Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 14(1): 10393, 2024 05 06.
Artigo em Inglês | MEDLINE | ID: mdl-38710741

RESUMO

The transforming growth factor (TGF)-ß3 is a well-known inducer for tenogenic differentiation, signaling via the Smad2/3 pathway. Furthermore, other factors like extracellular matrix or mechanical force can induce tenogenic differentiation and possibly alter the response to TGF-ß3 by signaling via the Rho/ROCK pathway. The aim of this study was to investigate the interplay of Rho/ROCK and TGF-ß3/Smad signaling in tenogenic differentiation, with the Smad2/3 molecule hypothesized as a possible interface. Cultured as monolayers or on collagen I matrices, mesenchymal stromal cells (MSC) were treated with the ROCK inhibitor Y-27632 (10 µM), TGF-ß3 (10 ng/ml) or both combined. Control cells were cultured accordingly, without Y-27632 and/or without TGF-ß3. At different time points, MSC were analyzed by real-time RT-PCR, immunofluorescence, and Western blot. Cultivation of MSC on collagen matrices and ROCK inhibition supported tenogenic differentiation and fostered the effect of TGF-ß3. The phosphorylation of the linker region of Smad2 was reduced by cultivation on collagen matrices, but not by ROCK inhibition. The latter, however, led to increased phosphorylation of the linker region of Smad3. In conclusion, collagen matrices and the Rho/ROCK signaling pathway influence the TGF-ß3/Smad2/3 pathway by regulating different phosphorylation sites of the Smad linker region.


Assuntos
Diferenciação Celular , Células-Tronco Mesenquimais , Transdução de Sinais , Proteína Smad2 , Proteína Smad3 , Fator de Crescimento Transformador beta3 , Quinases Associadas a rho , Quinases Associadas a rho/metabolismo , Fosforilação , Diferenciação Celular/efeitos dos fármacos , Proteína Smad2/metabolismo , Proteína Smad3/metabolismo , Humanos , Células-Tronco Mesenquimais/metabolismo , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/efeitos dos fármacos , Fator de Crescimento Transformador beta3/metabolismo , Células Cultivadas , Piridinas/farmacologia , Amidas/farmacologia , Proteínas rho de Ligação ao GTP/metabolismo
2.
Sci Rep ; 9(1): 5972, 2019 04 12.
Artigo em Inglês | MEDLINE | ID: mdl-30979966

RESUMO

Genetic labelling of viruses with a fluorophore allows to study their life cycle in real time, without the need for fixation or staining techniques. Within the family Flaviviridae, options for genetic labelling of non-structural proteins exist. Yet, no system to genetically label structural proteins has been put forward to date. Taking advantage of a previously described site within the structural protein E2, a fluorophore was introduced into a cytopathogenic (cpe) BVDV-1 virus (BVDVE2_fluo). This insertion was well tolerated, resulting in a 2-fold drop in titer compared to the parental virus, and remained stably integrated into the genome for more than 10 passages. The fluorophore E2 fusion protein was readily detectable in purified virus particles by Western blot and fluorescence microscopy and the particle integrity and morphology was confirmed by cryo electron microscopy. The same integration site could also be used to label the related Classical swine fever virus. Also, BVDVE2_fluo particles bound to fluorophore labelled CD46 expressing cells could be resolved in fluorescence microscopy. This underlines the applicability of BVDVE2_fluo as a tool to study the dynamics of the whole life cycle of BVDV in real time.


Assuntos
Doença das Mucosas por Vírus da Diarreia Viral Bovina/virologia , Vírus da Diarreia Viral Bovina , Microscopia de Fluorescência , Proteínas do Envelope Viral , Animais , Doença das Mucosas por Vírus da Diarreia Viral Bovina/metabolismo , Doença das Mucosas por Vírus da Diarreia Viral Bovina/patologia , Bovinos , Linhagem Celular , Peste Suína Clássica/metabolismo , Peste Suína Clássica/patologia , Peste Suína Clássica/virologia , Vírus da Febre Suína Clássica/genética , Vírus da Febre Suína Clássica/metabolismo , Microscopia Crioeletrônica , Vírus da Diarreia Viral Bovina/genética , Vírus da Diarreia Viral Bovina/metabolismo , Proteína Cofatora de Membrana/metabolismo , Microscopia de Fluorescência/métodos , Suínos , Proteínas do Envelope Viral/genética , Proteínas do Envelope Viral/metabolismo , Vírion/metabolismo
3.
BMC Vet Res ; 15(1): 42, 2019 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-30691449

RESUMO

BACKGROUND: Mesenchymal stem cells are used for different therapeutic approaches, e.g. for osteoarthritis, lesions of the tendon as well as for bone defects. Current research on the mechanism of stem cells on the repair of damaged tissue suggest an important role of a cell-to-cell communication through secreted extracellular vesicles, mainly represented by exosomes. To enhance the scarce knowledge on the functional role of exosomes we compared as a first step different techniques to isolate and identify exosomes from the supernatant of equine adipose derived mesenchymal stem cells for further characterization and usage in functional assays. RESULTS: It was possible to obtain exosomes secreted from equine adipose derived mesenchymal stem cells with three common techniques: a stepwise ultracentrifugation at 100.000 g, an ultrafiltration with 3 kDa exclusion membranes and a charge-based precipitation method. The mean sizes and amounts of exosomes isolated with the different techniques were measured by the nanoparticle tracking analysis. The diameter ranged between 116.2 nm (ultracentrifugation), 453.1 nm (precipitation) and 178.7 nm (ultrafiltration), the counts of particles / ml ranged between 9.6 × 108 (ultracentrifugation), 2.02 × 109 (precipitation) and 52.5 × 109 (ultrafiltration). Relevant marker for exosomes, tetraspanins CD9, CD63 and CD81 were detectable by immunofluorescence staining of the investigated exosomes secreting mesenchymal stem cells. In addition, transmission electron microscopy and immunogold labeling with CD9 and CD90 was performed to display the morphological shape of exosomes and existence of marker relevant for exosomes (CD9) and mesenchymal stem cells (CD90). Western blot analysis of CD9 and CD90 of exosomes ensured the specificity of the rare available respectively cross reacting antibodies against equine antigens. CONCLUSION: Exosomes generated by equine mesenchymal stem cells can be obtained by ultrafiltration and ultracentrifugation in an equal quality for in vitro experiments. Especially for later therapeutic usage we recommend ultrafiltration due to a higher concentration without aggregation of extracellular vesicles in comparison to exosomes obtained by ultracentrifugation.


Assuntos
Técnicas Citológicas/métodos , Exossomos , Cavalos , Células-Tronco Mesenquimais/metabolismo , Animais , Ultrafiltração
4.
Res Vet Sci ; 117: 45-53, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-29175012

RESUMO

Adipose tissue derived mesenchymal stem cells (ASCs) may be used to cure bone defects after osteogenic differentiation. In this study we tried to optimize osteogenic differentiation for equine ASCs using various concentrations of CaCl2 in comparison to the standard osteogenic protocol. ASCs were isolated from subcutaneous adipose tissue from mixed breed horses. The osteogenic induction protocols were (1) the standard osteogenic medium (OM) composed of dexamethasone, ascorbic acid and ß-glycerol phosphate; (2) CaCl2 based protocol composed of 3, 5 and 7.5mM CaCl2. Differentiation and proliferation were evaluated at 7, 10, 14 and 21days post-differentiation induction using the alizarin red staining (ARS) detecting matrix calcification. Semi-quantification of cell protein content, ARS and alkaline phosphatase activity (ALP) were performed using an ELISA reader. Quantification of the transcription level for the common osteogenic markers alkaline phosphatase (ALP) and Osteopontin (OP) was performed using RT-qPCR. In the presence of CaCl2, a concentration dependent effect on the osteogenic differentiation capacity was evident by the ARS evaluation and OP gene expression. We provide evidence that 5 and 7mM CaCl2 enhance the osteogenic differentiation compared to the OM protocol. Although, there was a clear commitment of ASCs to the osteogenic fate in the presence of 5 and 7mM CaCl2, cell proliferation was increased compared to OM. We report that an optimized CaCl2 protocol reliably influences ASCs osteogenesis while conserving the proliferation capacity. Thus, using these protocols provide a platform for using ASCs as a cell source in bone tissue engineering.


Assuntos
Tecido Adiposo/citologia , Cloreto de Cálcio/farmacologia , Cavalos , Células-Tronco Mesenquimais/fisiologia , Osteogênese/fisiologia , Fosfatase Alcalina , Animais , Diferenciação Celular/efeitos dos fármacos , Proliferação de Células , Glicerofosfatos , Humanos , Engenharia Tecidual/métodos
5.
PLoS Pathog ; 8(3): e1002598, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22457622

RESUMO

Core protein of Flaviviridae is regarded as essential factor for nucleocapsid formation. Yet, core protein is not encoded by all isolates (GBV- A and GBV- C). Pestiviruses are a genus within the family Flaviviridae that affect cloven-hoofed animals, causing economically important diseases like classical swine fever (CSF) and bovine viral diarrhea (BVD). Recent findings describe the ability of NS3 of classical swine fever virus (CSFV) to compensate for disabling size increase of core protein (Riedel et al., 2010). NS3 is a nonstructural protein possessing protease, helicase and NTPase activity and a key player in virus replication. A role of NS3 in particle morphogenesis has also been described for other members of the Flaviviridae (Patkar et al., 2008; Ma et al., 2008). These findings raise questions about the necessity and function of core protein and the role of NS3 in particle assembly. A reverse genetic system for CSFV was employed to generate poorly growing CSFVs by modification of the core gene. After passaging, rescued viruses had acquired single amino acid substitutions (SAAS) within NS3 helicase subdomain 3. Upon introduction of these SAAS in a nonviable CSFV with deletion of almost the entire core gene (Vp447(Δc)), virus could be rescued. Further characterization of this virus with regard to its physical properties, morphology and behavior in cell culture did not reveal major differences between wildtype (Vp447) and Vp447(Δc). Upon infection of the natural host, Vp447(Δc) was attenuated. Hence we conclude that core protein is not essential for particle assembly of a core-encoding member of the Flaviviridae, but important for its virulence. This raises questions about capsid structure and necessity, the role of NS3 in particle assembly and the function of core protein in general.


Assuntos
Vírus da Febre Suína Clássica/fisiologia , Peste Suína Clássica/virologia , Proteínas do Core Viral/fisiologia , Proteínas não Estruturais Virais/fisiologia , Animais , Linhagem Celular , Peste Suína Clássica/sangue , Vírus da Febre Suína Clássica/patogenicidade , Modelos Animais de Doenças , Interações Hospedeiro-Patógeno , Suínos , Virulência , Replicação Viral
6.
J Virol ; 85(7): 3607-20, 2011 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-21270154

RESUMO

Proteolytic processing of polyproteins is considered a crucial step in the life cycle of most positive-strand RNA viruses. An enhancement of NS2-3 processing has been described as a major difference between the noncytopathogenic (non-CP) and the cytopathogenic (CP) biotypes of pestiviruses. The effects of accelerated versus delayed NS2-3 processing on the maturation of the other nonstructural proteins (NSP) have never been compared. In this study, we analyzed the proteolytic processing of NSP in Classical swine fever virus (CSFV). Key to the investigation was a panel of newly developed monoclonal antibodies (MAbs) that facilitated monitoring of all nonstructural proteins involved in virus replication (NS2, NS3, NS4A, NS5A, and NS5B). Applying these MAbs in Western blotting and radioimmunoprecipitation allowed an unambiguous identification of the mature proteins and precursors in non-CP CSFV-infected cells. Furthermore, the kinetics of processing were determined by pulse-chase analyses for non-CP CSFV, CP CSFV, and a CP CSFV replicon. A slow but constant processing of NS4A/B-5A/B occurred in non-CP CSFV-infected cells, leading to balanced low-level concentrations of mature NSP. In contrast, the turnover of the polyprotein precursors was three times faster in CP CSFV-infected cells and in cells transfected with a CP CSFV replicon, causing a substantial increase of mature NSP concentrations. We conclude that a delayed processing not only of NS3 but further of all NSP represents a hallmark of regulation in non-CP pestiviruses.


Assuntos
Vírus da Febre Suína Clássica/genética , Vírus da Febre Suína Clássica/fisiologia , Proteínas não Estruturais Virais/biossíntese , Replicação Viral , Animais , Anticorpos Monoclonais/imunologia , Anticorpos Monoclonais/isolamento & purificação , Anticorpos Antivirais/imunologia , Anticorpos Antivirais/isolamento & purificação , Western Blotting , Linhagem Celular , Feminino , Camundongos , Camundongos Endogâmicos BALB C , Processamento de Proteína Pós-Traducional , Ensaio de Radioimunoprecipitação , Suínos , Proteínas não Estruturais Virais/genética
7.
J Virol ; 84(21): 11523-31, 2010 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-20702631

RESUMO

Pestiviruses are pathogens of cloven-hoofed animals, belonging to the Flaviviridae. The pestiviral particle consists of a lipid membrane containing the three envelope glycoproteins Erns, E1, and E2 and a nucleocapsid of unknown symmetry, which is composed of the Core protein and the viral positive-sense RNA genome. The positively charged pestiviral Core protein consists of 86 to 89 amino acids. To analyze the organization of essential domains, N- and C-terminal truncations, as well as internal deletions, were introduced into the Core coding sequence in the context of an infectious cDNA clone of classical swine fever virus strain Alfort. Amino acids 179 to 180, 194 to 198, and 208 to 212 proved to be of special importance for the generation of progeny virus. The results of transcomplementation of a series of C-terminally truncated Core molecules indicate the importance of Ala255 at the C terminus. The plasticity of Core protein was examined by the construction of concatemeric arrays of Core coding regions and the insertion of up to three yellow fluorescent protein (YFP) genes between two Core genes. Even a Core fusion protein with more than 10-fold-increased molecular mass was integrated into the viral particle and supported the production of infectious progeny virus. The unexpected plasticity of Core protein brings into question the formation of a regular icosahedric particle and supports the idea of a histone-like protein-RNA interaction. All viruses with a duplicated Core gene were unstable and reverted to the wild-type sequence. Interestingly, a nonviable YFP-Core construct was rescued by a mutation within the C-terminal domain of the nonstructural protein NS3.


Assuntos
Vírus da Febre Suína Clássica , Proteínas do Core Viral , Sequência de Aminoácidos , Aminoácidos , Animais , DNA Complementar , Mutação , Suínos , Proteínas do Core Viral/genética , Vírion
8.
J Virol ; 80(4): 1915-21, 2006 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-16439547

RESUMO

The core protein of pestiviruses is released from the polyprotein by viral and cellular proteinases. Here we report on an additional intramembrane proteolytic step that generates the C terminus of the core protein. C-terminal processing of the core protein of classical swine fever virus (CSFV) was blocked by the inhibitor (Z-LL)(2)-ketone, which is specific for signal peptide peptidase (SPP). The same effect was obtained by overexpression of the dominant-negative SPP D(265)A mutant. The presence of (Z-LL)(2)-ketone reduced the viability of CSFV almost 100-fold in a concentration-dependent manner. Reduction of virus viability was also observed in infection experiments using a cell line that inducibly expressed SPP D(265)A. The position of SPP cleavage was determined by C-terminal sequencing of core protein purified from virions. The C terminus of CSFV core protein is alanine(255) and is located in the hydrophobic center of the signal peptide. The intramembrane generation of the C terminus of the CSFV core protein is almost identical to the processing scheme of the core protein of hepatitis C viruses.


Assuntos
Ácido Aspártico Endopeptidases/metabolismo , Vírus da Febre Suína Clássica/metabolismo , Processamento de Proteína Pós-Traducional , Proteínas do Core Viral/metabolismo , Sequência de Aminoácidos , Animais , Linhagem Celular , Dipeptídeos/farmacologia , Inibidores Enzimáticos/farmacologia , Dados de Sequência Molecular , Estrutura Terciária de Proteína , Análise de Sequência de Proteína , Suínos , Proteínas do Core Viral/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA