Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
1.
Sci Rep ; 12(1): 22614, 2022 12 30.
Artigo em Inglês | MEDLINE | ID: mdl-36585466

RESUMO

Precision medicine approaches are required for more effective therapies for cancer. As small non-coding RNAs (sncRNAs) have recently been suggested as intriguing candidates for cancer biomarkers and have shown potential also as novel therapeutic targets, we aimed at profiling the non-miRNA sncRNAs in a large sample set to evaluate their role in invasive breast cancer (BC). We used small RNA sequencing and 195 fresh-frozen invasive BC and 22 benign breast tissue samples to identify significant associations of small nucleolar RNAs, small nuclear RNAs, and miscellaneous RNAs with the clinicopathological features and patient outcome of BC. Ninety-six and five sncRNAs significantly distinguished (Padj < 0.01) invasive local BC from benign breast tissue and metastasized BC from invasive local BC, respectively. Furthermore, 69 sncRNAs significantly associated (Padj < 0.01) with the tumor grade, hormone receptor status, subtype, and/or tumor histology. Additionally, 42 sncRNAs were observed as candidates for prognostic markers and 29 for predictive markers for radiotherapy and/or tamoxifen response (P < 0.05). We discovered the clinical relevance of sncRNAs from each studied RNA type. By introducing new sncRNA biomarker candidates for invasive BC and validating the potential of previously described ones, we have guided the way for further research that is warranted for providing novel insights into BC biology.


Assuntos
Neoplasias da Mama , Neoplasias Mamárias Animais , Pequeno RNA não Traduzido , Humanos , Animais , Feminino , Pequeno RNA não Traduzido/genética , Pequeno RNA não Traduzido/metabolismo , Neoplasias da Mama/genética , Prognóstico , Análise de Sequência de RNA
2.
Am J Physiol Endocrinol Metab ; 323(2): E123-E132, 2022 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-35723225

RESUMO

Fibroblast growth factor 21 (FGF21) is increased acutely by carbohydrate ingestion and is elevated in patients with type 2 diabetes (T2D). However, the physiological significance of increased FGF21 in humans remains largely unknown. We examined whether FGF21 contributed to the metabolic improvements observed following treatment of patients with T2D with either triple (metformin/pioglitazone/exenatide) or conventional (metformin/insulin/glipizide) therapy for 3 yr. Forty-six patients with T2D were randomized to receive either triple or conventional therapy to maintain HbA1c < 6.5%. A 2-h 75-g oral glucose tolerance test (OGTT) was performed at baseline and following 3 years of treatment to assess glucose tolerance, insulin sensitivity, and ß-cell function. Plasma total and bioactive FGF21 levels were quantitated before and during the OGTT at both visits. Patients in both treatment arms experienced significant improvements in glucose control, but insulin sensitivity and ß-cell function were markedly increased after triple therapy. At baseline, FGF21 levels were regulated acutely during the OGTT in both groups. After treatment, fasting total and bioactive FGF21 levels were significantly reduced in patients receiving triple therapy, but there was a relative increase in the proportion of bioactive FGF21 compared with that observed in conventionally treated subjects. Relative to baseline studies, triple therapy treatment also significantly modified FGF21 levels in response to a glucose load. These changes in circulating FGF21 were correlated with markers of improved glucose control and insulin sensitivity. Alterations in the plasma FGF21 profile may contribute to the beneficial metabolic effects of pioglitazone and exenatide in human patients with T2D.NEW & NOTEWORTHY In patients with T2D treated with a combination of metformin/pioglitazone/exenatide (triple therapy), we observed reduced total and bioactive plasma FGF21 levels and a relative increase in the proportion of circulating bioactive FGF21 compared with that in patients treated with metformin and sequential addition of glipizide and basal insulin glargine (conventional therapy). These data suggest that FGF21 may contribute, at least in part, to the glycemic benefits observed following combination therapy in patients with T2D.


Assuntos
Diabetes Mellitus Tipo 2 , Resistência à Insulina , Metformina , Tiazolidinedionas , Glicemia/metabolismo , Diabetes Mellitus Tipo 2/tratamento farmacológico , Exenatida , Fatores de Crescimento de Fibroblastos , Glipizida , Hemoglobinas Glicadas/metabolismo , Humanos , Hipoglicemiantes/uso terapêutico , Metformina/uso terapêutico , Peptídeos , Pioglitazona , Peçonhas
3.
J Invest Dermatol ; 142(11): 3041-3051.e10, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35580697

RESUMO

The tumor microenvironment, with distinctive cell types and a complex extracellular matrix has a tremendous impact on cancer progression. In this study, we investigated the effects of proinflammatory (M1) and immunosuppressive (M2) macrophages on hyaluronan (HA) matrix formation and inflammatory response in melanoma cells. Proinflammatory factors secreted from M1 macrophages stimulated the formation of a thick pericellular HA matrix in melanoma cells due to upregulation of HA synthase 2 (HAS2). HAS2 silencing reversed the effect of M1 conditioned medium on pericellular HA coat formation, and interestingly, it also partly downregulated the M1 conditioned medium‒induced upregulation of inflammation-related genes (IL1ß, IL6), as did the inhibitors for TNFR and IKKγ. Gene set enrichment analysis revealed that genes related to inflammatory responses and TNF-α signaling via NF-κB are enriched in the M1 conditioned medium‒treated melanoma cells. Moreover, the expression of matrix metalloproteinase 9 and three-dimensional cell invasion were induced in these cells, whereas M2 macrophages had no effect on HA synthesis, inflammatory response, or invasion. Our results indicate that the activation of TNFR-NF-κB signaling in M1 conditioned medium‒treated cells leads to HAS2 upregulation, which associates with a protumor inflammatory and invasive phenotype of melanoma cells.


Assuntos
Melanoma , NF-kappa B , Humanos , NF-kappa B/metabolismo , Metaloproteinase 9 da Matriz/genética , Metaloproteinase 9 da Matriz/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Ácido Hialurônico/metabolismo , Meios de Cultivo Condicionados/farmacologia , Meios de Cultivo Condicionados/metabolismo , Interleucina-6/metabolismo , Macrófagos/metabolismo , Inflamação/patologia , Melanoma/patologia , Microambiente Tumoral
4.
Cancer Med ; 10(11): 3593-3603, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33960684

RESUMO

Numerous factors influence breast cancer (BC) prognosis, thus complicating the prediction of outcome. By identifying biomarkers that would distinguish the cases with poorer response to therapy already at the time of diagnosis, the rate of survival could be improved. Lately, Piwi-interacting RNAs (piRNAs) have been introduced as potential cancer biomarkers, however, due to the recently raised challenges in piRNA annotations, further evaluation of piRNAs' involvement in cancer is required. We performed small RNA sequencing in 227 fresh-frozen breast tissue samples from the Eastern Finnish Kuopio Breast Cancer Project material to study the presence of piRNAs in BC and their associations with the clinicopathological features and outcome of BC patients. We observed the presence of three small RNAs annotated as piRNA database entries (DQ596932, DQ570994, and DQ571955) in our samples. The actual species of these RNAs however remain uncertain. All three small RNAs were upregulated in grade III tumors and DQ596932 additionally in estrogen receptor negative tumors. Furthermore, patients with estrogen receptor positive BC and higher DQ571955 had shorter relapse-free survival and poorer BC-specific survival, thus indicating DQ571955 as a candidate predictive marker for radiotherapy response in estrogen receptor positive BC. DQ596932 showed possible prognostic value in BC, whereas DQ570994 was identified as a candidate predictive marker for tamoxifen and chemotherapy response. These three small RNAs appear as candidate biomarkers for BC, which could after further investigation provide novel approaches for the treatment of therapy resistant BC. Overall, our results indicate that the prevalence of piRNAs in cancer is most likely not as comprehensive as has been previously thought.


Assuntos
Biomarcadores Tumorais/análise , Neoplasias da Mama/química , RNA Interferente Pequeno/análise , Antineoplásicos/uso terapêutico , Mama/química , Neoplasias da Mama/mortalidade , Neoplasias da Mama/patologia , Neoplasias da Mama/terapia , Intervalo Livre de Doença , Feminino , Humanos , Gradação de Tumores , Prognóstico , Radioterapia , Receptores de Estrogênio/análise , Análise de Sequência de RNA , Tamoxifeno/uso terapêutico , Resultado do Tratamento , Regulação para Cima
5.
Anticancer Res ; 40(7): 3713-3722, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32620610

RESUMO

BACKGROUND/AIM: MicroRNAs (miRNAs) regulate the development of colorectal cancer (CRC). We aimed to investigate miRNAs and their relation to cancer-related signaling pathways in site-specific CRC. MATERIALS AND METHODS: We used a total of 24 left- and right-sided Finnish CRC samples (discovery cohort) and The Cancer Genome Atlas public mature miRSeq dataset of 201 CRC samples (validation cohort). MiRNA differential expression and biological pathway analyses were performed using DESeq2 and the DIANA/mirPath tool, respectively. RESULTS: We found 17 significantly differentially up-regulated [false discovery rate (FDR) <0.05] miRNAs in left-sided CRC ("left miRNAs"), and 15 in right-sided CRC ("right miRNAs"). The left miRNAs participate in the mTor, Wnt, PI3K-Akt signaling pathways (FDR<0.05). The right miRNAs participate in the TGF-ß signaling pathway. We also observed that both cohorts share six miRNAs. One of these (hsa-miR-196b-5p) was significantly (FDR<0.05) up-regulated in left-sided CRC. The rest of them (hsa-miR-625-3p, hsa-miR-155-5p, hsa-miR-625-5p, hsa-miR-31-5p and hsa-miR-330-5p) showed significant (FDR<0.05) up-regulation in right-sided CRC. CONCLUSION: Left and right miRNAs are associated with predominant biological pathways of left- and right-sided CRC, respectively. Our results may be beneficial for classifying CRC and for future biomarker studies of site-specific CRC.


Assuntos
Neoplasias Colorretais/genética , Transdução de Sinais/genética , Idoso , Estudos de Coortes , Regulação para Baixo/genética , Feminino , Regulação Neoplásica da Expressão Gênica/genética , Humanos , Masculino , Fosfatidilinositol 3-Quinases/genética , Proteínas Proto-Oncogênicas c-akt/genética , Fator de Crescimento Transformador beta/genética , Regulação para Cima/genética
6.
Cell Mol Life Sci ; 77(20): 4093-4115, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31820036

RESUMO

Intercellular communication is fundamental to the survival and maintenance of all multicellular systems, whereas dysregulation of communication pathways can drive cancer progression. Extracellular vesicles (EVs) are mediators of cell-to-cell communication that regulate a variety of cellular processes involved in tumor progression. Overexpression of a specific plasma membrane enzyme, hyaluronan synthase 3 (HAS3), is one of the factors that can induce EV shedding. HAS3, and particularly its product hyaluronan (HA), are carried by EVs and are known to be associated with the tumorigenic properties of cancer cells. To elucidate the specific effects of cancerous, HAS3-induced EVs on target cells, normal human keratinocytes and melanoma cells were treated with EVs derived from GFP-HAS3 expressing metastatic melanoma cells. We found that the HA receptor CD44 participated in the regulation of EV binding to target cells. Furthermore, GFP-HAS3-positive EVs induced HA secretion, proliferation and invasion of target cells. Our results suggest that HAS3-EVs contains increased quantities of IHH, which activates the target cell hedgehog signaling cascade and leads to the activation of c-Myc and regulation of claspin expression. This signaling of IHH in HAS3-EVs resulted in increased cell proliferation. Claspin immunostaining correlated with HA content in human cutaneous melanocytic lesions, supporting our in vitro findings and suggesting a reciprocal regulation between claspin expression and HA synthesis. This study shows for the first time that EVs originating from HAS3 overexpressing cells carry mitogenic signals that induce proliferation and epithelial-to-mesenchymal transition in target cells. The study also identifies a novel feedback regulation between the hedgehog signaling pathway and HA metabolism in melanoma, mediated by EVs carrying HA and IHH.


Assuntos
Vesículas Extracelulares/genética , Proteínas Hedgehog/genética , Hialuronan Sintases/genética , Melanoma/genética , Proteínas Proto-Oncogênicas c-myc/genética , Regulação para Cima/genética , Linhagem Celular , Linhagem Celular Tumoral , Proliferação de Células/genética , Transição Epitelial-Mesenquimal/genética , Humanos , Receptores de Hialuronatos/genética , Transdução de Sinais/genética
7.
Contrast Media Mol Imaging ; 2019: 5629597, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31920468

RESUMO

Magnetic resonance imaging examinations are frequently carried out using contrast agents to improve the image quality. Practically all clinically used contrast agents are based on paramagnetic metals and lack in selectivity and specificity. A group of stable organic radicals, nitroxides, has raised interest as new metal-free contrast agents for MRI. Their structures can easily be modified to incorporate different functionalities. In the present study, a stable nitroxide TEEPO (2,2,6,6-tetraethylpiperidin-1-oxyl) was linked to a glucose moiety (Glc) to construct a water-soluble, potentially tumor-targeting compound with contrast-enhancing ability. The ability was assessed with in vivo MRI experiments. The constructed TEEPO-Glc agent proved to shorten the T 1 relaxation time in tumor, while the T 1 time in healthy brain tissue remained the same. The results indicate the potential of TEEPO-Glc as a valuable addition to the growing field of metal-free contrast enhancement in MRI-based diagnostics.


Assuntos
Meios de Contraste/farmacologia , Óxidos N-Cíclicos/farmacologia , Imageamento por Ressonância Magnética/métodos , Neoplasias/diagnóstico por imagem , Piperidinas/farmacologia , Animais , Óxidos N-Cíclicos/química , Espectroscopia de Ressonância de Spin Eletrônica , Células HeLa , Humanos , Neoplasias/patologia , Piperidinas/química , Ratos , Marcadores de Spin
8.
Molecules ; 23(5)2018 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-29702628

RESUMO

Cancer is a widespread and life-threatening disease and its early-stage diagnosis is vital. One of the most effective, non-invasive tools in medical diagnostics is magnetic resonance imaging (MRI) with the aid of contrast agents. Contrast agents that are currently in clinical use contain metals, causing some restrictions in their use. Also, these contrast agents are mainly non-specific without any tissue targeting capabilities. Subsequently, the interest has notably increased in the research of organic, metal-free contrast agents. This study presents a new, stable organic radical, TEEPO-Met, where a radical moiety 2,2,6,6-tetraethylpiperidinoxide (TEEPO) is attached to an amino acid, methionine (Met), as a potentially tumour-targeting moiety. We describe the synthesis, stability assessment with electron paramagnetic resonance (EPR) spectroscopy and relaxation enhancement abilities by an in vitro nuclear magnetic resonance (NMR) and phantom MRI studies of TEEPO-Met. The new compound proved to be stable notably longer than the average imaging time in conditions mimicking a biological matrix. Also, it significantly reduced the relaxation times of water, making it a promising candidate as a novel tumour targeting contrast agent for MRI.


Assuntos
Meios de Contraste/síntese química , Óxidos N-Cíclicos/química , Compostos Heterocíclicos/síntese química , Metionina/química , Piperidinas/química , Animais , Meios de Contraste/química , Espectroscopia de Ressonância de Spin Eletrônica/métodos , Compostos Heterocíclicos/química , Humanos , Imageamento por Ressonância Magnética/métodos , Estrutura Molecular , Neoplasias/diagnóstico por imagem , Imagens de Fantasmas
9.
Nucleic Acids Res ; 46(3): 1124-1138, 2018 02 16.
Artigo em Inglês | MEDLINE | ID: mdl-29161413

RESUMO

Phospholipids, such as 1-palmitoyl-2-arachidonoyl-sn-glycero-3-phosphocholine (PAPC), are the major components of cell membranes. Their exposure to reactive oxygen species creates oxidized phospholipids, which predispose to the development of chronic inflammatory diseases and metabolic disorders through endothelial activation and dysfunction. Although the effects of oxidized PAPC (oxPAPC) on endothelial cells have been previously studied, the underlying molecular mechanisms evoking biological responses remain largely unknown. Here, we investigated the molecular mechanisms of oxPAPC function with a special emphasis on NRF2-regulated microRNAs (miRNAs) in human umbilical vein endothelial cells (HUVECs) utilizing miRNA profiling, global run-on sequencing (GRO-seq), genome-wide NRF2 binding model, and RNA sequencing (RNA-seq) with miRNA overexpression and silencing. We report that the central regulators of endothelial activity, KLF2 for quiescence, PFKFB3 for glycolysis, and VEGFA, FOXO1 and MYC for growth and proliferation, are regulated by transcription factor NRF2 and the NRF2-regulated miR-106b∼25 cluster member, miR-93, in HUVECs. Mechanistically, oxPAPC was found to induce glycolysis and proliferation NRF2-dependently, and oxPAPC-dependent induction of the miR-106b∼25 cluster was mediated by NRF2. Additionally, several regulatory loops were established between NRF2, miR-93 and the essential regulators of healthy endothelium, collectively implying that NRF2 controls the switch between the quiescent and the proliferative endothelial states together with miR-93.


Assuntos
Glicólise/efeitos dos fármacos , Fatores de Transcrição Kruppel-Like/genética , MicroRNAs/genética , Fator 2 Relacionado a NF-E2/genética , Fosfatidilcolinas/farmacologia , Fosfofrutoquinase-2/genética , Antagomirs/genética , Antagomirs/metabolismo , Proliferação de Células/efeitos dos fármacos , Proteína Forkhead Box O1/genética , Proteína Forkhead Box O1/metabolismo , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Glicólise/genética , Células Endoteliais da Veia Umbilical Humana/citologia , Células Endoteliais da Veia Umbilical Humana/efeitos dos fármacos , Células Endoteliais da Veia Umbilical Humana/metabolismo , Humanos , Fatores de Transcrição Kruppel-Like/metabolismo , MicroRNAs/antagonistas & inibidores , MicroRNAs/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Oxirredução , Fosfatidilcolinas/química , Fosfatidilcolinas/metabolismo , Fosfofrutoquinase-2/metabolismo , Cultura Primária de Células , Proteínas Proto-Oncogênicas c-myc/genética , Proteínas Proto-Oncogênicas c-myc/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Análise de Sequência de RNA , Transdução de Sinais , Fator A de Crescimento do Endotélio Vascular/genética , Fator A de Crescimento do Endotélio Vascular/metabolismo
10.
BMC Genomics ; 18(1): 132, 2017 02 06.
Artigo em Inglês | MEDLINE | ID: mdl-28166722

RESUMO

BACKGROUND: The nuclear hormone receptor superfamily acts as a genomic sensor of diverse signals. Their actions are often intertwined with other transcription factors. Nuclear hormone receptors are targets for many therapeutic drugs, and include the vitamin D receptor (VDR). VDR signaling is pleotropic, being implicated in calcaemic function, antibacterial actions, growth control, immunomodulation and anti-cancer actions. Specifically, we hypothesized that the biologically significant relationships between the VDR transcriptome and phenotype-associated biology could be discovered by integrating the known VDR transcription factor binding sites and all published trait- and disease-associated SNPs. By integrating VDR genome-wide binding data (ChIP-seq) with the National Human Genome Research Institute (NHGRI) GWAS catalog of SNPs we would see where and which target gene interactions and pathways are impacted by inherited genetic variation in VDR binding sites, indicating which of VDR's multiple functions are most biologically significant. RESULTS: To examine how genetic variation impacts VDR function we overlapped 23,409 VDR genomic binding peaks from six VDR ChIP-seq datasets with 191,482 SNPs, derived from GWAS-significant SNPs (Lead SNPs) and their correlated variants (r 2 > 0.8) from HapMap3 and the 1000 genomes project. In total, 574 SNPs (71 Lead and 503 SNPs in linkage disequilibrium with Lead SNPs) were present at VDR binding loci and associated with 211 phenotypes. For each phenotype a hypergeometric test was used to determine if SNPs were enriched at VDR binding sites. Bonferroni correction for multiple testing across the 211 phenotypes yielded 42 SNPs that were either disease- or phenotype-associated with seven predominately immune related including self-reported allergy; esophageal cancer was the only cancer phenotype. Motif analyses revealed that only two of these 42 SNPs reside within a canonical VDR binding site (DR3 motif), and that 1/3 of the 42 SNPs significantly impacted binding and gene regulation by other transcription factors, including NF-κB. This suggests a plausible link for the potential cross-talk between VDR and NF-κB. CONCLUSIONS: These analyses showed that VDR peaks are enriched for SNPs associated with immune phenotypes suggesting that VDR immunomodulatory functions are amongst its most important actions. The enrichment of genetic variation in non-DR3 motifs suggests a significant role for the VDR to bind in multimeric complexes containing other transcription factors that are the primary DNA binding component. Our work provides a framework for the combination of ChIP-seq and GWAS findings to provide insight into the underlying phenotype-associated biology of a given transcription factor.


Assuntos
Estudo de Associação Genômica Ampla , Imunidade/genética , NF-kappa B/metabolismo , Fenótipo , Polimorfismo de Nucleotídeo Único , Receptores de Calcitriol/genética , Receptores de Calcitriol/metabolismo , Linhagem Celular , Genômica , Humanos , Desequilíbrio de Ligação , Ligação Proteica , Fatores de Transcrição/metabolismo
11.
Nucleic Acids Res ; 44(4): 1760-75, 2016 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-26826707

RESUMO

Transcription factor binding specificity is crucial for proper target gene regulation. Motif discovery algorithms identify the main features of the binding patterns, but the accuracy on the lower affinity sites is often poor. Nuclear factor E2-related factor 2 (NRF2) is a ubiquitous redox-activated transcription factor having a key protective role against endogenous and exogenous oxidant and electrophile stress. Herein, we decipher the effects of sequence variation on the DNA binding sequence of NRF2, in order to identify both genome-wide binding sites for NRF2 and disease-associated regulatory SNPs (rSNPs) with drastic effects on NRF2 binding. Interactions between NRF2 and DNA were studied using molecular modelling, and NRF2 chromatin immunoprecipitation-sequence datasets together with protein binding microarray measurements were utilized to study binding sequence variation in detail. The binding model thus generated was used to identify genome-wide binding sites for NRF2, and genomic binding sites with rSNPs that have strong effects on NRF2 binding and reside on active regulatory elements in human cells. As a proof of concept, miR-126-3p and -5p were identified as NRF2 target microRNAs, and a rSNP (rs113067944) residing on NRF2 target gene (Ferritin, light polypeptide, FTL) promoter was experimentally verified to decrease NRF2 binding and result in decreased transcriptional activity.


Assuntos
Genoma Humano , MicroRNAs/genética , Fator 2 Relacionado a NF-E2/genética , Transcrição Gênica , Algoritmos , Sítios de Ligação , Regulação da Expressão Gênica , Humanos , MicroRNAs/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Polimorfismo de Nucleotídeo Único/genética , Regiões Promotoras Genéticas , Ligação Proteica
12.
Sci Rep ; 5: 9087, 2015 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-25791281

RESUMO

Primary brain tumors are presently classified based on imaging and histopathological techniques, which remains unsatisfaying. We profiled here by quantitative real time PCR (qRT-PCR) the transcripts of eighteen histone deacetylases (HDACs) and a subset of transcriptional co-factors in non-tumoral brain samples from 15 patients operated for epilepsia and in brain tumor samples from 50 patients diagnosed with grade II oligodendrogliomas (ODII, n = 9), grade III oligodendrogliomas (ODIII, n = 22) and glioblastomas (GL, n = 19). Co-factor transcripts were significantly different in tumors as compared to non-tumoral samples and distinguished different molecular subgroups of brain tumors, regardless of tumor grade. Among all patients studied, the expression of HDAC1 and HDAC3 was inversely correlated with survival, whereas the expression of HDAC4, HDAC5, HDAC6, HDAC11 and SIRT1 was significantly and positively correlated with survival time of patients with gliomas. (1)H-HRMAS technology revealed metabolomically distinct groups according to the expression of HDAC1, HDAC4 and SIRT1, suggesting that these genes may play an important role in regulating brain tumorigenesis and cancer progression. Our study hence identified different molecular fingerprints for subgroups of histopathologically similar brain tumors that may enable the prediction of outcome based on the expression level of co-factor genes and could allow customization of treatment.


Assuntos
Neoplasias Encefálicas/genética , Perfilação da Expressão Gênica , Glioma/genética , Histona Desacetilases/metabolismo , Metabolômica , Análise de Sobrevida , Neoplasias Encefálicas/enzimologia , Glioma/enzimologia , Humanos , Reação em Cadeia da Polimerase em Tempo Real
13.
Biochim Biophys Acta ; 1849(3): 300-8, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25482012

RESUMO

The vitamin D metabolite 1,25-dihydroxyvitamin D3 (1,25(OH)2D3) is the high affinity ligand of the transcription factor vitamin D receptor (VDR) and therefore a direct regulator of transcription. Transcriptome-wide analysis of THP-1 human monocytes had indicated more than 600 genes to be significantly (p<0.05) stimulated after 4h incubation with 1,25(OH)2D3, but only 67 of them where more than 1.5-fold up-regulated. These include the genes encoding for the transcription factors BCL6, NFE2, POU4F2 and ELF4, which are controlled by one or two VDR binding sites within their chromosomal domains. The latter are defined via DNA loop formation mediated by the transcription factor CTCF that is highly conserved in its genome-wide loci. We found BCL6 being most responsive to 1,25(OH)2D3 and selected it for further analysis. An incubation of THP-1 cells with 1,25(OH)2D3 for 24 h resulted in a significant (p<0.001) change in the mRNA expression of more than 1600 genes, of which 132 were at least 2-fold up-regulated. About half of the latter genes are secondary 1,25(OH)2D3 targets, since they do not carry any VDR binding site within their chromosomal domain. Chromatin immunoprecipitation sequencing datasets indicated that the majority of these domains contain a BCL6 binding site. We followed the secondary transcriptional response to 1,25(OH)2D3 for eight representative gene examples and confirmed the binding of CTCF and BCL6 to their respective chromosomal domains. In conclusion, our study indicated that in monocytes most of the physiological responses to 1,25(OH)2D3 involve the action of the transcription factor BCL6.


Assuntos
Proteínas de Ligação a DNA/biossíntese , Subunidade p45 do Fator de Transcrição NF-E2/biossíntese , Fator de Transcrição Brn-3B/biossíntese , Fatores de Transcrição/biossíntese , Vitamina D/administração & dosagem , Sítios de Ligação , Fator de Ligação a CCCTC , Linhagem Celular , Proteínas de Ligação a DNA/metabolismo , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Subunidade p45 do Fator de Transcrição NF-E2/metabolismo , Ligação Proteica , Proteínas Proto-Oncogênicas c-bcl-6 , RNA Mensageiro/biossíntese , Receptores de Calcitriol/genética , Receptores de Calcitriol/metabolismo , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , Fator de Transcrição Brn-3B/metabolismo , Fatores de Transcrição/metabolismo , Ativação Transcricional/efeitos dos fármacos , Vitamina D/análogos & derivados
14.
Nucleic Acids Res ; 42(22): 13646-61, 2014 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-25414334

RESUMO

In the liver Wnt-signaling contributes to the metabolic fate of hepatocytes, but the precise role of the TCF7L2 in this process is unknown. We employed a temporal RNA-Seq approach to examine gene expression 3-96 h following Tcf7l2 silencing in rat hepatoma cells, and combined this with ChIP-Seq to investigate mechanisms of target gene regulation by TCF7L2. Silencing Tcf7l2 led to a time-dependent appearance of 406 differentially expressed genes (DEGs), including key regulators of cellular growth and differentiation, and amino acid, lipid and glucose metabolism. Direct regulation of 149 DEGs was suggested by strong proximal TCF7L2 binding (peak proximity score > 10) and early mRNA expression changes (≤ 18 h). Indirect gene regulation by TCF7L2 likely occurred via alternate transcription factors, including Hnf4a, Foxo1, Cited2, Myc and Lef1, which were differentially expressed following Tcf7l2 knock-down. Tcf7l2-silencing enhanced the expression and chromatin occupancy of HNF4α, and co-siRNA experiments revealed that HNF4α was required for the regulation of a subset of metabolic genes by TCF7L2, particularly those involved in lipid and amino-acid metabolism. Our findings suggest TCF7L2 is an important regulator of the hepatic phenotype, and highlight novel mechanisms of gene regulation by TCF7L2 that involve interplay between multiple hepatic transcriptional pathways.


Assuntos
Regulação Neoplásica da Expressão Gênica , Neoplasias Hepáticas Experimentais/genética , Proteína 2 Semelhante ao Fator 7 de Transcrição/metabolismo , Animais , Sítios de Ligação , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/metabolismo , Linhagem Celular Tumoral , Imunoprecipitação da Cromatina , Inativação Gênica , Genoma , Fator 4 Nuclear de Hepatócito/metabolismo , Humanos , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas Experimentais/metabolismo , Ratos , Análise de Sequência de DNA , Análise de Sequência de RNA , Proteína 2 Semelhante ao Fator 7 de Transcrição/genética , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
15.
Nucleic Acids Res ; 42(13): 8310-9, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24981513

RESUMO

Androgen receptor (AR) plays an important regulatory role in prostate cancer. AR's transcriptional activity is regulated by androgenic ligands, but also by post-translational modifications, such as SUMOylation. To study the role of AR SUMOylation in genuine chromatin environment, we compared androgen-regulated gene expression and AR chromatin occupancy in PC-3 prostate cancer cell lines stably expressing wild-type (wt) or doubly SUMOylation site-mutated AR (AR-K386R,K520R). Our genome-wide gene expression analyses reveal that the SUMOylation modulates the AR function in a target gene and pathway selective manner. The transcripts that are differentially regulated by androgen and SUMOylation are linked to cellular movement, cell death, cellular proliferation, cellular development and cell cycle. Fittingly, SUMOylation mutant AR cells proliferate faster and are more sensitive to apoptosis. Moreover, ChIP-seq analyses show that the SUMOylation can modulate the chromatin occupancy of AR on many loci in a fashion that parallels their differential androgen-regulated expression. De novo motif analyses reveal that FOXA1, C/EBP and AP-1 motifs are differentially enriched at the wtAR- and the AR-K386R,K520R-preferred genomic binding positions. Taken together, our data indicate that SUMOylation does not simply repress the AR activity, but it regulates AR's interaction with the chromatin and the receptor's target gene selection.


Assuntos
Regulação Neoplásica da Expressão Gênica , Neoplasias da Próstata/genética , Receptores Androgênicos/metabolismo , Sumoilação , Apoptose , Linhagem Celular Tumoral , Proliferação de Células , Células HEK293 , Humanos , Masculino , Neoplasias da Próstata/metabolismo , Neoplasias da Próstata/patologia , Transcrição Gênica
16.
PLoS One ; 9(4): e96105, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24787735

RESUMO

The genome-wide analysis of the binding sites of the transcription factor vitamin D receptor (VDR) is essential for a global appreciation the physiological impact of the nuclear hormone 1α,25-dihydroxyvitamin D3 (1,25(OH)2D3). Genome-wide analysis of lipopolysaccharide (LPS)-polarized THP-1 human monocytic leukemia cells via chromatin immunoprecipitation sequencing (ChIP-seq) resulted in 1,318 high-confidence VDR binding sites, of which 789 and 364 occurred uniquely with and without 1,25(OH)2D3 stimulation, while only 165 were common. We re-analyzed five public VDR ChIP-seq datasets with identical peak calling settings (MACS, version 2) and found, using a novel consensus summit identification strategy, in total 23,409 non-overlapping VDR binding sites, 75% of which are unique within the six analyzed cellular models. LPS-differentiated THP-1 cells have 22% more genomic VDR locations than undifferentiated cells and both cell types display more overlap in their VDR locations than the other investigated cell types. In general, the intersection of VDR binding profiles of ligand-stimulated cells is higher than those of unstimulated cells. De novo binding site searches and HOMER screening for binding motifs formed by direct repeats spaced by three nucleotides (DR3) suggest for all six VDR ChIP-seq datasets that these sequences are found preferentially at highly ligand responsive VDR loci. Importantly, all VDR ChIP-seq datasets display the same relationship between the VDR occupancy and the percentage of DR3-type sequences below the peak summits. The comparative analysis of six VDR ChIP-seq datasets demonstrated that the mechanistic basis for the action of the VDR is independent of the cell type. Only the minority of genome-wide VDR binding sites contains a DR3-type sequence. Moreover, the total number of identified VDR binding sites in each ligand-stimulated cell line inversely correlates with the percentage of peak summits with DR3 sites.


Assuntos
Estudo de Associação Genômica Ampla , Receptores de Calcitriol/genética , Linhagem Celular Tumoral , Humanos , Ligação Proteica , Receptores de Calcitriol/metabolismo
17.
Biochim Biophys Acta ; 1829(12): 1266-75, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24185200

RESUMO

The signaling cascade of the transcription factor vitamin D receptor (VDR) is triggered by its specific ligand 1α,25-dihydroxyvitamin D3 (1α,25(OH)2D3). In this study we demonstrate that in THP-1 human monocytic leukemia cells 87.4% of the 1034 most prominent genome-wide VDR binding sites co-localize with loci of open chromatin. At 165 of them 1α,25(OH)2D3 strongly increases chromatin accessibility and has at further 217 sites weaker effects. Interestingly, VDR binding sites in 1α,25(OH)2D3-responsive chromatin regions are far more often composed of direct repeats with 3 intervening nucleotides (DR3s) than those in ligand insensitive regions. DR3-containing VDR sites are enriched in the neighborhood of genes that are involved in controling cellular growth, while non-DR3 VDR binding is often found close to genes related to immunity. At the example of six early VDR target genes we show that the slope of their 1α,25(OH)2D3-induced transcription correlates with the basal chromatin accessibility of their major VDR binding regions. However, the chromatin loci controlling these genes are indistinguishable in their VDR association kinetics. Taken together, ligand responsive chromatin loci represent dynamically regulated contact points of VDR with the genome, from where it controls early 1α,25(OH)2D3 target genes.


Assuntos
Cromatina/genética , Leucemia Monocítica Aguda/genética , Receptores de Calcitriol/genética , Sequências Repetitivas de Ácido Nucleico/genética , Vitamina D/análogos & derivados , Acetilação , Western Blotting , Imunoprecipitação da Cromatina , Proteína do Grupo de Complementação E da Anemia de Fanconi/genética , Fator de Crescimento Semelhante a EGF de Ligação à Heparina , Inibidores de Histona Desacetilases/farmacologia , Humanos , Peptídeos e Proteínas de Sinalização Intercelular/genética , Leucemia Monocítica Aguda/tratamento farmacológico , Receptores de Lipopolissacarídeos/genética , Subunidade p50 de NF-kappa B/genética , Proteína 2 Ligante de Morte Celular Programada 1/genética , RNA Mensageiro/genética , Reação em Cadeia da Polimerase em Tempo Real , Receptores de Calcitriol/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Células Tumorais Cultivadas , Vitamina D/farmacologia
18.
Mol Cell Endocrinol ; 365(2): 270-6, 2013 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-23142699

RESUMO

We searched ERα cistromes of MCF-7 breast cancer cells for previously unrecognized ERα targets and identified proto-oncogene PIM-1 as a novel potential target gene. We show that the expression of PIM-1 is induced in response to estradiol in MCF-7 cells and that the induction is mediated by ERα-regulated enhancers located distally upstream from the gene. In keeping with the growth-promoting role of the PIM-1, depletion of the PIM-1 attenuated the proliferation of the MCF-7 cells, which was paralleled with up-regulation of cyclin-dependent protein kinase inhibitor CDKN1A and CDKN2B expression. Analysis of PIM-1 expression between invasive breast tumors and benign breast tissue samples showed that elevated PIM-1 expression is associated with malignancy and a higher tumor grade. In sum, identification of PIM-1 as an ERα target gene adds a novel potential mechanism by which estrogens can contribute to breast cancer cell proliferation and carcinogenesis.


Assuntos
Neoplasias da Mama/metabolismo , Carcinoma Ductal de Mama/metabolismo , Carcinoma Lobular/metabolismo , Receptor alfa de Estrogênio/fisiologia , Proteínas Proto-Oncogênicas c-pim-1/metabolismo , Neoplasias da Mama/mortalidade , Neoplasias da Mama/patologia , Carcinoma Ductal de Mama/mortalidade , Carcinoma Ductal de Mama/patologia , Carcinoma Lobular/mortalidade , Carcinoma Lobular/patologia , Estudos de Casos e Controles , Quinases Ciclina-Dependentes/genética , Quinases Ciclina-Dependentes/metabolismo , Estradiol/fisiologia , Feminino , Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Técnicas de Silenciamento de Genes , Humanos , Células MCF-7 , Gradação de Tumores , Proto-Oncogene Mas , Proteínas Proto-Oncogênicas c-myc/genética , Proteínas Proto-Oncogênicas c-myc/metabolismo , Proteínas Proto-Oncogênicas c-pim-1/genética , RNA Interferente Pequeno/genética
19.
Phys Med ; 29(3): 233-48, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-22613369

RESUMO

Boron Neutron Capture Therapy (BNCT) is a binary radiotherapy method developed to treat patients with certain malignant tumours. To date, over 300 treatments have been carried out at the Finnish BNCT facility in various on-going and past clinical trials. In this technical review, we discuss our research work in the field of medical physics to form the groundwork for the Finnish BNCT patient treatments, as well as the possibilities to further develop and optimize the method in the future. Accordingly, the following aspects are described: neutron sources, beam dosimetry, treatment planning, boron imaging and determination, and finally the possibilities to detect the efficacy and effects of BNCT on patients.


Assuntos
Terapia por Captura de Nêutron de Boro/métodos , Terapia por Captura de Nêutron de Boro/tendências , Previsões , Planejamento da Radioterapia Assistida por Computador/métodos , Planejamento da Radioterapia Assistida por Computador/tendências , Terapia por Captura de Nêutron de Boro/instrumentação , Finlândia , Avaliação da Tecnologia Biomédica
20.
Nucleic Acids Res ; 41(1): 110-24, 2013 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-23093607

RESUMO

The nuclear hormone 1α,25-dihydroxyvitamin D(3) (1α,25(OH)(2)D(3) or 1,25D) regulates its target genes via activation of the transcription factor vitamin D receptor (VDR) far more specifically than the chromatin modifier trichostatin A (TsA) via its inhibitory action on histone deacetylases. We selected the thrombomodulin gene locus with its complex pattern of five VDR binding sites and multiple histone acetylation and open chromatin regions as an example to investigate together with a number of reference genes, the primary transcriptional responses to 1α,25(OH)(2)D(3) and TsA. Transcriptome-wide, 18.4% of all expressed genes are either up-or down-regulated already after a 90 min TsA treatment; their response pattern to 1α,25(OH)(2)D(3) and TsA sorts them into at least six classes. TsA stimulates a far higher number of genes than 1α,25(OH)(2)D(3) and dominates the outcome of combined treatments. However, 200 TsA target genes can be modulated by 1α,25(OH)(2)D(3) and more than 1000 genes respond only when treated with both compounds. The genomic view on the genes suggests that the degree of acetylation at transcription start sites and VDR binding regions may determine the effect of TsA on mRNA expression and its interference with 1α,25(OH)(2)D(3). Our findings hold true also for other HDAC inhibitors and may have implications on dual therapies using chromatin modifiers and nuclear receptor ligands.


Assuntos
Calcitriol/farmacologia , Cromatina/metabolismo , Inibidores de Histona Desacetilases/farmacologia , Ácidos Hidroxâmicos/farmacologia , Receptores de Calcitriol/metabolismo , Sítio de Iniciação de Transcrição , Transcrição Gênica , Acetilação , Sítios de Ligação , Linhagem Celular Tumoral , Histonas/metabolismo , Humanos , Trombomodulina/genética , Transcrição Gênica/efeitos dos fármacos , Transcriptoma/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA