos , Interleucina-18/metabolismo , Interleucina-1beta/metabolismo , Masculino , Camundongos , Camundongos Knockout , Proteínas NLR , Estudos Retrospectivos
7.
Am J Physiol Gastrointest Liver Physiol ; 308(2): G139-50, 2015 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-25414099

RESUMO

Nucleotide-binding domain and leucine-rich repeat containing protein inflammasome formation plays an essential role in modulating immune system homeostasis in the gut. Recently, a caspase-11 noncanonical inflammasome has been characterized and appears to modulate many biological functions that were previously considered to be solely dependent on caspase-1 and the canonical inflammasome. To better elucidate the function of this noncanonical inflammasome during inflammatory bowel disease, experimental colitis was induced in wild-type and Casp11(-/-) mice utilizing dextran sulfate sodium (DSS). Here, we report that caspase-11 attenuates acute experimental colitis pathogenesis. Casp11(-/-) mice showed significantly increased morbidity and colon inflammation following DSS exposure. Subsequent cytokine analysis revealed that IL-1ß and IL-18 levels in the colon were significantly reduced in the Casp11(-/-) mice compared with the wild-type animals. Additional mechanistic studies utilizing IL-1ß and IL-18 reconstitution revealed that Casp11(-/-) hypersensitivity was associated with the loss of both of these cytokines. Bone marrow reconstitution experiments further revealed that caspase-11 gene expression and function in both hematopoietic- and nonhematopoietic-derived cells contribute to disease attenuation. Interestingly, unlike caspase-1, caspase-11 does not appear to influence relapsing remitting disease progression or the development of colitis-associated tumorigenesis. Together, these data identify caspase-11 as a critical factor protecting the host during acute DSS-induced colonic injury and inflammation but not during chronic inflammation and tumorigenesis.


Assuntos
Caspases/genética , Colite/metabolismo , Trato Gastrointestinal/metabolismo , Animais , Carcinogênese/induzido quimicamente , Carcinogênese/metabolismo , Caspase 1/metabolismo , Caspases Iniciadoras , Colite/induzido quimicamente , Colite/genética , Sulfato de Dextrana/efeitos adversos , Modelos Animais de Doenças , Expressão Gênica/fisiologia , Homeostase/genética , Inflamação/metabolismo , Camundongos , Camundongos Knockout
8.
Exp Hematol ; 40(8): 622-33, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22613470

RESUMO

Myelodysplastic syndrome is a clonal process characterized by ineffective hematopoiesis and progression to acute leukemia. Although many myelodysplastic syndrome and leukemic patients have compromised immunity, the role of underlying mutations in regulating immune function is poorly understood. Recent studies show that NUP98-HOXD13 (NHD13) fusion gene results in myelodysplastic syndrome and impairs lymphocyte differentiation in transgenic mice. In our studies, we sought to elucidate the mechanism by which NHD13 affects B-lymphocyte development and function. Based on our preliminary findings that transgenic mice had increased levels of IgM and reduced IgG1 and IgE, we hypothesized that the fusion gene might impair class switch recombination (CSR). Mice were immunologically challenged with dinitrophenol. NHD13 mice showed a marked reduction in B-lymphocyte differentiation in their bone marrow and spleen following dinitrophenol stimulation and had reduced production of dinitrophenol-specific antibodies. Spleen follicles from these mice were small and hypocellular, indicating failure of clonal expansion. When isolated NHD13 B lymphocytes were stimulated in vitro using Escherichia coli lipopolysaccharide or lipopolysaccharide + interleukin-4, they failed to undergo sufficient CSR and proliferation. Taken together, our findings show that expression of NUP98-HOXD13 impairs CSR and reduces the antibody-mediated immune response, in addition to its role in leukemia. Further delineation of the NUP98-HOXD13 transgene may reveal novel pathways involved in CSR.


Assuntos
Formação de Anticorpos , Switching de Imunoglobulina , Proteínas de Fusão Oncogênica/genética , Animais , Linfócitos B/fisiologia , Linfopenia/etiologia , Linfopoese , Camundongos , Camundongos Transgênicos , Complexo de Proteínas Formadoras de Poros Nucleares/fisiologia , Proteínas de Fusão Oncogênica/fisiologia
9.
Vet Microbiol ; 147(1-2): 75-82, 2011 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-20594772

RESUMO

Brucella spp. are Gram-negative, coccobacillary, facultative intracellular pathogens. B. abortus strain 2308 is a pathogenic strain affecting cattle and humans. Rough B. abortus strain RB51, which lacks the O-side chain of lipopolysaccharide (LPS), is the live attenuated USDA approved vaccine for cattle in the United States. Strain RB51SOD, which overexpresses Cu-Zn superoxide dismutase (SOD), has been shown to confer better protection than strain RB51 in a murine model. Protection against brucellosis is mediated by a strong CD4+ Th(1) and CD8+ Tc(1) adaptive immune response. In order to stimulate a robust adaptive response, a solid innate immune response, including that mediated by dendritic cells, is essential. As dendritic cells (DCs) are highly susceptible to Brucella infection, it is possible that pathogenic strains could limit the innate and thereby adaptive immune response. By contrast, vaccine strains could limit or bolster the innate and subsequent adaptive immune response. Identifying how Brucella vaccines stimulate innate and adaptive immunity is critical for enhancing vaccine efficacy. The ability of rough vaccine strains RB51 and RB51SOD to stimulate DC function has not been characterized. We report that live rough vaccine strain RB51 induced significantly better (p ≤ 0.05) DC maturation and function compared to either strain RB51SOD or smooth virulent strain 2308, based on costimulatory marker expression and cytokine production.


Assuntos
Células da Medula Óssea/imunologia , Vacina contra Brucelose/imunologia , Brucella abortus/imunologia , Células Dendríticas/imunologia , Imunidade Inata/imunologia , Animais , Antígeno B7-2/imunologia , Células da Medula Óssea/microbiologia , Brucelose Bovina/imunologia , Antígenos CD40/imunologia , Bovinos , Células Dendríticas/microbiologia , Feminino , Regulação da Expressão Gênica/imunologia , Interleucina-12/imunologia , Complexo Principal de Histocompatibilidade/genética , Complexo Principal de Histocompatibilidade/imunologia , Camundongos , Camundongos Endogâmicos BALB C , Fator de Necrose Tumoral alfa/imunologia , Estados Unidos
10.
FEMS Immunol Med Microbiol ; 60(2): 147-55, 2010 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-20812951

RESUMO

Brucella spp. are Gram-negative, facultative intracellular bacterial pathogens that cause abortion in livestock and undulant fever in humans worldwide. Brucella abortus strain 2308 is a pathogenic strain that affects cattle and humans. Currently, there are no efficacious human vaccines available. However, B. abortus strain RB51, which is approved by the USDA, is a live-attenuated rough vaccine against bovine brucellosis. Live strain RB51 induces protection via CD4(+) and CD8(+) T-cell-mediated immunity. To generate an optimal T-cell response, strong innate immune responses by dendritic cells (DCs) are crucial. Because of safety concerns, the use of live vaccine strain RB51 in humans is limited. Therefore, in this study, we analyzed the differential ability of the same doses of live, heat-killed (HK) and γ-irradiated (IR) strain RB51 in inducing DC activation and function. Smooth strain 2308, live strain RB51 and lipopolysaccharide were used as controls. Studies using mouse bone marrow-derived DCs revealed that, irrespective of viability, strain RB51 induced greater DC activation than smooth strain 2308. Live strain RB51 induced significantly (P≤0.05) higher DC maturation than HK and IR strains, and only live strain RB51-infected DCs (at multiplicity of infection 1:100) induced significant (P≤0.05) tumor necrosis factor-α and interleukin-12 secretion.


Assuntos
Vacina contra Brucelose/imunologia , Brucella abortus/imunologia , Células Dendríticas/imunologia , Animais , Antígeno B7-2/análise , Técnicas de Tipagem Bacteriana , Brucella abortus/patogenicidade , Brucella abortus/efeitos da radiação , Linfócitos T CD4-Positivos/imunologia , Antígenos CD40/análise , Linfócitos T CD8-Positivos/imunologia , Células Dendríticas/metabolismo , Citometria de Fluxo , Raios gama , Temperatura Alta , Imunidade Celular , Interleucina-12/metabolismo , Lipopolissacarídeos , Camundongos , Camundongos Endogâmicos BALB C , Fator de Necrose Tumoral alfa/metabolismo , Vacinas Atenuadas/imunologia , Vacinas de Produtos Inativados/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA