Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 51
Filtrar
1.
J Nucl Med ; 2024 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-38754959

RESUMO

Developing a noninvasive imaging method to detect immune system activation with a high temporal resolution is key to improving inflammatory bowel disease (IBD) management. In this study, granzyme B (GZMB), typically released from cytotoxic T and natural killer cells, was targeted using PET with 68Ga-NOTA-GZP (where GZP is ß-Ala-Gly-Gly-Ile-Glu-Phe-Asp-CHO) to detect early intestinal inflammation in murine models of colitis. Methods: Bioinformatic analysis was used to assess the potential of GZMB as a biomarker for detecting IBD and predicting response to treatment. Human active and quiescent Crohn disease and ulcerative colitis tissues were stained for GZMB. We used IL-10-/- mice treated with dextran sulfate sodium (DSS) as an IBD model, wild-type C57BL/6J mice as a control, and anti-tumor necrosis factor as therapy. We used a murine GZMB-binding peptide conjugated to a NOTA chelator (NOTA-GZP) labeled with 68Ga as the PET tracer. PET imaging was conducted at 1, 3, and 4 wk after colitis induction to evaluate temporal changes. Results: Bioinformatic analysis showed that GZMB gene expression is significantly upregulated in human ulcerative colitis and Crohn disease compared with the noninflamed bowel by 2.98-fold and 1.92-fold, respectively; its expression is lower by 2.16-fold in treatment responders than in nonresponders. Immunofluorescence staining of human tissues demonstrated a significantly higher GZMB in patients with active than with quiescent IBD (P = 0.032).68Ga-NOTA-GZP PET imaging showed significantly increased bowel uptake in IL-10-/- mice with DSS-induced colitis compared with vehicle-treated IL-10-/- mice (SUVmean, 0.75 vs. 0.24; P < 0.001) and both vehicle- and DSS-treated wild-type mice (SUVmean, 0.26 and 0.37; P < 0.001). In the IL-10-/- DSS-induced colitis model, the bowel PET probe uptake decreased in response to treatment with tumor necrosis factor-α (SUVmean, 0.32; P < 0.001). There was a 4-fold increase in colonic uptake of 68Ga-NOTA-GZP in the colitis model compared with the control 1 wk after colitis induction. The uptake gradually decreased to approximately 2-fold by 4 wk after IBD induction; however, the inflamed bowel uptake remained significantly higher than control at all time points (week 4 SUVmean, 0.23 vs. 0.08; P = 0.001). Conclusion: GZMB is a promising biomarker to detect active IBD and predict response to treatment. This study provides compelling evidence to translate GZMB PET for imaging IBD activity in clinical settings.

2.
Optics (Basel) ; 4(2): 340-350, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38075027

RESUMO

Image-guided liver biopsies can improve their success rate when combined with the optical detection of Indocyanine Green (ICG) fluorescence accumulated in tumors. Previous works used a camera coupled to a thin borescope to capture and quantify images from fluorescence emission during procedures; however, light-scattering prevented the formation of sharp images, and the time response for weakly fluorescent tumors was very low. Instead, replacing the camera with a photodiode detector shows an improved temporal resolution in a more compact and lighter device. This work presents the new design in a comparative study between both detection technologies, including an assessment of the temporal response and sensitivity to the presence of background fluorescence.

3.
Pharmaceutics ; 15(12)2023 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-38140100

RESUMO

DNA is an organic molecule that is highly vulnerable to chemical alterations and breaks caused by both internal and external factors. Cells possess complex and advanced mechanisms, including DNA repair, damage tolerance, cell cycle checkpoints, and cell death pathways, which together minimize the potentially harmful effects of DNA damage. However, in cancer cells, the normal DNA damage tolerance and response processes are disrupted or deregulated. This results in increased mutagenesis and genomic instability within the cancer cells, a known driver of cancer progression and therapeutic resistance. On the other hand, the inherent instability of the genome in rapidly dividing cancer cells can be exploited as a tool to kill by imposing DNA damage with radiopharmaceuticals. As the field of targeted radiopharmaceutical therapy (RPT) is rapidly growing in oncology, it is crucial to have a deep understanding of the impact of systemic radiation delivery by radiopharmaceuticals on the DNA of tumors and healthy tissues. The distribution and activation of DNA damage and repair pathways caused by RPT can be different based on the characteristics of the radioisotope and molecular target. Here we provide a comprehensive discussion of the biological effects of RPTs, with the main focus on the role of varying radioisotopes in inducing direct and indirect DNA damage and activating DNA repair pathways.

4.
Life Sci ; 329: 121970, 2023 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-37481033

RESUMO

Cancer cells are surrounded by a complex and highly dynamic tumor microenvironment (TME). Cancer-associated fibroblasts (CAFs), a critical component of TME, contribute to cancer cell proliferation as well as metastatic spread. CAFs express a variety of biomarkers, which can be targeted for detection and therapy. Most importantly, CAFs express high levels of fibroblast activation protein (FAP) which contributes to progression of cancer, invasion, metastasis, migration, immunosuppression, and drug resistance. As a consequence, FAP is an attractive theranostic target. In this review, we discuss the latest advancement in targeting FAP in oncology using theranostic biomarkers and imaging modalities such as single-photon emission computed tomography (SPECT), positron emission tomography (PET), computed tomography (CT), fluorescence imaging, and magnetic resonance imaging (MRI).


Assuntos
Fibroblastos Associados a Câncer , Neoplasias , Humanos , Serina Endopeptidases/metabolismo , Medicina de Precisão , Proteínas de Membrana/metabolismo , Neoplasias/terapia , Fibroblastos Associados a Câncer/metabolismo , Fibroblastos/metabolismo , Microambiente Tumoral
5.
Radiother Oncol ; 188: 109774, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37394103

RESUMO

PURPOSE: With the increased use of focal radiation dose escalation for primary prostate cancer (PCa), accurate delineation of gross tumor volume (GTV) in prostate-specific membrane antigen PET (PSMA-PET) becomes crucial. Manual approaches are time-consuming and observer dependent. The purpose of this study was to create a deep learning model for the accurate delineation of the intraprostatic GTV in PSMA-PET. METHODS: A 3D U-Net was trained on 128 different 18F-PSMA-1007 PET images from three different institutions. Testing was done on 52 patients including one independent internal cohort (Freiburg: n = 19) and three independent external cohorts (Dresden: n = 14 18F-PSMA-1007, Boston: Massachusetts General Hospital (MGH): n = 9 18F-DCFPyL-PSMA and Dana-Farber Cancer Institute (DFCI): n = 10 68Ga-PSMA-11). Expert contours were generated in consensus using a validated technique. CNN predictions were compared to expert contours using Dice similarity coefficient (DSC). Co-registered whole-mount histology was used for the internal testing cohort to assess sensitivity/specificity. RESULTS: Median DSCs were Freiburg: 0.82 (IQR: 0.73-0.88), Dresden: 0.71 (IQR: 0.53-0.75), MGH: 0.80 (IQR: 0.64-0.83) and DFCI: 0.80 (IQR: 0.67-0.84), respectively. Median sensitivity for CNN and expert contours were 0.88 (IQR: 0.68-0.97) and 0.85 (IQR: 0.75-0.88) (p = 0.40), respectively. GTV volumes did not differ significantly (p > 0.1 for all comparisons). Median specificity of 0.83 (IQR: 0.57-0.97) and 0.88 (IQR: 0.69-0.98) were observed for CNN and expert contours (p = 0.014), respectively. CNN prediction took 3.81 seconds on average per patient. CONCLUSION: The CNN was trained and tested on internal and external datasets as well as histopathology reference, achieving a fast GTV segmentation for three PSMA-PET tracers with high diagnostic accuracy comparable to manual experts.


Assuntos
Aprendizado Profundo , Neoplasias da Próstata , Masculino , Humanos , Carga Tumoral , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada/métodos , Planejamento da Radioterapia Assistida por Computador/métodos , Neoplasias da Próstata/diagnóstico por imagem , Neoplasias da Próstata/radioterapia , Neoplasias da Próstata/patologia
6.
J Nucl Med ; 64(7): 1056-1061, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37024303

RESUMO

Neuroendocrine tumors (NETs) are often diagnosed in advanced stages. Despite the advances in treatment approaches, including somatostatin analogs and peptide receptor radionuclide therapy (PRRT), these patients have no curative treatment option. Moreover, immunotherapy often yields modest results in NETs. We investigated whether combining PRRT using [177Lu]DOTATATE and immune checkpoint inhibition therapy improves treatment response in NETs. Methods: A gastroenteropancreatic NET model was generated by subcutaneous implantation of human QGP-1 cells in immune-reconstituted NOD.Cg-Prkdcscid Il2rgtm1Wjl /SzJ mice engrafted with human peripheral blood mononuclear cells (n = 96). Mice were randomly assigned to receive pembrolizumab (anti-PD1), [177Lu]DOTATATE (PRRT), simultaneous anti-PD1 and PRRT (S-PRRT), anti-PD1 on day 0 followed by PRRT on day 3 (delayed PRRT [D-PRRT]), PRRT on day 0 followed by anti-PD1 (early PRRT [E-PRRT]), or vehicle as control (n = 12/group). Human granzyme-B-specific [68Ga]NOTA-hGZP PET/MRI was performed before and 6 d after treatment initiation, as an indicator of T-cell activation. Response to treatment was based on tumor growth over 21 d and on histologic analyses of extracted tissues on flow cytometry for T cells, hematoxylin and eosin staining, and immunohistochemical staining. Results: [68Ga]NOTA-hGZP PET/MRI showed significantly increased uptake in tumors treated with E-PRRT, S-PRRT, and anti-PD1 on day 6 compared with baseline (SUVmax: 3.36 ± 0.42 vs. 0.73 ± 0.23; 2.36 ± 0.45 vs. 0.76 ± 0.30; 2.20 ± 0.20 vs. 0.72 ± 0.28, respectively; P < 0.001), whereas no significant change was seen in PET parameters in the D-PRRT, PRRT, or vehicle groups (P > 0.05). Ex vivo analyses confirmed the PET results showing the highest granzyme-B levels and T cells (specifically CD8-positive effector T cells) in the E-PRRT group, followed by the S-PRRT and anti-PD1 groups. Tumor growth follow-up showed the most significant tumor size reduction in the E-PRRT group (baseline to day 21, 205.00 ± 30.70 mm3 vs. 78.00 ± 11.75 mm3; P = 0.0074). Tumors showed less growth reduction in the PRRT, D-PRRT, and S-PRRT groups than in the E-PRRT group (P < 0.0001). The vehicle- and anti-PD-1-treated tumors showed continued growth. Conclusion: Combination of PRRT and anti-PD1 shows the most robust inflammatory response to NETs and a better overall outcome than immune checkpoint inhibition or PRRT alone. The most effective regimen is PRRT preceding anti-PD1 administration by several days.


Assuntos
Tumores Neuroendócrinos , Compostos Organometálicos , Humanos , Animais , Camundongos , Granzimas , Inibidores de Checkpoint Imunológico , Tumores Neuroendócrinos/diagnóstico por imagem , Tumores Neuroendócrinos/radioterapia , Tumores Neuroendócrinos/patologia , Radioisótopos de Gálio , Leucócitos Mononucleares/patologia , Camundongos Endogâmicos NOD , Receptores de Peptídeos , Octreotida
7.
Clin Imaging ; 99: 10-18, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37043868

RESUMO

COVID-19 is a multisystemic disease, and hence its potential manifestations on nuclear medicine imaging can extend beyond the lung. Therefore, it is important for the nuclear medicine physician to recognize these manifestations in the clinic. While FDG-PET/CT is not indicated routinely in COVID-19 evaluation, its unique capability to provide a functional and anatomical assessment of the entire body means that it can be a powerful tool to monitor acute, subacute, and long-term effects of COVID-19. Single-photon scintigraphy is routinely used to assess conditions such as pulmonary embolism, cardiac ischemia, and thyroiditis, and COVID-19 may present in these studies. The most common nuclear imaging finding of COVID-19 vaccination to date is hypermetabolic axillary lymphadenopathy. This may pose important diagnostic and management dilemmas in oncologic patients, particularly those with malignancies where the axilla constitutes a lymphatic drainage area. This article aims to summarize the relevant literature published since the beginning of the pandemic on the intersection between COVID-19 and nuclear medicine.


Assuntos
COVID-19 , Medicina Nuclear , Humanos , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada , Vacinas contra COVID-19 , Fluordesoxiglucose F18 , Cintilografia , Tomografia por Emissão de Pósitrons , Dedos do Pé
8.
Urol Clin North Am ; 50(1): 115-131, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36424076

RESUMO

Urologic malignancies constitute a large portion of annually diagnosed cancers. Timely diagnosis, accurate staging, and assessment of tumor heterogeneity are essential to devising the best treatment strategy for individual patients. The high sensitivity of molecular imaging allows for early and sensitive detection of lesions that were not readily detectable using conventional imaging techniques. Moreover, molecular imaging enables the interrogation of molecular processes used in targeted cancer therapies and predicts cancer response to treatment. Here we review the current advancements in molecular imaging of urologic cancers, including prostatic, vesical, renal testicular, and ureteral cancers.


Assuntos
Neoplasias Urológicas , Humanos , Neoplasias Urológicas/diagnóstico por imagem , Neoplasias Urológicas/patologia , Biomarcadores , Imagem Molecular
9.
AJR Am J Roentgenol ; 220(5): 619-629, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36321986

RESUMO

Theranostics describes the coupling of a diagnostic biomarker and a therapeutic agent (i.e., a theranostic pair) that have a common target in tumor cells or their microenvironment. The term is increasingly associated with in vivo nuclear medicine oncologic applications that couple diagnostic imaging by means of gamma radiation with concomitant localized high-energy particulate radiation to a tissue expressing the common target. Several theranostic pairs have been translated into clinical practice in the United States and are poised to become a mainstay of cancer treatment. The purposes of this article are to review experience with theranostics for solid-organ malignancies and to address the practical integration into care pathways of ß-emitting therapies that include somatostatin analogue radioligands for neuroendocrine tumors, PSMA-directed therapy for prostate cancer, and 131I-MIBG therapy for tumors of neural crest origin. Toxicities related to theranostics administration and indications for cessation of therapy in patients who experience adverse events are also discussed. A multidisciplinary team-based approach for identifying patients most likely to respond to these agents, determining the optimal time for therapy delivery, and managing patient care throughout the therapeutic course is critical to the success of a radiotheranostic program.


Assuntos
Medicina de Precisão , Neoplasias da Próstata , Masculino , Humanos , Procedimentos Clínicos , Neoplasias da Próstata/diagnóstico por imagem , Neoplasias da Próstata/radioterapia , Somatostatina , Assistência ao Paciente , Microambiente Tumoral
10.
Mol Imaging Biol ; 25(2): 353-362, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-35962301

RESUMO

PURPOSE: New generation of receptor tyrosine kinase inhibitors (RTKIs) have shown to improve survival in many solid tumors. However, an imaging biomarker is needed for patient selection and prediction of treatment response. This study evaluates the use of quantitative changes of HER3 on 68 Ga-NOTA-HER3P1 PET/MRI for prediction of early response to pan-RTKIs in gastric cancer (GCa). PROCEDURES: GCa cell lines were evaluated for expression of RTKs, and downstream signaling pathways (AKT and MAPK). Cell viability was assessed following 24-72 h of treatment with 0.01-1 µmol/L of afatinib, a pan-RTKI. HER3-expressing afatinib-sensitive (NCI-N87) and resistant cells (SNU16) were selected for evaluation of changes in RTKs expression and downstream pathways, with 24-72 h of 0.1 µmol/L afatinib treatment. 68 Ga-NOTA-HER3P1 PET/MRI was performed in subcutaneous NCI-N87 and SNU16 xenografts (nu:nu, n = 12/group) at baseline and 4 days after afatinib treatment (10 mg/kg, PO, daily). Temporal changes in PET measures were correlated to HER3 expression in tumors, tumor growth rate, and treatment response. RESULTS: With afatinib therapy, NCI-N87 cells showed increased total HER3 expression, and reduction of other RTKs and downstream nodes within 72 h, while SNU16 cells showed no significant change in total HER3 and downstream nodes. 68 Ga-HER3P1 PET/MRI showed increased uptake in NCI-N87 and no significant change in SNU16 tumors (day 4 vs. baseline SUVmean: 3.8 ± 0.7 vs. 1.6 ± 0.6, p < 0.05 in NCI-N87, and 1.5 ± 0.7 vs. 1.7 ± 0.7, p > 0.05 in SNU16). These findings were in concordance with HER3 expression in histopathological analyses and tumor growth over 3 weeks of treatment (mean tumor volume in treated vs. control: 11 ± 17 mm3 vs. 293 ± 79 mm3, p < 0.001 in NCI-N87, and 238 ± 91 mm3 vs. 282 ± 35 mm3, p > 0.05 in SNU16). CONCLUSIONS: Quantitative changes in HER3 PET could be used to predict response to pan-RTKI within few days after initiation of treatment and can help with personalizing GCa management.


Assuntos
Neoplasias Gástricas , Humanos , Afatinib/farmacologia , Neoplasias Gástricas/patologia , Linhagem Celular Tumoral , Tomografia por Emissão de Pósitrons/métodos , Receptor ErbB-3
11.
Pharmaceutics ; 14(7)2022 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-35890355

RESUMO

Although immune checkpoint inhibitors (ICI) have revolutionized cancer management, patient response can be heterogeneous, and the development of ICI resistance is increasingly reported. Novel treatment strategies are necessary not only to expand the use of ICI to previously unresponsive tumor types but also to overcome resistance. Targeted radionuclide therapy may synergize well with ICIs since it can promote a pro-inflammatory tumor microenvironment. We investigated the use of a granzyme B targeted peptide (GZP) as a cancer theranostic agent, radiolabeled with 68Ga (68Ga-GZP) as a PET imaging agent and radiolabeled with 90Y (90Y-GZP) as a targeted radionuclide therapy agent for combinational therapy with ICI in murine models of colon cancer. Our results demonstrate that GZP increasingly accumulates in tumor tissue after ICI and that the combination of ICI with 90Y-GZP promotes a dose-dependent response, achieving curative response in some settings and increased overall survival.

12.
Mol Imaging Biol ; 24(5): 769-779, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35467249

RESUMO

PURPOSE: To evaluate the use of hyperpolarized [1-13C]pyruvate magnetic resonance spectroscopic imaging (HP-13C MRSI) for quantitative measurement of early changes in glycolytic metabolism and its ability to predict response to pan-tyrosine kinase inhibitor (Pan-TKI) therapy in gastric cancer (GCa). PROCEDURES: Pan-TKI afatinib-sensitive NCI-N87 and resistant SNU16 human GCa cells were assessed for GLUT1, hexokinase-II (HKII), lactate dehydrogenase (LDHA), phosphorylated AKT (pAKT), and phosphorylated MAPK (pMAPK) at 0-72 h of treatment with 0.1 µM afatinib. Subcutaneous NCI-N87 tumor-bearing nude mice underwent [18F]FDG PET/MRI and HP-13C MRSI at baseline and 4 days after treatment with afatinib 10 mg/kg/day or vehicle (n = 10/group). Changes in PET and HP-13C MRSI metabolic parameters were compared between the two groups. Imaging findings were correlated with tumor growth and histopathology over 3 weeks of treatment. RESULTS: In vitro analysis showed a continuous decrease in LDHA, pAKT, and pMAPK in NCI-N87 compared to SNU16 cells within 72 h of treatment with afatinib, without a significant change in GLUT1 and HKII in either cell type. [18F]FDG PET of NCI-N87 tumors showed no significant change in PET measures at baseline and day 4 of treatment in either treatment group (SUVmean day 4/day 0: 2.7 ± 0.42/2.34 ± 0.38, p = 0.57 in the treated group vs. 1.73 ± 0.66/2.24 ± 0.43, p = 0.4 in the control group). HP-13C MRSI demonstrated significantly decreased lactate-to-pyruvate ratio (L/P) in treated tumors (L/P day 4/day 0: 0.83 ± 0.30/1.10 ± 0.20, p = 0.012 vs. 0.94 ± 0.20/0.98 ± 0.30, p = 0.75, in the treated vs. control group, respectively). Response to afatinib was confirmed with decreased tumor size over 3 weeks (11.10 ± 16.50 vs. 293.00 ± 79.30 mm3, p < 0.001, treated group vs. control group, respectively) and histopathologic evaluation. CONCLUSIONS: HP-13C MRSI is a more representative biomarker of early metabolic changes in response to pan-TKI in GCa than [18F]FDG PET and could be used for early prediction of response to targeted therapies.


Assuntos
Fluordesoxiglucose F18 , Neoplasias Gástricas , Animais , Camundongos , Humanos , Ácido Pirúvico/metabolismo , Hexoquinase/metabolismo , Transportador de Glucose Tipo 1 , Neoplasias Gástricas/diagnóstico por imagem , Neoplasias Gástricas/tratamento farmacológico , Proteínas Tirosina Quinases/metabolismo , Afatinib , Camundongos Nus , Proteínas Proto-Oncogênicas c-akt/metabolismo , Imageamento por Ressonância Magnética/métodos , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico , Espectroscopia de Ressonância Magnética/métodos , Lactato Desidrogenases/metabolismo , Lactatos
13.
Front Oncol ; 11: 722277, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34395293

RESUMO

Recent developments in prostate-specific membrane antigen (PSMA) targeted diagnostic imaging and therapeutics (theranostics) promise to advance the management of primary, biochemically recurrent, and metastatic prostate cancer. In order to maximize the clinical impact of PSMA-targeted theranostics, a coordinated approach between the clinical stakeholders involved in prostate cancer management is required. Here, we present a vision for multidisciplinary use of PSMA theranostics from the viewpoints of nuclear radiology, medical oncology, urology, and radiation oncology. We review the currently available and forthcoming PSMA-based imaging and therapeutics and examine current and potential impacts on prostate cancer management from early localized disease to advanced treatment-refractory disease. Finally, we highlight the clinical and research opportunities related to PSMA-targeted theranostics and describe the importance of multidisciplinary collaboration in this space.

14.
Clin Cancer Res ; 27(19): 5353-5364, 2021 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-34253581

RESUMO

PURPOSE: Cancer immunotherapy has markedly improved the prognosis of patients with a broad variety of malignancies. However, benefits are weighed against unique toxicities, with immune-related adverse events (irAE) that are frequent and potentially life-threatening. The diagnosis and management of these events are challenging due to heterogeneity of timing onset, multiplicity of affected organs, and lack of non-invasive monitoring techniques. We demonstrate the use of a granzyme B-targeted PET imaging agent (GZP) for irAE identification in a murine model. EXPERIMENTAL DESIGN: We generated a model of immunotherapy-induced adverse events in Foxp3-DTR-GFP mice bearing MC38 tumors. GZP PET imaging was performed to evaluate organs non-invasively. We validated imaging with ex vivo analysis, correlating the establishment of these events with the presence of immune infiltrates and granzyme B upregulation in tissue. To demonstrate the clinical relevance of our findings, the presence of granzyme B was identified through immunofluorescence staining in tissue samples of patients with confirmed checkpoint inhibitor-associated adverse events. RESULTS: GZP PET imaging revealed differential uptake in organs affected by irAEs, such as colon, spleen, and kidney, which significantly diminished after administration of the immunosuppressor dexamethasone. The presence of granzyme B and immune infiltrates were confirmed histologically and correlated with significantly higher uptake in PET imaging. The presence of granzyme B was also confirmed in samples from patients that presented with clinical irAEs. CONCLUSIONS: We demonstrate an interconnection between the establishment of irAEs and granzyme B presence and, for the first time, the visualization of those events through PET imaging.


Assuntos
Imunoterapia , Neoplasias , Animais , Humanos , Fatores Imunológicos , Imunoterapia/efeitos adversos , Imunoterapia/métodos , Camundongos , Neoplasias/tratamento farmacológico , Neoplasias/etiologia , Tomografia por Emissão de Pósitrons , Estudos Retrospectivos
15.
Cardiovasc Intervent Radiol ; 44(9): 1439-1447, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34021380

RESUMO

PURPOSE: To evaluate an integrated liver biopsy platform that combined CT image fusion, electromagnetic (EM) tracking, and optical molecular imaging (OMI) of indocyanine green (ICG) to target hepatocellular carcinoma (HCC) lesions and a point-of-care (POC) OMI to assess biopsy cores, all based on tumor retention of ICG compared to normal liver, in phantom and animal model. MATERIAL: A custom CT image fusion and EM-tracked guidance platform was modified to integrate the measurement of ICG fluorescence intensity signals in targeted liver tissue with an OMI stylet or a POC OMI system. Accuracy was evaluated in phantom and a woodchuck with HCC, 1 day after administration of ICG. Fresh biopsy cores and paraffin-embedded formalin-fixed liver tissue blocks were evaluated with the OMI stylet or POC system to identify ICG fluorescence signal and ICG peak intensity. RESULTS: The mean distance between the initial guided needle delivery location and the peak ICG signal was 5.0 ± 4.7 mm in the phantom. There was complete agreement between the reviewers of the POC-acquired ICG images, cytology, and histopathology in differentiating HCC-positive from HCC-negative biopsy cores. The peak ICG fluorescence intensity signal in the ex vivo liver blocks was 39 ± 12 and 281 ± 150 for HCC negative and HCC positive, respectively. CONCLUSION: Biopsy guidance with fused CT imaging, EM tracking, and ICG tracking with an OMI stylet to detect HCC is feasible. Immediate assessment of ICG uptake in biopsy cores with the POC OMI system is feasible and correlates with the presence of HCC in the tissue.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Animais , Biópsia , Carcinoma Hepatocelular/diagnóstico por imagem , Modelos Animais de Doenças , Fenômenos Eletromagnéticos , Neoplasias Hepáticas/diagnóstico por imagem , Marmota , Imagem Molecular , Sistemas Automatizados de Assistência Junto ao Leito
16.
Abdom Radiol (NY) ; 46(8): 3908-3916, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33772615

RESUMO

PURPOSE: Radiation therapy (RT) is an effective treatment for unresectable cholangiocarcinoma (CC). Accurate tumor volume delineation is critical in achieving high rates of local control while minimizing treatment-related toxicity. This study compares 18F-FDG PET/MR to MR and CT for target volume delineation for RT planning. METHODS: We retrospectively included 22 patients with newly diagnosed unresectable primary CC who underwent 18F-FDG PET/MR for initial staging. Gross tumor volume (GTV) of the primary mass (GTVM) and lymph nodes (GTVLN) were contoured on CT images, MR images, and PET/MR fused images and compared among modalities. The dice similarity coefficient (DSC) was calculated to assess spatial coverage between different modalities. RESULTS: GTV MPET/MR (median: 94 ml, range 16-655 ml) was significantly greater than GTV MMR (69 ml, 11-635 ml) (p = 0.0001) and GTV MCT (96 ml, 4-564 ml) (p = 0.035). There was no significant difference between GTV MCT and GTV MMR (p = 0.078). Subgroup analysis of intrahepatic and extrahepatic tumors showed that the median GTV MPET/MR was significantly greater than GTV MMR in both groups (117.5 ml, 22-655 ml vs. 102.5 ml, 22-635 ml, p = 0.004 and 37 ml, 16-303 ml vs. 34 ml, 11-207 ml, p = 0.042, respectively). The GTV LNPET/MR (8.5 ml, 1-27 ml) was significantly higher than GTV LNCT (5 ml, 4-16 ml) (p = 0.026). GTVPET/MR had the highest similarity to the GTVMR, i.e., DSCPET/MR-MR (0.82, 0.25-1.00), compared to DSC PET/MR-CT of 0.58 (0.22-0.87) and DSCMR-CT of 0.58 (0.03-0.83). CONCLUSION: 18F-FDG PET/MR-based CC delineation yields greater GTVs and detected a higher number of positive lymph nodes compared to CT or MR, potentially improving RT planning by reducing the risk of geographic misses.


Assuntos
Colangiocarcinoma , Fluordesoxiglucose F18 , Colangiocarcinoma/diagnóstico por imagem , Colangiocarcinoma/radioterapia , Humanos , Tomografia por Emissão de Pósitrons , Compostos Radiofarmacêuticos , Estudos Retrospectivos , Carga Tumoral
17.
Eur J Nucl Med Mol Imaging ; 48(5): 1522-1537, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33619599

RESUMO

BACKGROUND: MR is an important imaging modality for evaluating musculoskeletal malignancies owing to its high soft tissue contrast and its ability to acquire multiparametric information. PET provides quantitative molecular and physiologic information and is a critical tool in the diagnosis and staging of several malignancies. PET/MR, which can take advantage of its constituent modalities, is uniquely suited for evaluating skeletal metastases. We reviewed the current evidence of PET/MR in assessing for skeletal metastases and provided recommendations for its use. METHODS: We searched for the peer reviewed literature related to the usage of PET/MR in the settings of osseous metastases. In addition, expert opinions, practices, and protocols of major research institutions performing research on PET/MR of skeletal metastases were considered. RESULTS: Peer-reviewed published literature was included. Nuclear medicine and radiology experts, including those from 13 major PET/MR centers, shared the gained expertise on PET/MR use for evaluating skeletal metastases and contributed to a consensus expert opinion statement. [18F]-FDG and non [18F]-FDG PET/MR may provide key advantages over PET/CT in the evaluation for osseous metastases in several primary malignancies. CONCLUSION: PET/MR should be considered for staging of malignancies where there is a high likelihood of osseous metastatic disease based on the characteristics of the primary malignancy, hight clinical suspicious and in case, where the presence of osseous metastases will have an impact on patient management. Appropriate choice of tumor-specific radiopharmaceuticals, as well as stringent adherence to PET and MR protocols, should be employed.


Assuntos
Prova Pericial , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada , Fluordesoxiglucose F18 , Humanos , Imageamento por Ressonância Magnética , Tomografia por Emissão de Pósitrons , Compostos Radiofarmacêuticos
18.
Front Oncol ; 10: 554704, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33330026

RESUMO

Triple Negative Breast Cancer (TNBC) is an aggressive form of Breast Cancer (BC). Numerous kinase inhibitors (KI) targeting different pathway nodes have shown limited benefit in the clinical setting. In this study, we aim to characterize the extent of HER3 reliance and to define the effect of Neuregulin (NRG) isoforms in TNBCs. Basal and Claudin type TNBC cell lines were treated with a range of small molecule inhibitors, in the presence or absence of the HER3 ligand NRG. Single agent and combination therapy was also evaluated in human cancer cell lines through viability and biochemical assessment of the AKT/MAPK signaling pathway. We show that Basal (BT20, HCC-70, and MDA-MB-468) and Claudin type (MDA-MB-231, BT-549) TNBC cell lines displayed differential reliance on the HER family of receptors. Expression and dynamic HER3 upregulation was predominant in the Basal TNBC subtype. Furthermore, the presence of the natural ligand NRG showed potent signaling through the HER3-AKT pathway, significantly diminishing the efficacy of the AKT and PI3K inhibitors tested. We report that NRG augments the HER3 feedback mechanism for continued cell survival in TNBC. We demonstrate that combination strategies to effectively block the EGFR-HER3-AKT pathway are necessary to overcome compensatory mechanisms to NRG dependent and independent resistance mechanisms. Our findings suggests that the EGFR-HER3 heterodimer forms a major signaling hub and is a key player in tumorigenesis in Basal but not Claudin type TNBC tested. Thus, HER3 could potentially serve as a biomarker for identifying patients in which targeted therapy against the EGFR-HER3-AKT axis would be most valuable.

19.
Eur J Nucl Med Mol Imaging ; 47(1): 105-114, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31492992

RESUMO

PURPOSE: 18F-Fluciclovine is indicated for evaluation of suspected prostate cancer (PCa) biochemical recurrence. There are few studies investigating fluciclovine with PET/MR and none evaluated osseous metastases. Our aim was to assess the performance of 18F-fluciclovine PET/MR (fluciclovine-PET/MR) for detecting osseous metastases in patients with castration-resistant prostate cancer (CRPC). We also investigated possible correlations between SUVmax and ADCmean. METHODS: We evaluated 8 patients with CRPC metastatic to bones, some before and some after radium therapy, who underwent 13 fluciclovine-PET/MR studies. We analyzed the performance of radionuclide bone scan (RBS), MR alone, fluciclovine-PET alone, and fluciclovine-PET/MR in detecting osseous metastases. Lesion size, characteristics (early sclerotic, late sclerotic, mixed, lytic), SUVmax, and ADCmean were assessed. The reference standard was a combination of clinical information and correlation with both prior and follow-up imaging. RESULTS: Of 347 metastatic bony lesions in 13 studies, 238/347 (68%) were detected by fluciclovine-PET alone, 286/347 (82%) by RBS, 344/347 (99%) by MR alone, and 347/347 (100%) by fluciclovine-PET/MR. Fluciclovine-PET/MR and MR had the best performance (p < 0.001). There was no statistically significant difference between fluciclovine-PET/MR and MR alone (p = 0.25). Fluciclovine-PET had a lower detection rate especially with late sclerotic lesions (p < 0.001). There was a moderate inverse correlation between lesion SUVmax and ADCmean (r = - 0.49; p < 0.001). CONCLUSIONS: This study suggests that fluciclovine-PET/MR and MR have high sensitivity for detecting osseous metastases in CRPC. Fluciclovine-PET alone underperformed in detecting late sclerotic lesions. The inverse correlation between SUVmax and ADCmean suggests a possible relationship between tumor metabolism and cellularity.


Assuntos
Neoplasias Ósseas , Neoplasias de Próstata Resistentes à Castração , Neoplasias da Próstata , Neoplasias Ósseas/diagnóstico por imagem , Osso e Ossos , Humanos , Masculino , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada , Neoplasias da Próstata/diagnóstico por imagem , Neoplasias de Próstata Resistentes à Castração/diagnóstico por imagem
20.
J Immunother Cancer ; 7(1): 356, 2019 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-31864416

RESUMO

BACKGROUND: Acute interstitial nephritis is an immune-related adverse event that can occur in patients receiving immune checkpoint inhibitor therapy. Differentiating checkpoint inhibitor-associated acute interstitial nephritis from other causes of acute kidney injury in patients with cancer is challenging and can lead to diagnostic delays and/or unwarranted immunosuppression. In this case report, we assess the use of 18F-flourodeoxyglucose positron-emission tomography imaging as an alternative diagnostic modality in the evaluation of potential acute interstitial nephritis. CASE PRESENTATION: A 55-year-old woman with metastatic vulvar melanoma underwent treatment with two cycles of ipilimumab plus nivolumab, followed by seven cycles of nivolumab combined with radiation therapy. During her treatment, she developed non-oliguric acute kidney injury to a creatinine of 4.5 mg/dL from a baseline of 0.5 mg/dL. A clinical diagnosis of acute interstitial nephritis was made, and steroids were initiated, with rapid improvement of her acute kidney injury. Retrospectively, four positron-emission tomography scans obtained for cancer staging purposes were reviewed. We found a markedly increased 18F-flourodeoxyglucose uptake in the renal cortex at the time acute interstitial nephritis was diagnosed compared to baseline. In three cases of acute kidney injury due to alternative causes there was no increase in 18F-flourodeoxyglucose uptake from baseline. CONCLUSIONS: To our knowledge, this is the first report describing increased 18F-flourodeoxyglucose uptake in the renal cortex in a patient with checkpoint inhibitor-associated acute interstitial nephritis. Our findings suggest that 18F-flourodeoxyglucose positron-emission tomography may be a valuable test for diagnosing immune-mediated nephritis, particularly in patients where timely kidney biopsy is not feasible.


Assuntos
Antineoplásicos Imunológicos/efeitos adversos , Neoplasias/complicações , Nefrite Intersticial/diagnóstico , Nefrite Intersticial/etiologia , Tomografia por Emissão de Pósitrons , Doença Aguda , Antineoplásicos Imunológicos/uso terapêutico , Protocolos de Quimioterapia Combinada Antineoplásica/efeitos adversos , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Feminino , Fluordesoxiglucose F18 , Humanos , Pessoa de Meia-Idade , Neoplasias/tratamento farmacológico , Neoplasias/etiologia , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada , Tomografia por Emissão de Pósitrons/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA