RESUMO
Mobilized peripheral blood has become the primary source of hematopoietic stem and progenitor cells (HSPCs) for stem cell transplantation, with a five-day course of granulocyte colony stimulating factor (G-CSF) as the most common regimen used for HSPC mobilization. The CXCR4 inhibitor, plerixafor, is a more rapid mobilizer, yet not potent enough when used as a single agent, thus emphasizing the need for faster acting agents with more predictable mobilization responses and fewer side effects. We sought to improve hematopoietic stem cell transplantation by developing a new mobilization strategy in mice through combined targeting of the chemokine receptor CXCR2 and the very late antigen 4 (VLA4) integrin. Rapid and synergistic mobilization of HSPCs along with an enhanced recruitment of true HSCs was achieved when a CXCR2 agonist was co-administered in conjunction with a VLA4 inhibitor. Mechanistic studies revealed involvement of CXCR2 expressed on BM stroma in addition to stimulation of the receptor on granulocytes in the regulation of HSPC localization and egress. Given the rapid kinetics and potency of HSPC mobilization provided by the VLA4 inhibitor and CXCR2 agonist combination in mice compared to currently approved HSPC mobilization methods, it represents an exciting potential strategy for clinical development in the future.
Assuntos
Medula Óssea/metabolismo , Mobilização de Células-Tronco Hematopoéticas , Transplante de Células-Tronco Hematopoéticas , Células-Tronco Hematopoéticas/metabolismo , Integrina alfa4beta1 , Receptores de Interleucina-8B , Aloenxertos , Animais , Granulócitos/metabolismo , Integrina alfa4beta1/antagonistas & inibidores , Integrina alfa4beta1/genética , Integrina alfa4beta1/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Knockout , Receptores de Interleucina-8B/antagonistas & inibidores , Receptores de Interleucina-8B/genética , Receptores de Interleucina-8B/metabolismoRESUMO
Hepatitis B virus (HBV) causes hepatitis, cirrhosis, liver failure, and liver cancer, but the current therapies that employ either nucelos(t)ide analogs or (pegylated)interferon α do not clear the infection in the large majority of patients. Inhibitors of the HBV ribonuclease H (RNaseH) that are being developed with the goal of producing anti-HBV drugs are promising candidates for use in combination with the nucleos(t)ide analogs to improve therapeutic efficacy. HBV is genetically very diverse, with at least 8 genotypes that differ by ≥8% at the sequence level. This diversity is reflected in the viral RNaseH enzyme, raising the possibility that divergent HBV genotypes or isolates may have varying sensitivity to RNaseH inhibitors. To evaluate this possibility, we expressed and purified 18 patient-derived RNaseHs from genotypes B, C, and D. Basal RNaseH activity and sensitivity to three novel RNaseH inhibitors from three different chemotypes were assessed. We also evaluated four consensus HBV RNaseHs to determine if such sequences would be suitable for use in antiviral drug screening. The patient-derived enzymes varied by over 10-fold in their basal RNaseH activities, but they were equivalently sensitive to each of the three inhibitors. Similarly, all four consensus HBV RNaseH enzymes were active and were equally sensitive to an RNaseH inhibitor. These data indicate that a wide range of RNaseH sequences would be suitable for use in antiviral drug screening, and that genotype- or isolate-specific genetic variations are unlikely to present a barrier during antiviral drug development against the HBV RNaseH.
Assuntos
Antivirais/farmacologia , Inibidores Enzimáticos/farmacologia , Variação Genética , Vírus da Hepatite B/genética , Ribonuclease H/antagonistas & inibidores , Ribonuclease H/metabolismo , Avaliação Pré-Clínica de Medicamentos , Genótipo , Vírus da Hepatite B/efeitos dos fármacos , Vírus da Hepatite B/enzimologia , Hepatite B Crônica/tratamento farmacológico , Humanos , Ribonuclease H/genética , Replicação Viral/efeitos dos fármacosRESUMO
The chloride channel calcium-activated (CLCA) family are secreted proteins that regulate both chloride transport and mucin expression, thus controlling the production of mucus in respiratory and other systems. Accordingly, human CLCA1 is a critical mediator of hypersecretory lung diseases, such as asthma, chronic obstructive pulmonary disease, and cystic fibrosis, that manifest mucus obstruction. Despite relevance to homeostasis and disease, the mechanism of CLCA1 function remains largely undefined. We address this void by showing that CLCA proteins contain a consensus proteolytic cleavage site recognized by a novel zincin metalloprotease domain located within the N terminus of CLCA itself. CLCA1 mutations that inhibit self-cleavage prevent activation of calcium-activated chloride channel (CaCC)-mediated chloride transport. CaCC activation requires cleavage to unmask the N-terminal fragment of CLCA1, which can independently gate CaCCs. Gating of CaCCs mediated by CLCA1 does not appear to involve proteolytic cleavage of the channel because a mutant N-terminal fragment deficient in proteolytic activity is able to induce currents comparable with that of the native fragment. These data provide both a mechanistic basis for CLCA1 self-cleavage and a novel mechanism for regulation of chloride channel activity specific to the mucosal interface.
Assuntos
Canais de Cloreto/metabolismo , Ativação do Canal Iônico/fisiologia , Metaloproteases/metabolismo , Proteólise , Linhagem Celular , Canais de Cloreto/genética , Humanos , Transporte de Íons/fisiologia , Metaloproteases/genética , Estrutura Terciária de ProteínaRESUMO
Increased mucus production is a common cause of morbidity and mortality in inflammatory airway diseases, including asthma, chronic obstructive pulmonary disease (COPD), and cystic fibrosis. However, the precise molecular mechanisms for pathogenic mucus production are largely undetermined. Accordingly, there are no specific and effective anti-mucus therapeutics. Here, we define a signaling pathway from chloride channel calcium-activated 1 (CLCA1) to MAPK13 that is responsible for IL-13-driven mucus production in human airway epithelial cells. The same pathway was also highly activated in the lungs of humans with excess mucus production due to COPD. We further validated the pathway by using structure-based drug design to develop a series of novel MAPK13 inhibitors with nanomolar potency that effectively reduced mucus production in human airway epithelial cells. These results uncover and validate a new pathway for regulating mucus production as well as a corresponding therapeutic approach to mucus overproduction in inflammatory airway diseases.