Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Artif Intell Med ; 153: 102886, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38749310

RESUMO

Tuberculous pleural effusion poses a significant threat to human health due to its potential for severe disease and mortality. Without timely treatment, it may lead to fatal consequences. Therefore, early identification and prompt treatment are crucial for preventing problems such as chronic lung disease, respiratory failure, and death. This study proposes an enhanced differential evolution algorithm based on colony predation and dispersed foraging strategies. A series of experiments conducted on the IEEE CEC 2017 competition dataset validated the global optimization capability of the method. Additionally, a binary version of the algorithm is introduced to assess the algorithm's ability to address feature selection problems. Comprehensive comparisons of the effectiveness of the proposed algorithm with 8 similar algorithms were conducted using public datasets with feature sizes ranging from 10 to 10,000. Experimental results demonstrate that the proposed method is an effective feature selection approach. Furthermore, a predictive model for tuberculous pleural effusion is established by integrating the proposed algorithm with support vector machines. The performance of the proposed model is validated using clinical records collected from 140 tuberculous pleural effusion patients, totaling 10,780 instances. Experimental results indicate that the proposed model can identify key correlated indicators such as pleural effusion adenosine deaminase, temperature, white blood cell count, and pleural effusion color, aiding in the clinical feature analysis of tuberculous pleural effusion and providing early warning for its treatment and prediction.


Assuntos
Algoritmos , Derrame Pleural , Máquina de Vetores de Suporte , Tuberculose Pleural , Humanos , Derrame Pleural/microbiologia , Tuberculose Pleural/diagnóstico , Adenosina Desaminase/metabolismo , Contagem de Leucócitos
2.
Comput Biol Med ; 158: 106501, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36635120

RESUMO

Computerized tomography (CT) is of great significance for the localization and diagnosis of liver cancer. Many scholars have recently applied deep learning methods to segment CT images of liver and liver tumors. Unlike natural images, medical image segmentation is usually more challenging due to its nature. Aiming at the problem of blurry boundaries and complex gradients of liver tumor images, a deep supervision network based on the combination of high-efficiency channel attention and Res-UNet++ (ECA residual UNet++) is proposed for liver CT image segmentation, enabling fully automated end-to-end segmentation of the network. In this paper, the UNet++ structure is selected as the baseline. The residual block feature encoder based on context awareness enhances the feature extraction ability and solves the problem of deep network degradation. The introduction of an efficient attention module combines the depth of the feature map with spatial information to alleviate the uneven sample distribution impact; Use DiceLoss to replace the cross-entropy loss function to optimize network parameters. The liver and liver tumor segmentation accuracy on the LITS dataset was 95.8% and 89.3%, respectively. The results show that compared with other algorithms, the method proposed in this paper achieves a good segmentation performance, which has specific reference significance for computer-assisted diagnosis and treatment to attain fine segmentation of liver and liver tumors.


Assuntos
Neoplasias Hepáticas , Humanos , Neoplasias Hepáticas/diagnóstico por imagem , Algoritmos , Diagnóstico por Computador , Tomografia Computadorizada por Raios X , Processamento de Imagem Assistida por Computador
3.
Front Neuroinform ; 16: 1041799, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36387585

RESUMO

Melanoma is a malignant tumor formed by the cancerous transformation of melanocytes, and its medical images contain much information. However, the percentage of the critical information in the image is small, and the noise is non-uniformly distributed. We propose a new multi-threshold image segmentation model based on the two-dimensional histogram approach to the above problem. We present an enhanced ant colony optimization for continuous domains (EACOR) in the proposed model based on the soft besiege and chase strategies. Further, EACOR is combined with two-dimensional Kapur's entropy to search for the optimal thresholds. An experiment on the IEEE CEC2014 benchmark function was conducted to measure the reliable global search capability of the EACOR algorithm in the proposed model. Moreover, we have also conducted several sets of experiments to test the validity of the image segmentation model proposed in this paper. The experimental results show that the segmented images from the proposed model outperform the comparison method in several evaluation metrics. Ultimately, the model proposed in this paper can provide high-quality samples for subsequent analysis of melanoma pathology images.

4.
Comput Biol Med ; 146: 105529, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35594682

RESUMO

Pulmonary hypertension (PH) is a rare and fatal condition that leads to right heart failure and death. The pathophysiology of PH and potential therapeutic approaches are yet unknown. PH animal models' development and proper evaluation are critical to PH research. This work presents an effective analysis technology for PH from arterial blood gas analysis utilizing an evolutionary kernel extreme learning machine with multiple strategies integrated slime mould algorithm (MSSMA). In MSSMA, two efficient bee-foraging learning operators are added to the original slime mould algorithm, ensuring a suitable trade-off between intensity and diversity. The proposed MSSMA is evaluated on thirty IEEE benchmarks and the statistical results show that the search performance of the MSSMA is significantly improved. The MSSMA is utilised to develop a kernel extreme learning machine (MSSMA-KELM) on PH from arterial blood gas analysis. Comprehensively, the proposed MSSMA-KELM can be used as an effective analysis technology for PH from arterial Blood gas analysis with an accuracy of 93.31%, Matthews coefficient of 90.13%, Sensitivity of 91.12%, and Specificity of 90.73%. MSSMA-KELM can be treated as an effective approach for evaluating mouse PH models.


Assuntos
Hipertensão Pulmonar , Algoritmos , Animais , Gasometria , Aprendizado de Máquina , Camundongos , Modelos Animais
5.
Comput Biol Med ; 145: 105444, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35421795

RESUMO

Lesion detectors based on deep learning can assist doctors in diagnosing diseases. However, the performance of current detectors is likely to be unsatisfactory due to the scarcity of training samples. Therefore, it is beneficial to use image generation to augment the training set of a detector. However, when the imaging texture of the medical image is relatively delicate, the synthesized image generated by an existing method may be too poor in quality to meet the training requirements of the detectors. In this regard, a medical image augmentation method, namely, a texture-constrained multichannel progressive generative adversarial network (TMP-GAN), is proposed in this work. TMP-GAN uses joint training of multiple channels to effectively avoid the typical shortcomings of the current generation methods. It also uses an adversarial learning-based texture discrimination loss to further improve the fidelity of the synthesized images. In addition, TMP-GAN employs a progressive generation mechanism to steadily improve the accuracy of the medical image synthesizer. Experiments on the publicly available dataset CBIS-DDMS and our pancreatic tumor dataset show that the precision/recall/F1-score of the detector trained on the TMP-GAN augmented dataset improves by 2.59%/2.70%/2.77% and 2.44%/2.06%/2.36%, respectively, compared to the optimal results of other data augmentation methods. The FROC curve of the detector is also better than the curve from the contrast-augmented trained dataset. Therefore, we believe the proposed TMP-GAN is a practical technique to efficiently implement lesion detection case studies.


Assuntos
Processamento de Imagem Assistida por Computador , Processamento de Imagem Assistida por Computador/métodos
6.
Comput Biol Med ; 145: 105435, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35397339

RESUMO

Systemic lupus erythematosus is a chronic autoimmune disease that affects the kidney in most patients. Lupus nephritis (LN) is divided into six categories by the International Society of Nephrology/Renal Pathology Society (ISN/RPS). The purpose of this research is to build a framework for discriminating between ISN/RPS pure class V(MLN) and classes III ± V or IV ± V (PLN) using real clinical data. The framework is developed by merging a hybrid stochastic optimizer, moth-flame algorithm (HMFO), with a support vector machine (SVM), dubbed HMFO-SVM. The HMFO is constructed by enhancing the original moth-flame algorithm (MFO) with a bee-foraging learning operator, which guarantees that the algorithm speeds convergence and departs from the local optimum. The HMFO is used to optimize parameters and select features simultaneously for SVM on clinical SLE data. On 23 benchmark tests, the suggested HMFO method is validated. Finally, clinical data from LN patients are analyzed to determine the efficacy of HMFO-SVM over other SVM rivals. The statistical findings indicate that all measures have predictive capabilities and that the suggested HMFO-SVM is more stable for analyzing systemic LN. HMFO-SVM may be used to analyze LN as a feasible computer-assisted technique.


Assuntos
Lúpus Eritematoso Sistêmico , Nefrite Lúpica , Mariposas , Algoritmos , Animais , Biópsia , Humanos , Rim , Nefrite Lúpica/diagnóstico , Nefrite Lúpica/patologia , Máquina de Vetores de Suporte
7.
Comput Biol Med ; 142: 105166, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35077935

RESUMO

Coronavirus disease-2019 (COVID-19) has made the world more cautious about widespread viruses, and a tragic pandemic that was caused by a novel coronavirus has harmed human beings in recent years. The new coronavirus pneumonia outbreak is spreading rapidly worldwide. We collect arterial blood samples from 51 patients with a COVID-19 diagnosis. Blood gas analysis is performed using a Siemens RAPID Point 500 blood gas analyzer. To accurately determine the factors that play a decisive role in the early recognition and discrimination of COVID-19 severity, a prediction framework that is based on an improved binary Harris hawk optimization (HHO) algorithm in combination with a kernel extreme learning machine is proposed in this paper. This method uses specular reflection learning to improve the original HHO algorithm and is referred to as HHOSRL. The experimental results show that the selected indicators, such as age, partial pressure of oxygen, oxygen saturation, sodium ion concentration, and lactic acid, are essential for the early accurate assessment of COVID-19 severity by the proposed feature selection method. The simulation results show that the established methodlogy can achieve promising performance. We believe that our proposed model provides an effective strategy for accurate early assessment of COVID-19 and distinguishing disease severity. The codes of HHO will be updated in https://aliasgharheidari.com/HHO.html.


Assuntos
COVID-19 , Falconiformes , Animais , Gasometria , Teste para COVID-19 , Humanos , Aprendizado de Máquina , SARS-CoV-2
8.
Comput Biol Med ; 139: 105015, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34800808

RESUMO

Multi-threshold image segmentation (MIS) is now a well known image segmentation technique, and many researchers have applied intelligent algorithms to it, but these methods suffer from local optimal drawbacks. This paper presented a novel approach to improve the Salp Swarm Algorithm (SSA), namely EHSSA, and applied it to MIS. Knowing the inaccuracies and discussions on implementation of this method, a new efficient mechanism is proposed to improve global search capability of the algorithm and avoid falling into a local optimum. Moreover, the excellence of the proposed algorithm was proved by comparative experiments at IEEE CEC2014. Afterward, the performance of EHSSA was demonstrated by testing a set of images selected from the Berkeley segmentation data set 500 (BSDS500), and the experimental results were analyzed by evaluating the parameters, which proved the efficiency of the proposed algorithm in MIS. Furthermore, EHSSA was applied to the microscopic image segmentation of breast cancer. Medical image segmentation is the study of how to quickly extract objects of interest (human organs) from various images to perform qualitative and quantitative analysis of diseased tissues and improve the accuracy of their diagnosis, which assists the physician in making more informed decisions and patient rehabilitation. The results of this set of experiments also proved its superior performance. For any info about this paper, readers can refer to https://aliasgharheidari.com.


Assuntos
Neoplasias da Mama , Microscopia , Algoritmos , Neoplasias da Mama/diagnóstico por imagem , Feminino , Humanos , Processamento de Imagem Assistida por Computador
9.
Comput Biol Med ; 138: 104910, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34638022

RESUMO

Breast cancer is one of the most dangerous diseases for women's health, and it is imperative to provide the necessary diagnostic assistance for it. The medical image processing technology is one of the most critical of all complementary diagnostic technologies. Image segmentation is the core step of image processing, where multilevel image segmentation is considered one of the most efficient and straightforward methods. Many multilevel image segmentation methods based on evolutionary and population-based methods have been proposed in recent years, but many have the fatal weakness of poor convergence accuracy and the tendency to fall into local optimum. Therefore, to overcome these weaknesses, this paper proposes a modified differential evolution (MDE) algorithm with a vision based on the slime mould foraging behavior, where the recently proposed slime mould algorithm (SMA) inspires it. Besides, to obtain high-quality breast cancer image segmentation results, this paper also develops an excellent MDE-based multilevel image segmentation model, the core of which is based on non-local means 2D histogram and 2D Kapur's entropy. To effectively validate the performance of the proposed method, a comparison experiment between MDE and its similar algorithms was first carried out on IEEE CEC 2014. Then, an initial validation of the MDE-based multilevel image segmentation model was performed by utilizing a reference image set. Finally, the MDE-based multilevel image segmentation model was compared with peers using breast invasive ductal carcinoma images. A series of experimental results have proved that MDE is an evolutionary algorithm with high convergence accuracy and the ability to jump out of the local optimum, as well as effectively demonstrated that the developed model is a high-quality segmentation method that can provide practical support for further research of breast invasive ductal carcinoma pathological image processing.


Assuntos
Neoplasias da Mama , Algoritmos , Neoplasias da Mama/diagnóstico por imagem , Entropia , Feminino , Humanos , Processamento de Imagem Assistida por Computador
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA