Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Horm Behav ; 104: 41-51, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29605636

RESUMO

Contribution to Special Issue on Fast effects of steroids. 17ß-estradiol (E2) has numerous rapid effects on the brain and behavior. This review focuses on the rapid effects of E2 on aggression, an important social behavior, in songbirds. First, we highlight the contributions of studies on song sparrows, which reveal that seasonal changes in the environment profoundly influence the capacity of E2 to rapidly alter aggressive behavior. E2 administration to male song sparrows increases aggression within 20 min in the non-breeding season, but not in the breeding season. Furthermore, E2 rapidly modulates several phosphoproteins in the song sparrow brain. In particular, E2 rapidly affects pCREB in the medial preoptic nucleus, in the non-breeding season only. Second, we describe studies of the white-throated sparrow, which reveal how a genetic polymorphism may influence the rapid effects of E2 on aggression. In this species, a chromosomal rearrangement that includes ESR1, which encodes estrogen receptor α (ERα), affects ERα expression in the brain and the ability of E2 to rapidly promote aggression. Third, we summarize studies showing that aggressive interactions rapidly affect levels of E2 and other steroids, both in the blood and in specific brain regions, and the emerging potential for steroid profiling by liquid chromatography tandem mass spectrometry (LC-MS/MS). Such studies of songbirds demonstrate the value of an ethologically informed approach, in order to reveal how steroids act rapidly on the brain to alter naturally-occurring behavior.


Assuntos
Agressão/efeitos dos fármacos , Comportamento Animal/efeitos dos fármacos , Estradiol/farmacologia , Aves Canoras/fisiologia , Animais , Comportamento Animal/fisiologia , Encéfalo/efeitos dos fármacos , Encéfalo/fisiologia , Masculino , Estações do Ano , Comportamento Social , Fatores de Tempo
2.
Integr Comp Biol ; 55(2): 281-93, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25980562

RESUMO

Across invertebrates and vertebrates, steroids are potent signaling molecules that affect nearly every cell in the organism, including cells of the nervous system. Historically, researchers have focused on the genomic (or "nuclear-initiated") effects of steroids. However, all classes of steroids also have rapid non-genomic (or "membrane-initiated") effects, although there is far less basic knowledge of these non-genomic effects. In particular, steroids synthesized in the brain ("neurosteroids") have genomic and non-genomic effects on behavior. Here, we review evidence that estradiol has rapid effects on aggression, an important social behavior, and on intracellular signaling cascades in relevant regions of the brain. In particular, we focus on studies of song sparrows (Melospiza melodia) and Peromyscus mice, in which estradiol has rapid behavioral effects under short photoperiods only. Furthermore, in captive Peromyscus, estrogenic compounds (THF-diols) in corncob bedding profoundly alter the rapid effects of estradiol. Environmental factors in the laboratory, such as photoperiod, diet, and bedding, are critical variables to consider in experimental design. These studies are consistent with the hypothesis that locally-produced steroids are more likely than systemic steroids to act via non-genomic mechanisms. Furthermore, these studies illustrate the dynamic balance between genomic and non-genomic signaling for estradiol, which is likely to be relevant for other steroids, behaviors, and species.


Assuntos
Agressão , Aves/fisiologia , Encéfalo/fisiologia , Estradiol/metabolismo , Camundongos/fisiologia , Transdução de Sinais , Animais , Peromyscus/fisiologia , Aves Canoras/fisiologia
3.
Horm Behav ; 69: 31-8, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25483754

RESUMO

17ß-Estradiol (E2) acts in the brain via genomic and non-genomic mechanisms to influence physiology and behavior. There is seasonal plasticity in the mechanisms by which E2 activates aggression, and non-genomic mechanisms appear to predominate during the non-breeding season. Male song sparrows (Melospiza melodia) display E2-dependent territorial aggression throughout the year. Field studies show that song sparrow aggression during a territorial intrusion is similar in the non-breeding and breeding seasons, but aggression after an intrusion ends differs seasonally. Non-breeding males stop behaving aggressively within minutes whereas breeding males remain aggressive for hours. We hypothesize that this seasonal plasticity in the persistence of aggression relates to seasonal plasticity in E2 signaling. We used a non-invasive route of E2 administration to compare the non-genomic (within 20min) effects of E2 on aggressive behavior in captive non-breeding and breeding season males. E2 rapidly increased barrier contacts (attacks) during an intrusion by 173% in non-breeding season males only. Given that these effects were observed within 20min of E2 administration, they likely occurred via a non-genomic mechanism of action. The present data, taken together with past work, suggest that environmental cues associated with the non-breeding season influence the molecular mechanisms through which E2 influences behavior. In song sparrows, transient expression of aggressive behavior during the non-breeding season is highly adaptive: it minimizes energy expenditure and maximizes the amount of time available for foraging. In all, these data suggest the intriguing possibility that aggression in the non-breeding season may be activated by a non-genomic E2 mechanism due to the fitness benefits associated with rapid and transient expression of aggression.


Assuntos
Agressão/efeitos dos fármacos , Comportamento Animal/efeitos dos fármacos , Estradiol/farmacologia , Reprodução , Pardais/fisiologia , Administração Oral , Agressão/fisiologia , Ração Animal , Animais , Cruzamento , Estradiol/administração & dosagem , Masculino , Reprodução/efeitos dos fármacos , Reprodução/fisiologia , Estações do Ano , Territorialidade
4.
Horm Behav ; 63(3): 462-74, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23274698

RESUMO

Wild zebra finches form long-term monogamous pair-bonds that are actively maintained year-round, even when not in breeding condition. These desert finches are opportunistic breeders, and breeding is highly influenced by unpredictable rainfall. Their high levels of affiliation and complex breeding patterns make zebra finches an excellent model in which to study the endocrine regulation of affiliation. Here, we compared zebra finch pairs that were provided with water ad libitum (control) or water restricted. We examined (1) reproductive physiology, (2) pair-maintenance behaviors in several contexts, and (3) circulating and brain steroid levels. In females, water restriction profoundly reduced largest ovarian follicle size, ovary size, oviduct size, and egg laying. In males, water restriction had no effect on testes size but decreased systemic testosterone levels. However, in the hypothalamus, local testosterone and estradiol levels were unaffected by water restriction in both sexes. Systemic and local levels of the androgen precursor dehydroepiandrosterone (DHEA) were also unaffected by water restriction. Lastly, in three different behavioral paradigms, we examined a variety of pair-maintenance behaviors, and none were reduced by water restriction. Taken together, these correlational data are consistent with the hypothesis that local production of sex steroids in the brain promotes the expression of pair-maintenance behaviors in non-breeding zebra finches.


Assuntos
Tentilhões/fisiologia , Ligação do Par , Reprodução/fisiologia , Comportamento Sexual Animal/fisiologia , Água/farmacologia , Animais , Corticosterona/sangue , Corticosterona/metabolismo , Desidroepiandrosterona/sangue , Desidroepiandrosterona/metabolismo , Estradiol/sangue , Estradiol/metabolismo , Feminino , Hipotálamo/metabolismo , Masculino , Fatores Sexuais , Testosterona/sangue , Testosterona/metabolismo , Água/administração & dosagem
5.
Endocrinology ; 153(3): 1364-76, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22294743

RESUMO

Across vertebrate species, 17ß-estradiol (E(2)) acts on the brain via both genomic and nongenomic mechanisms to influence neuronal physiology and behavior. Nongenomic E(2) signaling is typically initiated by membrane-associated estrogen receptors that modulate intracellular signaling cascades, including rapid phosphorylation of ERK. Phosphorylated ERK (pERK) can, in turn, rapidly phosphorylate tyrosine hydroxylase (TH) and cAMP response element-binding protein (CREB). Recent data suggest that the rapid effects of E(2) on mouse aggressive behavior are more prominent during short photoperiods (winter) and that acute aromatase inhibition reduces songbird aggression in winter only. To date, seasonal plasticity in the rapid effects of E(2) on intracellular signaling has not been investigated. Here, we compared the effects of acute (15 min) E(2) treatment on pERK, pTH, and pCREB immunoreactivity in male song sparrows (Melospiza melodia) pretreated with the aromatase inhibitor fadrozole during the breeding and nonbreeding seasons. We examined immunoreactivity in 14 brain regions including portions of the song control system, social behavior network, and the hippocampus (Hp). In both seasons, E(2) significantly decreased pERK in nucleus taeniae of the amygdala, pTH in ventromedial hypothalamus, and pCREB in mesencephalic central gray, robust nucleus of the arcopallium, and caudomedial nidopallium. However, several effects were critically dependent upon season. E(2) decreased pERK in caudomedial nidopallium in the breeding season only and decreased pCREB in the medial preoptic nucleus in the nonbreeding season only. Remarkably, E(2) decreased pERK in Hp in the breeding season but increased pERK in Hp in the nonbreeding season. Together, these data demonstrate that E(2) has rapid effects on intracellular signaling in multiple regions of the male brain and also demonstrate that rapid effects of E(2) can be profoundly different across the seasons.


Assuntos
Encéfalo/efeitos dos fármacos , Estradiol/metabolismo , Transdução de Sinais , Animais , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Fadrozol/farmacologia , Hipocampo/metabolismo , Masculino , Mesencéfalo/metabolismo , Modelos Biológicos , Fosforilação , Radioimunoensaio/métodos , Estações do Ano , Aves Canoras , Tirosina 3-Mono-Oxigenase/química
6.
Horm Behav ; 50(5): 726-35, 2006 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-16914152

RESUMO

Male European starlings (Sturnus vulgaris) sing throughout the year, but the social factors that motivate singing behavior differ depending upon the context in which song is produced. In a non-breeding context (when testosterone concentrations are low), starlings form large, mixed-sex flocks and song is involved in flock cohesion and perhaps maintenance of social hierarchies. In contrast, in a breeding context (when testosterone concentrations are high), male song plays a direct role in mate attraction. How the nervous system ensures that song production occurs in an appropriate context in response to appropriate stimuli is not well understood. The song control system regulates song production, learning, and, to some extent, perception; however, these nuclei do not appear to regulate the social context in which song is produced. A network of steroid hormone sensitive nuclei of the basal forebrain and midbrain regulates social behavior. The present study used the immediate early gene cFOS to explore possible involvement of these regions in context-dependent song production. Numbers of cFOS-labeled cells in the medial bed nucleus of the stria terminalis, anterior hypothalamus, and ventromedial nucleus of the hypothalamus related positively only to song produced in a breeding context. In contrast, numbers of cFOS-labeled cells in three zones of the lateral septum related positively only to song produced in a non-breeding context. Taken together, these data suggest differential regulation of male starling song by social behavior nuclei depending upon the breeding context in which it is produced.


Assuntos
Cruzamento , Proteínas Proto-Oncogênicas c-fos/metabolismo , Comportamento Sexual Animal/fisiologia , Estorninhos/fisiologia , Vocalização Animal/fisiologia , Animais , Química Encefálica , Feminino , Imuno-Histoquímica , Masculino
7.
J Neurobiol ; 65(3): 207-24, 2005 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-16155901

RESUMO

In some species, such as songbirds, much is known about how the brain regulates vocal learning, production, and perception. What remains a mystery is what regulates the motivation to communicate. European starlings (Sturnus vulgaris) sing throughout most of the year, but the social and environmental factors that motivate singing behavior differ seasonally. Male song is highly sexually motivated during, but not outside of, the breeding season. Brain areas outside the song control system, such as the medial preoptic nucleus (POM) and ventral tegmental area (VTA), have been implicated in regulating sexually motivated behaviors in birds, including song. The present study was designed to explore whether these regions, as well as three song control nuclei [area X, the high vocal center (HVC), and the robust nucleus of the arcopallium (RA)], might be involved differentially in song produced within compared to outside of a breeding context. We recorded the behavioral responses of breeding and nonbreeding condition male starlings to the introduction of a female conspecific. Males did not show context-dependent differences in the overall amount of song sung. However, immunocytochemistry for the protein product of the immediate early gene cFOS revealed a positive linear relationship between the total amount of songs sung and number of cFOS-labeled cells in POM, VTA, HVC, and RA for birds singing during, but not outside of, a breeding context. These results suggest that these regions differentially regulate male song production depending on reproductive context. Overall the data support the hypothesis that the POM and VTA interact with the song control system, specifically HVC and RA, to regulate sexually motivated vocal communication in songbirds.


Assuntos
Encéfalo/metabolismo , Regulação da Expressão Gênica/fisiologia , Motivação , Proteínas Proto-Oncogênicas c-fos/metabolismo , Comportamento Sexual Animal/fisiologia , Vocalização Animal/fisiologia , Análise de Variância , Animais , Comportamento Animal , Western Blotting/métodos , Encéfalo/citologia , Contagem de Células/métodos , Feminino , Imuno-Histoquímica/métodos , Masculino , Pró-Proteína Convertases/farmacologia , Estorninhos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA