Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 58
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Acta Neuropathol Commun ; 12(1): 71, 2024 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-38706008

RESUMO

Diffuse Intrinsic Pontine Glioma (DIPG) is a highly aggressive and fatal pediatric brain cancer. One pre-requisite for tumor cells to infiltrate is adhesion to extracellular matrix (ECM) components. However, it remains largely unknown which ECM proteins are critical in enabling DIPG adhesion and migration and which integrin receptors mediate these processes. Here, we identify laminin as a key ECM protein that supports robust DIPG cell adhesion and migration. To study DIPG infiltration, we developed a DIPG-neural assembloid model, which is composed of a DIPG spheroid fused to a human induced pluripotent stem cell-derived neural organoid. Using this assembloid model, we demonstrate that knockdown of laminin-associated integrins significantly impedes DIPG infiltration. Moreover, laminin-associated integrin knockdown improves DIPG response to radiation and HDAC inhibitor treatment within the DIPG-neural assembloids. These findings reveal the critical role of laminin-associated integrins in mediating DIPG progression and drug response. The results also provide evidence that disrupting integrin receptors may offer a novel therapeutic strategy to enhance DIPG treatment outcomes. Finally, these results establish DIPG-neural assembloid models as a powerful tool to study DIPG disease progression and enable drug discovery.


Assuntos
Neoplasias do Tronco Encefálico , Glioma Pontino Intrínseco Difuso , Integrinas , Laminina , Humanos , Laminina/metabolismo , Integrinas/metabolismo , Neoplasias do Tronco Encefálico/genética , Neoplasias do Tronco Encefálico/patologia , Neoplasias do Tronco Encefálico/metabolismo , Neoplasias do Tronco Encefálico/terapia , Glioma Pontino Intrínseco Difuso/patologia , Glioma Pontino Intrínseco Difuso/genética , Adesão Celular/efeitos dos fármacos , Movimento Celular , Linhagem Celular Tumoral , Glioma/patologia , Glioma/metabolismo , Glioma/genética , Glioma/terapia
2.
Sci Adv ; 10(22): eadl5576, 2024 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-38820163

RESUMO

Despite great progress in the field, chronic Pseudomonas aeruginosa (Pa) infections remain a major cause of mortality in patients with cystic fibrosis (pwCF), necessitating treatment with antibiotics. Pf is a filamentous bacteriophage produced by Pa and acts as a structural element in Pa biofilms. Pf presence has been associated with antibiotic resistance and poor outcomes in pwCF, although the underlying mechanisms are unclear. We have investigated how Pf and sputum biopolymers impede antibiotic diffusion using pwCF sputum and fluorescent recovery after photobleaching. We demonstrate that tobramycin interacts with Pf and sputum polymers through electrostatic interactions. We also developed a set of mathematical models to analyze the complex observations. Our analysis suggests that Pf in sputum reduces the diffusion of charged antibiotics due to a greater binding constant associated with organized liquid crystalline structures formed between Pf and sputum polymers. This study provides insights into antibiotic tolerance mechanisms in chronic Pa infections and may offer potential strategies for novel therapeutic approaches.


Assuntos
Antibacterianos , Pseudomonas aeruginosa , Escarro , Eletricidade Estática , Escarro/microbiologia , Antibacterianos/farmacologia , Pseudomonas aeruginosa/efeitos dos fármacos , Pseudomonas aeruginosa/virologia , Humanos , Fibrose Cística/metabolismo , Infecções por Pseudomonas/tratamento farmacológico , Infecções por Pseudomonas/microbiologia , Tobramicina/farmacologia , Difusão , Biofilmes/efeitos dos fármacos , Bacteriófagos
3.
bioRxiv ; 2024 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-38496625

RESUMO

Despite great progress in the field, chronic Pseudomonas aeruginosa (Pa) infections remain a major cause of morbidity and mortality in patients with cystic fibrosis, necessitating treatment with inhaled antibiotics. Pf phage is a filamentous bacteriophage produced by Pa that has been reported to act as a structural element in Pa biofilms. Pf presence has been associated with resistance to antibiotics and poor outcomes in cystic fibrosis, though the underlying mechanisms are unclear. Here, we have investigated how Pf phages and sputum biopolymers impede antibiotic diffusion using human sputum samples and fluorescent recovery after photobleaching. We demonstrate that tobramycin interacts with Pf phages and sputum polymers through electrostatic interactions. We also developed a set of mathematical models to analyze the complex observations. Our analysis suggests that Pf phages in sputum reduce the diffusion of charged antibiotics due to a greater binding constant associated with organized liquid crystalline structures formed between Pf phages and sputum polymers. This study provides insights into antibiotic tolerance mechanisms in chronic Pa infections and may offer potential strategies for novel therapeutic approaches.

4.
Biomacromolecules ; 24(12): 5926-5939, 2023 12 11.
Artigo em Inglês | MEDLINE | ID: mdl-37988588

RESUMO

Hydrogels with encapsulated cells have widespread biomedical applications, both as tissue-mimetic 3D cultures in vitro and as tissue-engineered therapies in vivo. Within these hydrogels, the presentation of cell-instructive extracellular matrix (ECM)-derived ligands and matrix stiffness are critical factors known to influence numerous cell behaviors. While individual ECM biopolymers can be blended together to alter the presentation of cell-instructive ligands, this typically results in hydrogels with a range of mechanical properties. Synthetic systems that allow for the facile incorporation and modulation of multiple ligands without modification of matrix mechanics are highly desirable. In the present work, we leverage protein engineering to design a family of xeno-free hydrogels (i.e., devoid of animal-derived components) consisting of recombinant hyaluronan and recombinant elastin-like proteins (ELPs), cross-linked together with dynamic covalent bonds. The ELP components incorporate cell-instructive peptide ligands derived from ECM proteins, including fibronectin (RGD), laminin (IKVAV and YIGSR), collagen (DGEA), and tenascin-C (PLAEIDGIELTY and VFDNFVL). By carefully designing the protein primary sequence, we form 3D hydrogels with defined and tunable concentrations of cell-instructive ligands that have similar matrix mechanics. Utilizing this system, we demonstrate that neurite outgrowth from encapsulated embryonic dorsal root ganglion (DRG) cultures is significantly modified by cell-instructive ligand content. Thus, this library of protein-engineered hydrogels is a cell-compatible system to systematically study cell responses to matrix-derived ligands.


Assuntos
Elastina , Peptídeos , Animais , Ligantes , Peptídeos/química , Elastina/química , Matriz Extracelular/química , Técnicas de Cultura de Células/métodos , Hidrogéis/química
5.
Integr Biol (Camb) ; 152023 04 11.
Artigo em Inglês | MEDLINE | ID: mdl-37874173

RESUMO

Radiation therapy, one of the most effective therapies to treat cancer, is highly toxic to healthy tissue. The delivery of radiation at ultra-high dose rates, FLASH radiation therapy (FLASH), has been shown to maintain therapeutic anti-tumor efficacy while sparing normal tissues compared to conventional dose rate irradiation (CONV). Though promising, these studies have been limited mainly to murine models. Here, we leveraged enteroids, three-dimensional cell clusters that mimic the intestine, to study human-specific tissue response to radiation. We observed enteroids have a greater colony growth potential following FLASH compared with CONV. In addition, the enteroids that reformed following FLASH more frequently exhibited proper intestinal polarity. While we did not observe differences in enteroid damage across groups, we did see distinct transcriptomic changes. Specifically, the FLASH enteroids upregulated the expression of genes associated with the WNT-family, cell-cell adhesion, and hypoxia response. These studies validate human enteroids as a model to investigate FLASH and provide further evidence supporting clinical study of this therapy. Insight Box Promising work has been done to demonstrate the potential of ultra-high dose rate radiation (FLASH) to ablate cancerous tissue, while preserving healthy tissue. While encouraging, these findings have been primarily observed using pre-clinical murine and traditional two-dimensional cell culture. This study validates the use of human enteroids as a tool to investigate human-specific tissue response to FLASH. Specifically, the work described demonstrates the ability of enteroids to recapitulate previous in vivo findings, while also providing a lens through which to probe cellular and molecular-level responses to FLASH. The human enteroids described herein offer a powerful model that can be used to probe the underlying mechanisms of FLASH in future studies.


Assuntos
Técnicas de Cultura de Células , Intestinos , Humanos , Camundongos , Animais
6.
Nat Commun ; 14(1): 4346, 2023 07 19.
Artigo em Inglês | MEDLINE | ID: mdl-37468483

RESUMO

The biofabrication of three-dimensional (3D) tissues that recapitulate organ-specific architecture and function would benefit from temporal and spatial control of cell-cell interactions. Bioprinting, while potentially capable of achieving such control, is poorly suited to organoids with conserved cytoarchitectures that are susceptible to plastic deformation. Here, we develop a platform, termed Spatially Patterned Organoid Transfer (SPOT), consisting of an iron-oxide nanoparticle laden hydrogel and magnetized 3D printer to enable the controlled lifting, transport, and deposition of organoids. We identify cellulose nanofibers as both an ideal biomaterial for encasing organoids with magnetic nanoparticles and a shear-thinning, self-healing support hydrogel for maintaining the spatial positioning of organoids to facilitate the generation of assembloids. We leverage SPOT to create precisely arranged assembloids composed of human pluripotent stem cell-derived neural organoids and patient-derived glioma organoids. In doing so, we demonstrate the potential for the SPOT platform to construct assembloids which recapitulate key developmental processes and disease etiologies.


Assuntos
Bioimpressão , Células-Tronco Pluripotentes , Humanos , Organoides , Bioimpressão/métodos , Hidrogéis , Materiais Biocompatíveis
7.
Sci Adv ; 9(13): eade7880, 2023 03 31.
Artigo em Inglês | MEDLINE | ID: mdl-37000873

RESUMO

Three-dimensional bioprinting has emerged as a promising tool for spatially patterning cells to fabricate models of human tissue. Here, we present an engineered bioink material designed to have viscoelastic mechanical behavior, similar to that of living tissue. This viscoelastic bioink is cross-linked through dynamic covalent bonds, a reversible bond type that allows for cellular remodeling over time. Viscoelastic materials are challenging to use as inks, as one must tune the kinetics of the dynamic cross-links to allow for both extrudability and long-term stability. We overcome this challenge through the use of small molecule catalysts and competitors that temporarily modulate the cross-linking kinetics and degree of network formation. These inks were then used to print a model of breast cancer cell invasion, where the inclusion of dynamic cross-links was found to be required for the formation of invasive protrusions. Together, we demonstrate the power of engineered, dynamic bioinks to recapitulate the native cellular microenvironment for disease modeling.


Assuntos
Bioimpressão , Alicerces Teciduais , Humanos , Alicerces Teciduais/química , Hidrogéis/química , Engenharia Tecidual/métodos , Bioimpressão/métodos , Impressão Tridimensional
8.
Biomaterials ; 291: 121864, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36343608

RESUMO

Exosome-based regenerative therapies are potentially easier to manufacture and safer to apply compared to cell-based therapies. However, many questions remain about how to bio-manufacture reproducible and potent exosomes using animal-free reagents. Here we evaluate the hypothesis that designer biomaterial substrates can be used to alter the potency of exosomes secreted by human induced pluripotent stem cells (iPSCs). Two animal-free designer matrices were fabricated based on recombinant elastin-like polypeptides (ELPs): one including a cell-adhesive RGD ligand and a second with a non-adhesive RDG peptide. While iPSCs cultured on these two substrates and Matrigel-coated controls had similar levels of proliferation, the RDG-ELP substrate significantly increased protein expression of stemness markers OCT4 and SOX2 and suppressed spontaneous differentiation compared to those on RGD-ELP. The pro-survival potency of iPSC-derived exosomes was evaluated using three distinct stress tests: serum starvation in murine fibroblasts, hypoxia in human endothelial cells, and hyperosmolarity in canine kidney cells. In all three cases, exosomes produced by iPSCs grown on RDG-ELP substrates had similar pro-survival effects to those produced using iPSCs grown on Matrigel, while use of RGD-ELP substrates led to significantly reduced exosome potency. These data demonstrate that recombinant substrates can be designed for the robust bio-manufacturing of iPSC-derived, pro-survival exosomes.


Assuntos
Exossomos , Células-Tronco Pluripotentes Induzidas , Humanos , Animais , Cães , Camundongos , Elastina/metabolismo , Exossomos/metabolismo , Células Endoteliais , Peptídeos/farmacologia , Peptídeos/metabolismo , Oligopeptídeos/farmacologia , Oligopeptídeos/metabolismo
9.
JCI Insight ; 7(12)2022 06 22.
Artigo em Inglês | MEDLINE | ID: mdl-35730564

RESUMO

Thick, viscous respiratory secretions are a major pathogenic feature of COVID-19, but the composition and physical properties of these secretions are poorly understood. We characterized the composition and rheological properties (i.e., resistance to flow) of respiratory secretions collected from intubated COVID-19 patients. We found the percentages of solids and protein content were greatly elevated in COVID-19 compared with heathy control samples and closely resembled levels seen in cystic fibrosis, a genetic disease known for thick, tenacious respiratory secretions. DNA and hyaluronan (HA) were major components of respiratory secretions in COVID-19 and were likewise abundant in cadaveric lung tissues from these patients. COVID-19 secretions exhibited heterogeneous rheological behaviors, with thicker samples showing increased sensitivity to DNase and hyaluronidase treatment. In histologic sections from these same patients, we observed increased accumulation of HA and the hyaladherin versican but reduced tumor necrosis factor-stimulated gene-6 staining, consistent with the inflammatory nature of these secretions. Finally, we observed diminished type I interferon and enhanced inflammatory cytokines in these secretions. Overall, our studies indicated that increases in HA and DNA in COVID-19 respiratory secretion samples correlated with enhanced inflammatory burden and suggested that DNA and HA may be viable therapeutic targets in COVID-19 infection.


Assuntos
COVID-19 , Interferon Tipo I , Humanos , Pulmão , SARS-CoV-2 , Escarro
10.
medRxiv ; 2022 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-35411348

RESUMO

Thick, viscous respiratory secretions are a major pathogenic feature of COVID-19 disease, but the composition and physical properties of these secretions are poorly understood. We characterized the composition and rheological properties (i.e. resistance to flow) of respiratory secretions collected from intubated COVID-19 patients. We find the percent solids and protein content are greatly elevated in COVID-19 compared to heathy control samples and closely resemble levels seen in cystic fibrosis, a genetic disease known for thick, tenacious respiratory secretions. DNA and hyaluronan (HA) are major components of respiratory secretions in COVID-19 and are likewise abundant in cadaveric lung tissues from these patients. COVID-19 secretions exhibit heterogeneous rheological behaviors with thicker samples showing increased sensitivity to DNase and hyaluronidase treatment. In histologic sections from these same patients, we observe increased accumulation of HA and the hyaladherin versican but reduced tumor necrosis factorâ€"stimulated gene-6 (TSG6) staining, consistent with the inflammatory nature of these secretions. Finally, we observed diminished type I interferon and enhanced inflammatory cytokines in these secretions. Overall, our studies indicate that increases in HA and DNA in COVID-19 respiratory secretion samples correlate with enhanced inflammatory burden and suggest that DNA and HA may be viable therapeutic targets in COVID-19 infection.

11.
Nat Mater ; 21(2): 143-159, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34385685

RESUMO

Organotypic models of patient-specific tumours are revolutionizing our understanding of cancer heterogeneity and its implications for personalized medicine. These advancements are, in part, attributed to the ability of organoid models to stably preserve genetic, proteomic, morphological and pharmacotypic features of the parent tumour in vitro, while also offering unprecedented genomic and environmental manipulation. Despite recent innovations in organoid protocols, current techniques for cancer organoid culture are inherently uncontrolled and irreproducible, owing to several non-standardized facets including cancer tissue sources and subsequent processing, medium formulations, and animal-derived three-dimensional matrices. Given the potential for cancer organoids to accurately recapitulate the intra- and intertumoral biological heterogeneity associated with patient-specific cancers, eliminating the undesirable technical variability accompanying cancer organoid culture is necessary to establish reproducible platforms that accelerate translatable insights into patient care. Here we describe the current challenges and recent multidisciplinary advancements and opportunities for standardizing next-generation cancer organoid systems.


Assuntos
Neoplasias , Organoides , Animais , Humanos , Neoplasias/patologia , Neoplasias/terapia , Organoides/patologia , Medicina de Precisão/métodos , Proteômica
12.
Nat Commun ; 12(1): 6138, 2021 10 22.
Artigo em Inglês | MEDLINE | ID: mdl-34686668

RESUMO

To investigate the pathogenesis of a congenital form of hepatic fibrosis, human hepatic organoids were engineered to express the most common causative mutation for Autosomal Recessive Polycystic Kidney Disease (ARPKD). Here we show that these hepatic organoids develop the key features of ARPKD liver pathology (abnormal bile ducts and fibrosis) in only 21 days. The ARPKD mutation increases collagen abundance and thick collagen fiber production in hepatic organoids, which mirrors ARPKD liver tissue pathology. Transcriptomic and other analyses indicate that the ARPKD mutation generates cholangiocytes with increased TGFß pathway activation, which are actively involved stimulating myofibroblasts to form collagen fibers. There is also an expansion of collagen-producing myofibroblasts with markedly increased PDGFRB protein expression and an activated STAT3 signaling pathway. Moreover, the transcriptome of ARPKD organoid myofibroblasts resemble those present in commonly occurring forms of liver fibrosis. PDGFRB pathway involvement was confirmed by the anti-fibrotic effect observed when ARPKD organoids were treated with PDGFRB inhibitors. Besides providing insight into the pathogenesis of congenital (and possibly acquired) forms of liver fibrosis, ARPKD organoids could also be used to test the anti-fibrotic efficacy of potential anti-fibrotic therapies.


Assuntos
Cirrose Hepática/patologia , Modelos Biológicos , Organoides/patologia , Doenças dos Ductos Biliares/genética , Doenças dos Ductos Biliares/metabolismo , Doenças dos Ductos Biliares/patologia , Colágeno/metabolismo , Células Epiteliais/patologia , Humanos , Células-Tronco Pluripotentes Induzidas/citologia , Fígado/efeitos dos fármacos , Fígado/metabolismo , Fígado/patologia , Cirrose Hepática/tratamento farmacológico , Cirrose Hepática/genética , Cirrose Hepática/metabolismo , Mutação , Miofibroblastos/metabolismo , Miofibroblastos/patologia , Organoides/efeitos dos fármacos , Organoides/metabolismo , Rim Policístico Autossômico Recessivo/tratamento farmacológico , Rim Policístico Autossômico Recessivo/genética , Rim Policístico Autossômico Recessivo/metabolismo , Rim Policístico Autossômico Recessivo/patologia , Receptor beta de Fator de Crescimento Derivado de Plaquetas/antagonistas & inibidores , Receptor beta de Fator de Crescimento Derivado de Plaquetas/metabolismo , Fator de Transcrição STAT3/metabolismo , Transdução de Sinais , Fator de Crescimento Transformador beta/metabolismo
13.
J Clin Invest ; 131(16)2021 08 16.
Artigo em Inglês | MEDLINE | ID: mdl-34396988

RESUMO

Ovarian cancer is the leading cause of gynecological malignancy-related deaths, due to its widespread intraperitoneal metastases and acquired chemoresistance. Mesothelial cells are an important cellular component of the ovarian cancer microenvironment that promote metastasis. However, their role in chemoresistance is unclear. Here, we investigated whether cancer-associated mesothelial cells promote ovarian cancer chemoresistance and stemness in vitro and in vivo. We found that osteopontin is a key secreted factor that drives mesothelial-mediated ovarian cancer chemoresistance and stemness. Osteopontin is a secreted glycoprotein that is clinically associated with poor prognosis and chemoresistance in ovarian cancer. Mechanistically, ovarian cancer cells induced osteopontin expression and secretion by mesothelial cells through TGF-ß signaling. Osteopontin facilitated ovarian cancer cell chemoresistance via the activation of the CD44 receptor, PI3K/AKT signaling, and ABC drug efflux transporter activity. Importantly, therapeutic inhibition of osteopontin markedly improved the efficacy of cisplatin in both human and mouse ovarian tumor xenografts. Collectively, our results highlight mesothelial cells as a key driver of ovarian cancer chemoresistance and suggest that therapeutic targeting of osteopontin may be an effective strategy for enhancing platinum sensitivity in ovarian cancer.


Assuntos
Osteopontina/metabolismo , Neoplasias Ovarianas/tratamento farmacológico , Neoplasias Ovarianas/metabolismo , Animais , Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Cisplatino/farmacologia , Resistencia a Medicamentos Antineoplásicos , Epitélio/efeitos dos fármacos , Epitélio/metabolismo , Epitélio/patologia , Feminino , Humanos , Camundongos , Células-Tronco Neoplásicas/efeitos dos fármacos , Células-Tronco Neoplásicas/metabolismo , Células-Tronco Neoplásicas/patologia , Organoides/efeitos dos fármacos , Organoides/metabolismo , Organoides/patologia , Osteopontina/antagonistas & inibidores , Neoplasias Ovarianas/patologia , Comunicação Parácrina/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Microambiente Tumoral/efeitos dos fármacos , Microambiente Tumoral/fisiologia , Ensaios Antitumorais Modelo de Xenoenxerto
14.
Adv Sci (Weinh) ; 8(10): 2004705, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-34026461

RESUMO

Human intestinal organoids from primary human tissues have the potential to revolutionize personalized medicine and preclinical gastrointestinal disease models. A tunable, fully defined, designer matrix, termed hyaluronan elastin-like protein (HELP) is reported, which enables the formation, differentiation, and passaging of adult primary tissue-derived, epithelial-only intestinal organoids. HELP enables the encapsulation of dissociated patient-derived cells, which then undergo proliferation and formation of enteroids, spherical structures with polarized internal lumens. After 12 rounds of passaging, enteroid growth in HELP materials is found to be statistically similar to that in animal-derived matrices. HELP materials also support the differentiation of human enteroids into mature intestinal cell subtypes. HELP matrices allow stiffness, stress relaxation rate, and integrin-ligand concentration to be independently and quantitatively specified, enabling fundamental studies of organoid-matrix interactions and potential patient-specific optimization. Organoid formation in HELP materials is most robust in gels with stiffer moduli (G' ≈ 1 kPa), slower stress relaxation rate (t1/2 ≈ 18 h), and higher integrin ligand concentration (0.5 × 10-3-1 × 10-3 m RGD peptide). This material provides a promising in vitro model for further understanding intestinal development and disease in humans and a reproducible, biodegradable, minimal matrix with no animal-derived products or synthetic polyethylene glycol for potential clinical translation.


Assuntos
Células Epiteliais/citologia , Mucosa Intestinal/citologia , Organoides/citologia , Engenharia Tecidual/métodos , Animais , Diferenciação Celular/fisiologia , Sobrevivência Celular/fisiologia , Elastina/química , Células Epiteliais/metabolismo , Matriz Extracelular/química , Humanos , Ácido Hialurônico/química , Mucosa Intestinal/metabolismo , Camundongos , Organoides/metabolismo
15.
Sci Adv ; 7(8)2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33597244

RESUMO

Living tissues embody a unique class of hybrid materials in which active and thermal forces are inextricably linked. Mechanical characterization of tissues demands descriptors that respect this hybrid nature. In this work, we develop a microrheology-based force spectrum analysis (FSA) technique to dissect the active and passive fluctuations of the extracellular matrix (ECM) in three-dimensional (3D) cell culture models. In two different stromal models and a 3D breast cancer spheroid model, our FSA reveals emergent hybrid dynamics that involve both high-frequency stress stiffening and low-frequency fluidization of the ECM. We show that this is a general consequence of nonlinear coupling between active forces and the frequency-dependent viscoelasticity of stress-stiffening networks. In 3D breast cancer spheroids, this dual active stiffening and fluidization is tightly connected with invasion. Our results suggest a mechanism whereby breast cancer cells reconcile the seemingly contradictory requirements for both tension and malleability in the ECM during invasion.


Assuntos
Neoplasias da Mama , Técnicas de Cultura de Células , Matriz Extracelular , Feminino , Humanos , Viscosidade
16.
Soft Matter ; 17(7): 1929-1939, 2021 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-33427280

RESUMO

We present a method for using dynamic light scattering in the single-scattering limit to measure the viscoelastic moduli of soft materials. This microrheology technique only requires a small sample volume of 12 µL to measure up to six decades in time of rheological behavior. We demonstrate the use of dynamic light scattering microrheology (DLSµR) on a variety of soft materials, including dilute polymer solutions, covalently-crosslinked polymer gels, and active, biological fluids. In this work, we detail the procedure for applying the technique to new materials and discuss the critical considerations for implementing the technique, including a custom analysis script for analyzing data output. We focus on the advantages of applying DLSµR to biologically relevant materials: breast cancer cells encapsulated in a collagen gel and cystic fibrosis sputum. DLSµR is an easy, efficient, and economical rheological technique that can guide the design of new polymeric materials and facilitate the understanding of the underlying physics governing behavior of naturally derived materials.


Assuntos
Polímeros , Difusão Dinâmica da Luz , Géis , Reologia , Viscosidade
17.
medRxiv ; 2021 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-32935110

RESUMO

Thick, viscous respiratory secretions are a major pathogenic feature of COVID-19 disease, but the composition and physical properties of these secretions are poorly understood. We characterized the composition and rheological properties (i.e. resistance to flow) of respiratory secretions collected from intubated COVID-19 patients. We found the percent solids and protein content are all greatly elevated in COVID-19 compared to heathy control samples and closely resemble levels seen in cystic fibrosis (CF), a genetic disease known for thick, tenacious respiratory secretions. DNA and hyaluronan are major components of respiratory secretions in COVID-19 and are likewise abundant in cadaveric lung tissues from these patients. COVID-19 secretions exhibited heterogeneous rheological behaviors with thicker samples showing increased sensitivity to DNase and hyaluronidase treatment. These results highlight the dramatic biophysical properties of COVID-19 respiratory secretions and suggest that DNA and hyaluronan may be viable therapeutic targets in COVID-19 infection.

18.
Am J Respir Cell Mol Biol ; 64(3): 318-330, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33264084

RESUMO

Pulmonary angiogenesis is a key driver of alveolarization. Our prior studies showed that NF-κB promotes pulmonary angiogenesis during early alveolarization. However, the mechanisms regulating temporal-specific NF-κB activation in the pulmonary vasculature are unknown. To identify mechanisms that activate proangiogenic NF-κB signaling in the developing pulmonary vasculature, proteomic analysis of the lung secretome was performed using two-dimensional difference gel electrophoresis. NF-κB activation and angiogenic function was assessed in primary pulmonary endothelial cells (PECs) and TGFBI (transforming growth factor-ß-induced protein)-regulated genes identified using RNA sequencing. Alveolarization and pulmonary angiogenesis was assessed in wild-type and Tgfbi null mice exposed to normoxia or hyperoxia. Lung TGFBI expression was determined in premature lambs supported by invasive and noninvasive respiratory support. Secreted factors from the early alveolar, but not the late alveolar or adult lung, promoted proliferation and migration in quiescent, adult PECs. Proteomic analysis identified TGFBI as one protein highly expressed by the early alveolar lung that promoted PEC migration by activating NF-κB via αvß3 integrins. RNA sequencing identified Csf3 as a TGFBI-regulated gene that enhances nitric oxide production in PECs. Loss of TGFBI in mice exaggerated the impaired pulmonary angiogenesis induced by chronic hyperoxia, and TGFBI expression was disrupted in premature lambs with impaired alveolarization. Our studies identify TGFBI as a developmentally regulated protein that promotes NF-κB-mediated angiogenesis during early alveolarization by enhancing nitric oxide production. We speculate that dysregulation of TGFBI expression may contribute to diseases marked by impaired alveolar and vascular growth.


Assuntos
Proteínas da Matriz Extracelular/metabolismo , Pulmão/irrigação sanguínea , Pulmão/crescimento & desenvolvimento , NF-kappa B/metabolismo , Neovascularização Fisiológica , Fator de Crescimento Transformador beta/metabolismo , Animais , Animais Recém-Nascidos , Movimento Celular , Fatores Estimuladores de Colônias/metabolismo , Células Endoteliais/metabolismo , Integrina alfaVbeta3/metabolismo , Camundongos Endogâmicos C57BL , Óxido Nítrico/biossíntese , Nascimento Prematuro , Alvéolos Pulmonares/metabolismo , Ovinos
19.
Adv Healthc Mater ; 9(18): e2000754, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32743903

RESUMO

Neural progenitor cells (NPCs) are promising therapeutic candidates for nervous system regeneration. Significant efforts focus on developing hydrogel-based approaches to facilitate the clinical translation of NPCs, from scalable platforms for stem cell production to injectable carriers for cell transplantation. However, fundamental questions surrounding NPC-hydrogel interactions remain unanswered. While matrix degradability is known to regulate the stemness and differentiation capacity of NPCs, how degradability impacts NPC epigenetic regulation and secretory phenotype remains unknown. To address this question, NPCs encapsulated in recombinant protein hydrogels with tunable degradability are assayed for changes in chromatin organization and neurotrophin expression. In high degradability gels, NPCs maintain expression of stem cell factors, proliferate, and have large nuclei with elevated levels of the stemness-associated activating histone mark H3K4me3. In contrast, NPCs in low degradability gels exhibit more compact, rounded nuclei with peripherally localized heterochromatin, are non-proliferative yet non-senescent, and maintain expression of neurotrophic factors with potential therapeutic relevance. This work suggests that tuning matrix degradability may be useful to direct NPCs toward either a more-proliferative, stem-like phenotype for cell replacement therapies, or a more quiescent-like, pro-secretory phenotype for soluble factor-mediated therapies.


Assuntos
Fatores de Crescimento Neural , Células-Tronco Neurais , Diferenciação Celular , Cromatina , Epigênese Genética
20.
Artigo em Inglês | MEDLINE | ID: mdl-32411691

RESUMO

Human tissues, both in health and disease, are exquisitely organized into complex three-dimensional architectures that inform tissue function. In biomedical research, specifically in drug discovery and personalized medicine, novel human-based three-dimensional (3D) models are needed to provide information with higher predictive value compared to state-of-the-art two-dimensional (2D) preclinical models. However, current in vitro models remain inadequate to recapitulate the complex and heterogenous architectures that underlie biology. Therefore, it would be beneficial to develop novel models that could capture both the 3D heterogeneity of tissue (e.g., through 3D bioprinting) and integrate vascularization that is necessary for tissue viability (e.g., through culture in tissue-on-chips). In this proof-of-concept study, we use elastin-like protein (ELP) engineered hydrogels as bioinks for constructing such tissue models, which can be directly dispensed onto endothelialized on-chip platforms. We show that this bioprinting process is compatible with both single cell suspensions of neural progenitor cells (NPCs) and spheroid aggregates of breast cancer cells. After bioprinting, both cell types remain viable in incubation for up to 14 days. These results demonstrate a first step toward combining ELP engineered hydrogels with 3D bioprinting technologies and on-chip platforms comprising vascular-like channels for establishing functional tissue models.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA