Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Dev Cell ; 56(20): 2808-2825.e10, 2021 10 25.
Artigo em Inglês | MEDLINE | ID: mdl-34529939

RESUMO

Melanomas can have multiple coexisting cell states, including proliferative (PRO) versus invasive (INV) subpopulations that represent a "go or grow" trade-off; however, how these populations interact is poorly understood. Using a combination of zebrafish modeling and analysis of patient samples, we show that INV and PRO cells form spatially structured heterotypic clusters and cooperate in the seeding of metastasis, maintaining cell state heterogeneity. INV cells adhere tightly to each other and form clusters with a rim of PRO cells. Intravital imaging demonstrated cooperation in which INV cells facilitate dissemination of less metastatic PRO cells. We identified the TFAP2 neural crest transcription factor as a master regulator of clustering and PRO/INV states. Isolation of clusters from patients with metastatic melanoma revealed a subset with heterotypic PRO-INV clusters. Our data suggest a framework for the co-existence of these two divergent cell populations, in which heterotypic clusters promote metastasis via cell-cell cooperation.


Assuntos
Análise por Conglomerados , Melanoma/metabolismo , Metástase Neoplásica/patologia , Células Neoplásicas Circulantes/patologia , Animais , Regulação Neoplásica da Expressão Gênica/fisiologia , Melanoma/patologia , Crista Neural/patologia , Peixe-Zebra
2.
Nat Commun ; 8: 14343, 2017 02 09.
Artigo em Inglês | MEDLINE | ID: mdl-28181494

RESUMO

Cellular plasticity is a state in which cancer cells exist along a reversible phenotypic spectrum, and underlies key traits such as drug resistance and metastasis. Melanoma plasticity is linked to phenotype switching, where the microenvironment induces switches between invasive/MITFLO versus proliferative/MITFHI states. Since MITF also induces pigmentation, we hypothesize that macrometastatic success should be favoured by microenvironments that induce a MITFHI/differentiated/proliferative state. Zebrafish imaging demonstrates that after extravasation, melanoma cells become pigmented and enact a gene expression program of melanocyte differentiation. We screened for microenvironmental factors leading to phenotype switching, and find that EDN3 induces a state that is both proliferative and differentiated. CRISPR-mediated inactivation of EDN3, or its synthetic enzyme ECE2, from the microenvironment abrogates phenotype switching and increases animal survival. These results demonstrate that after metastatic dissemination, the microenvironment provides signals to promote phenotype switching and provide proof that targeting tumour cell plasticity is a viable therapeutic opportunity.


Assuntos
Plasticidade Celular , Melanoma/patologia , Microambiente Tumoral , Animais , Sistemas CRISPR-Cas/genética , Diferenciação Celular/genética , Plasticidade Celular/genética , Proliferação de Células/genética , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Humanos , Melanoma/genética , Modelos Biológicos , Metástase Neoplásica , Fenótipo , Microambiente Tumoral/genética , Peixe-Zebra , Proteínas de Peixe-Zebra/metabolismo
3.
Cancer Res ; 75(20): 4272-4282, 2015 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-26282170

RESUMO

Metastasis is the defining feature of advanced malignancy, yet remains challenging to study in laboratory environments. Here, we describe a high-throughput zebrafish system for comprehensive, in vivo assessment of metastatic biology. First, we generated several stable cell lines from melanomas of transgenic mitfa-BRAF(V600E);p53(-/-) fish. We then transplanted the melanoma cells into the transparent casper strain to enable highly quantitative measurement of the metastatic process at single-cell resolution. Using computational image analysis of the resulting metastases, we generated a metastasis score, µ, that can be applied to quantitative comparison of metastatic capacity between experimental conditions. Furthermore, image analysis also provided estimates of the frequency of metastasis-initiating cells (∼1/120,000 cells). Finally, we determined that the degree of pigmentation is a key feature defining cells with metastatic capability. The small size and rapid generation of progeny combined with superior imaging tools make zebrafish ideal for unbiased high-throughput investigations of cell-intrinsic or microenvironmental modifiers of metastasis. The approaches described here are readily applicable to other tumor types and thus serve to complement studies also employing murine and human cell culture systems.


Assuntos
Modelos Biológicos , Neoplasias/patologia , Peixe-Zebra , Algoritmos , Animais , Animais Geneticamente Modificados , Linhagem Celular Tumoral , Modelos Animais de Doenças , Perfilação da Expressão Gênica , Melanoma/genética , Melanoma/metabolismo , Melanoma/patologia , Mutação , Metástase Neoplásica , Neoplasias/genética , Neoplasias/metabolismo , Transcriptoma
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA