Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Mol Ther Oncol ; 32(1): 200771, 2024 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-38596309

RESUMO

The high rates of protein synthesis and processing render multiple myeloma (MM) cells vulnerable to perturbations in protein homeostasis. The induction of proteotoxic stress by targeting protein degradation with proteasome inhibitors (PIs) has revolutionized the treatment of MM. However, resistance to PIs is inevitable and represents an ongoing clinical challenge. Our first-in-human study of the selective inhibitor of RNA polymerase I transcription of ribosomal RNA genes, CX-5461, has demonstrated a potential signal for anti-tumor activity in three of six heavily pre-treated MM patients. Here, we show that CX-5461 has potent anti-myeloma activity in PI-resistant MM preclinical models in vitro and in vivo. In addition to inhibiting ribosome biogenesis, CX-5461 causes topoisomerase II trapping and replication-dependent DNA damage, leading to G2/M cell-cycle arrest and apoptotic cell death. Combining CX-5461 with PI does not further enhance the anti-myeloma activity of CX-5461 in vivo. In contrast, CX-5461 shows synergistic interaction with the histone deacetylase inhibitor panobinostat in both the Vk∗MYC and the 5T33-KaLwRij mouse models of MM by targeting ribosome biogenesis and protein synthesis through distinct mechanisms. Our findings thus provide strong evidence to facilitate the clinical development of targeting the ribosome to treat relapsed and refractory MM.

2.
Biomedicines ; 11(4)2023 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-37189750

RESUMO

The survival rate of patients with osteosarcoma (OS) has not improved over the last 30 years. Mutations in the genes TP53, RB1 and c-Myc frequently occur in OS and enhance RNA Polymerase I (Pol I) activity, thus supporting uncontrolled cancer cell proliferation. We therefore hypothesised that Pol I inhibition may be an effective therapeutic strategy for this aggressive cancer. The Pol I inhibitor CX-5461 has demonstrated therapeutic efficacy in different cancers in pre-clinical and phase I clinical trials; thus, the effects were determined on ten human OS cell lines. Following characterisation using genome profiling and Western blotting, RNA Pol I activity, cell proliferation and cell cycle progression were evaluated in vitro, and the growth of TP53 wild-type and mutant tumours was measured in a murine allograft model and in two human xenograft OS models. CX-5461 treatment resulted in reduced ribosomal DNA (rDNA) transcription and Growth 2 (G2)-phase cell cycle arrest in all OS cell lines. Additionally, tumour growth in all allograft and xenograft OS models was effectively suppressed without apparent toxicity. Our study demonstrates the efficacy of Pol I inhibition against OS with varying genetic alterations. This study provides pre-clinical evidence to support this novel therapeutic approach in OS.

3.
Cell Rep ; 41(5): 111571, 2022 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-36323262

RESUMO

The nucleolar surveillance pathway monitors nucleolar integrity and responds to nucleolar stress by mediating binding of ribosomal proteins to MDM2, resulting in p53 accumulation. Inappropriate pathway activation is implicated in the pathogenesis of ribosomopathies, while drugs selectively activating the pathway are in trials for cancer. Despite this, the molecular mechanism(s) regulating this process are poorly understood. Using genome-wide loss-of-function screens, we demonstrate the ribosome biogenesis axis as the most potent class of genes whose disruption stabilizes p53. Mechanistically, we identify genes critical for regulation of this pathway, including HEATR3. By selectively disabling the nucleolar surveillance pathway, we demonstrate that it is essential for the ability of all nuclear-acting stresses, including DNA damage, to induce p53 accumulation. Our data support a paradigm whereby the nucleolar surveillance pathway is the central integrator of stresses that regulate nuclear p53 abundance, ensuring that ribosome biogenesis is hardwired to cellular proliferative capacity.


Assuntos
Proteínas Proto-Oncogênicas c-mdm2 , Proteína Supressora de Tumor p53 , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo , Proteínas Proto-Oncogênicas c-mdm2/genética , Proteínas Proto-Oncogênicas c-mdm2/metabolismo , Transdução de Sinais/genética , Nucléolo Celular/metabolismo , Proteínas Ribossômicas/genética , Proteínas Ribossômicas/metabolismo
4.
Invest New Drugs ; 40(3): 529-536, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35201535

RESUMO

BACKGROUND: Uterine leiomyosarcoma is a rare aggressive smooth muscle cancer with poor survival rates. RNA Polymerase I (Pol I) activity is elevated in many cancers supporting tumour growth and prior studies in uterine leiomyosarcoma revealed enlarged nucleoli and upregulated Pol I activity-related genes. This study aimed to investigate the anti-tumour potential of CX-5461, a Pol I transcription inhibitor currently being evaluated in clinical trials for several cancers, against the human uterine leiomyosarcoma cell line, SK-UT-1. METHODS: SK-UT-1 was characterised using genome profiling and western blotting. The anti-tumour effects of CX-5461 were investigated using cell proliferation assays, expression analysis using qRT-PCR, and BrdU/PI based cell cycle analysis. RESULTS: Genetic analysis of SK-UT-1 revealed mutations in TP53, RB1, PTEN, APC and TSC1 & 2, all potentially associated with increased Pol I activity. Protein expression analysis showed dysregulated p53, RB1 and c-Myc. CX-5461 treatment resulted in an anti-proliferation response, G2 phase cell-cycle arrest and on-target activity demonstrated by reduced ribosomal DNA transcription. CONCLUSIONS: SK-UT-1 was confirmed as a representative model of uterine leiomyosarcoma and CX-5461 has significant potential as a novel adjuvant for this rare cancer.


Assuntos
Benzotiazóis , Leiomiossarcoma , Naftiridinas , Neoplasias Uterinas , Benzotiazóis/farmacologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Inibidores Enzimáticos/farmacologia , Feminino , Humanos , Leiomiossarcoma/tratamento farmacológico , Leiomiossarcoma/genética , Leiomiossarcoma/metabolismo , Naftiridinas/farmacologia , RNA Polimerase I/antagonistas & inibidores , RNA Polimerase I/metabolismo , Transdução de Sinais/efeitos dos fármacos , Neoplasias Uterinas/tratamento farmacológico , Neoplasias Uterinas/genética , Neoplasias Uterinas/metabolismo
5.
Genes (Basel) ; 12(5)2021 05 18.
Artigo em Inglês | MEDLINE | ID: mdl-34069807

RESUMO

Nucleoli form around actively transcribed ribosomal RNA (rRNA) genes (rDNA), and the morphology and location of nucleolus-associated genomic domains (NADs) are linked to the RNA Polymerase I (Pol I) transcription status. The number of rDNA repeats (and the proportion of actively transcribed rRNA genes) is variable between cell types, individuals and disease state. Substantial changes in nucleolar morphology and size accompanied by concomitant changes in the Pol I transcription rate have long been documented during normal cell cycle progression, development and malignant transformation. This demonstrates how dynamic the nucleolar structure can be. Here, we will discuss how the structure of the rDNA loci, the nucleolus and the rate of Pol I transcription are important for dynamic regulation of global gene expression and genome stability, e.g., through the modulation of long-range genomic interactions with the suppressive NAD environment. These observations support an emerging paradigm whereby the rDNA repeats and the nucleolus play a key regulatory role in cellular homeostasis during normal development as well as disease, independent of their role in determining ribosome capacity and cellular growth rates.


Assuntos
Loci Gênicos/genética , Ribossomos/genética , Animais , Ciclo Celular/genética , Nucléolo Celular/genética , Genoma/genética , Instabilidade Genômica/genética , Homeostase/genética , Humanos , Transcrição Gênica/genética
6.
Front Cell Dev Biol ; 8: 568, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32719798

RESUMO

Hyperactivation of RNA polymerase I (Pol I) transcription of ribosomal RNA (rRNA) genes (rDNA) is a key determinant of growth and proliferation and a consistent feature of cancer cells. We have demonstrated that inhibition of rDNA transcription by the Pol I transcription inhibitor CX-5461 selectively kills tumor cells in vivo. Moreover, the first-in human trial of CX-5461 has demonstrated CX-5461 is well-tolerated in patients and has single-agent anti-tumor activity in hematologic malignancies. However, the mechanisms underlying tumor cell sensitivity to CX-5461 remain unclear. Understanding these mechanisms is crucial for the development of predictive biomarkers of response that can be utilized for stratifying patients who may benefit from CX-5461. The rDNA repeats exist in four different and dynamic chromatin states: inactive rDNA can be either methylated silent or unmethylated pseudo-silent; while active rDNA repeats are described as either transcriptionally competent but non-transcribed or actively transcribed, depending on the level of rDNA promoter methylation, loading of the essential rDNA chromatin remodeler UBF and histone marks status. In addition, the number of rDNA repeats per human cell can reach hundreds of copies. Here, we tested the hypothesis that the number and/or chromatin status of the rDNA repeats, is a critical determinant of tumor cell sensitivity to Pol I therapy. We systematically examined a panel of ovarian cancer (OVCA) cell lines to identify rDNA chromatin associated biomarkers that might predict sensitivity to CX-5461. We demonstrated that an increased proportion of active to inactive rDNA repeats, independent of rDNA copy number, determines OVCA cell line sensitivity to CX-5461. Further, using zinc finger nuclease genome editing we identified that reducing rDNA copy number leads to an increase in the proportion of active rDNA repeats and confers sensitivity to CX-5461 but also induces genome-wide instability and sensitivity to DNA damage. We propose that the proportion of active to inactive rDNA repeats may serve as a biomarker to identify cancer patients who will benefit from CX-5461 therapy in future clinical trials. The data also reinforces the notion that rDNA instability is a threat to genomic integrity and cellular homeostasis.

7.
Cancer Discov ; 9(8): 1036-1049, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31092402

RESUMO

RNA polymerase I (Pol I) transcription of ribosomal RNA genes (rDNA) is tightly regulated downstream of oncogenic pathways, and its dysregulation is a common feature in cancer. We evaluated CX-5461, the first-in-class selective rDNA transcription inhibitor, in a first-in-human, phase I dose-escalation study in advanced hematologic cancers. Administration of CX-5461 intravenously once every 3 weeks to 5 cohorts determined an MTD of 170 mg/m2, with a predictable pharmacokinetic profile. The dose-limiting toxicity was palmar-plantar erythrodysesthesia; photosensitivity was a dose-independent adverse event (AE), manageable by preventive measures. CX-5461 induced rapid on-target inhibition of rDNA transcription, with p53 activation detected in tumor cells from one patient achieving a clinical response. One patient with anaplastic large cell lymphoma attained a prolonged partial response and 5 patients with myeloma and diffuse large B-cell lymphoma achieved stable disease as best response. CX-5461 is safe at doses associated with clinical benefit and dermatologic AEs are manageable. SIGNIFICANCE: CX-5461 is a first-in-class selective inhibitor of rDNA transcription. This first-in-human study establishes the feasibility of targeting this process, demonstrating single-agent antitumor activity against advanced hematologic cancers with predictable pharmacokinetics and a safety profile allowing prolonged dosing. Consistent with preclinical data, antitumor activity was observed in TP53 wild-type and mutant malignancies.This article is highlighted in the In This Issue feature, p. 983.


Assuntos
Antineoplásicos/uso terapêutico , Benzotiazóis/uso terapêutico , Neoplasias Hematológicas/tratamento farmacológico , Neoplasias Hematológicas/genética , Naftiridinas/uso terapêutico , RNA Polimerase I/metabolismo , Transcrição Gênica/efeitos dos fármacos , Adulto , Idoso , Antineoplásicos/administração & dosagem , Antineoplásicos/efeitos adversos , Antineoplásicos/farmacocinética , Benzotiazóis/administração & dosagem , Benzotiazóis/efeitos adversos , Benzotiazóis/farmacologia , DNA Ribossômico/genética , Feminino , Neoplasias Hematológicas/diagnóstico , Neoplasias Hematológicas/metabolismo , Humanos , Masculino , Pessoa de Meia-Idade , Naftiridinas/administração & dosagem , Naftiridinas/efeitos adversos , Naftiridinas/farmacologia , Gradação de Tumores , Estadiamento de Neoplasias , Adulto Jovem
8.
Commun Biol ; 2: 39, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30701204

RESUMO

The three-dimensional organization of the genome contributes to its maintenance and regulation. While chromosomal regions associate with nucleolar ribosomal RNA genes (rDNA), the biological significance of rDNA-genome interactions and whether they are dynamically regulated during disease remain unclear. rDNA chromatin exists in multiple inactive and active states and their transition is regulated by the RNA polymerase I transcription factor UBTF. Here, using a MYC-driven lymphoma model, we demonstrate that during malignant progression the rDNA chromatin converts to the open state, which is required for tumor cell survival. Moreover, this rDNA transition co-occurs with a reorganization of rDNA-genome contacts which correlate with gene expression changes at associated loci, impacting gene ontologies including B-cell differentiation, cell growth and metabolism. We propose that UBTF-mediated conversion to open rDNA chromatin during malignant transformation contributes to the regulation of specific gene pathways that regulate growth and differentiation through reformed long-range physical interactions with the rDNA.


Assuntos
Transformação Celular Neoplásica/genética , DNA Ribossômico/genética , Genes de RNAr , Predisposição Genética para Doença , Genoma , RNA Polimerase II/genética , Linhagem Celular Tumoral , Cromatina/genética , Cromatina/metabolismo , Montagem e Desmontagem da Cromatina , Progressão da Doença , Epistasia Genética , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Humanos , Neoplasias/genética , Neoplasias/metabolismo , Neoplasias/patologia
9.
Assay Drug Dev Technol ; 16(6): 320-332, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30148664

RESUMO

The nucleolus is a dynamic subnuclear compartment that has a number of different functions, but its primary role is to coordinate the production and assembly of ribosomes. For well over 100 years, pathologists have used changes in nucleolar number and size to stage diseases such as cancer. New information about the nucleolus' broader role within the cell is leading to the development of drugs which directly target its structure as therapies for disease. Traditionally, it has been difficult to develop high-throughput image analysis pipelines to measure nucleolar changes due to the broad range of morphologies observed. In this study, we describe a simple high-content image analysis algorithm using Harmony software (PerkinElmer), with a PhenoLOGIC™ machine-learning component, that can measure and classify three different nucleolar morphologies based on nucleolin and fibrillarin staining ("normal," "peri-nucleolar rings" and "dispersed"). We have utilized this algorithm to determine the changes in these classes of nucleolar morphologies over time with drugs known to alter nucleolar structure. This approach could be further adapted to include other parameters required for the identification of new therapies that directly target the nucleolus.


Assuntos
Nucléolo Celular/patologia , Ensaios de Triagem em Larga Escala , Células A549 , Algoritmos , Nucléolo Celular/metabolismo , Humanos , Aprendizado de Máquina , Estresse Oxidativo , Software , Células Tumorais Cultivadas
10.
Bioessays ; 40(5): e1700233, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29603296

RESUMO

Over the last decade, our appreciation of the importance of the nucleolus for cellular function has progressed from the ordinary to the extraordinary. We no longer think of the nucleolus as simply the site of ribosome production, or a dynamic subnuclear body noted by pathologists for its changes in size and shape with malignancy. Instead, the nucleolus has emerged as a key controller of many cellular processes that are fundamental to normal cell homeostasis and the target for dysregulation in many human diseases; in some cases, independent of its functions in ribosome biogenesis. These extra-nucleolar or new functions, which we term "non-canonical" to distinguish them from the more traditional role of the nucleolus in ribosome synthesis, are the focus of this review. In particular, we explore how these non-canonical functions may provide novel insights into human disease and in some cases new targets for therapeutic development.


Assuntos
Nucléolo Celular/metabolismo , Ribossomos/metabolismo , Humanos , Neoplasias/metabolismo , Doenças do Sistema Nervoso/metabolismo , Biogênese de Organelas
11.
Pathology ; 49(4): 337-345, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28483372

RESUMO

Waldenström macroglobulinaemia (WM) is an indolent mature B cell lymphoma characterised by an infiltrate of heterogeneous B cells and hypersecretion of IgM. There are two distinct cellular populations that can be distinguished on morphology and immunophenotyping within the bone marrow. The predominant lymphoplasmacytic compartment arises at an earlier stage in ontogeny, and is responsible for the cytopenias noted during the symptomatic phase of the disease. This population is ably targeted by B cell immunodepletion. The smaller plasma cell compartment has been shown to be monotypic and to carry the MYD88L265P mutation noted in >90% of WM. Further, pathogenic IgM levels tend to correlate better with plasma cell burden as compared to lymphoplasmacytic cell burden within the bone marrow. B cell immunodepletion does not eradicate the plasma cell compartment resulting in persistent IgM levels and poor complete remission rates. In this review we discuss the different cellular compartments in WM and highlight evidence regarding the significance and impending function of the plasma cell compartment in WM. We suggest detection of plasma cells be incorporated into routine diagnostic algorithms, and highlight the need to trial incorporation of plasma cell depleting therapy into treatment algorithms to deepen responses and improve clinical outcomes.


Assuntos
Medula Óssea/patologia , Imunofenotipagem , Plasmócitos/patologia , Macroglobulinemia de Waldenstrom/terapia , Animais , Linfócitos B/imunologia , Linfócitos B/patologia , Medula Óssea/imunologia , Humanos , Mutação/genética , Mutação/imunologia , Plasmócitos/imunologia , Macroglobulinemia de Waldenstrom/diagnóstico , Macroglobulinemia de Waldenstrom/imunologia
12.
World J Gastroenterol ; 23(13): 2276-2285, 2017 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-28428707

RESUMO

Pancreatic ductal adenocarcinoma is a devastating disease with a poor prognosis regardless of stage. To date the mainstay of therapy for advanced disease has been chemotherapy with little incremental improvements in outcome. Despite extensive research investigating new treatment options the current practices continue to utilise fluorouracil or gemcitabine containing combinations. The need for novel therapeutic approaches is mandated by the ongoing poor survival rates associated with this disease. One such approach may include manipulation of ribosome biogenesis and the nucleolar stress response, which has recently been applied to haematological malignancies such as lymphoma and prostate cancer with promising results. This review will focus on the current therapeutic options for pancreatic ductal adenocarcinoma and the complexities associated with developing novel treatments, with a particular emphasis on the role of the nucleolus as a treatment strategy.


Assuntos
Carcinoma Ductal Pancreático/terapia , Neoplasias Pancreáticas/terapia , Humanos , Biogênese de Organelas , Ribossomos
13.
Blood ; 129(21): 2882-2895, 2017 05 25.
Artigo em Inglês | MEDLINE | ID: mdl-28283481

RESUMO

Despite the development of novel drugs, the prospects for many patients with acute myeloid leukemia (AML) remain dismal. This study reveals that the selective inhibitor of RNA polymerase I (Pol I) transcription, CX-5461, effectively treats aggressive AML, including mixed-lineage leukemia-driven AML, and outperforms standard chemotherapies. In addition to the previously characterized mechanism of action of CX-5461 (ie, the induction of p53-dependent apoptotic cell death), the inhibition of Pol I transcription also demonstrates potent efficacy in p53null AML in vivo. This significant survival advantage in both p53WT and p53null leukemic mice treated with CX-5461 is associated with activation of the checkpoint kinases 1/2, an aberrant G2/M cell-cycle progression and induction of myeloid differentiation of the leukemic blasts. The ability to target the leukemic-initiating cell population is thought to be essential for lasting therapeutic benefit. Most strikingly, the acute inhibition of Pol I transcription reduces both the leukemic granulocyte-macrophage progenitor and leukemia-initiating cell (LIC) populations, and suppresses their clonogenic capacity. This suggests that dysregulated Pol I transcription is essential for the maintenance of their leukemia-initiating potential. Together, these findings demonstrate the therapeutic utility of this new class of inhibitors to treat highly aggressive AML by targeting LICs.


Assuntos
Benzotiazóis/farmacologia , Leucemia Mieloide Aguda/tratamento farmacológico , Naftiridinas/farmacologia , Células-Tronco Neoplásicas/enzimologia , Proteínas Pol1 do Complexo de Iniciação de Transcrição/antagonistas & inibidores , Transcrição Gênica/efeitos dos fármacos , Animais , Divisão Celular/efeitos dos fármacos , Divisão Celular/genética , Linhagem Celular Tumoral , Quinase 1 do Ponto de Checagem/genética , Quinase 1 do Ponto de Checagem/metabolismo , Quinase do Ponto de Checagem 2/genética , Quinase do Ponto de Checagem 2/metabolismo , Fase G2/efeitos dos fármacos , Fase G2/genética , Humanos , Leucemia Mieloide Aguda/epidemiologia , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/patologia , Camundongos , Camundongos Endogâmicos NOD , Camundongos Mutantes , Células-Tronco Neoplásicas/patologia , Proteínas Pol1 do Complexo de Iniciação de Transcrição/genética , Proteínas Pol1 do Complexo de Iniciação de Transcrição/metabolismo , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo
14.
Oncotarget ; 7(31): 49800-49818, 2016 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-27391441

RESUMO

RNA polymerase I (Pol I)-mediated transcription of the ribosomal RNA genes (rDNA) is confined to the nucleolus and is a rate-limiting step for cell growth and proliferation. Inhibition of Pol I by CX-5461 can selectively induce p53-mediated apoptosis of tumour cells in vivo. Currently, CX-5461 is in clinical trial for patients with advanced haematological malignancies (Peter Mac, Melbourne). Here we demonstrate that CX-5461 also induces p53-independent cell cycle checkpoints mediated by ATM/ATR signaling in the absence of DNA damage. Further, our data demonstrate that the combination of drugs targeting ATM/ATR signaling and CX-5461 leads to enhanced therapeutic benefit in treating p53-null tumours in vivo, which are normally refractory to each drug alone. Mechanistically, we show that CX-5461 induces an unusual chromatin structure in which transcriptionally competent relaxed rDNA repeats are devoid of transcribing Pol I leading to activation of ATM signaling within the nucleoli. Thus, we propose that acute inhibition of Pol transcription initiation by CX-5461 induces a novel nucleolar stress response that can be targeted to improve therapeutic efficacy.


Assuntos
Proteínas Mutadas de Ataxia Telangiectasia/metabolismo , Benzotiazóis/farmacologia , Naftiridinas/farmacologia , Inibidores da Síntese de Ácido Nucleico/farmacologia , RNA Polimerase I/antagonistas & inibidores , Transdução de Sinais , Animais , Apoptose , Crescimento Celular , Nucléolo Celular/metabolismo , Proliferação de Células , Cromatina/metabolismo , Ensaio Cometa , Dano ao DNA , DNA Ribossômico/genética , Fibroblastos/metabolismo , Neoplasias Hematológicas/metabolismo , Humanos , Camundongos , Camundongos Endogâmicos C57BL , RNA Polimerase I/metabolismo , Proteína Supressora de Tumor p53/metabolismo
15.
Cancer Discov ; 6(1): 59-70, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26490423

RESUMO

UNLABELLED: Ribosome biogenesis and protein synthesis are dysregulated in many cancers, with those driven by the proto-oncogene c-MYC characterized by elevated Pol I-mediated ribosomal rDNA transcription and mTORC1/eIF4E-driven mRNA translation. Here, we demonstrate that coordinated targeting of rDNA transcription and PI3K-AKT-mTORC1-dependent ribosome biogenesis and protein synthesis provides a remarkable improvement in survival in MYC-driven B lymphoma. Combining an inhibitor of rDNA transcription (CX-5461) with the mTORC1 inhibitor everolimus more than doubled survival of Eµ-Myc lymphoma-bearing mice. The ability of each agent to trigger tumor cell death via independent pathways was central to their synergistic efficacy. CX-5461 induced nucleolar stress and p53 pathway activation, whereas everolimus induced expression of the proapoptotic protein BMF that was independent of p53 and reduced expression of RPL11 and RPL5. Thus, targeting the network controlling the synthesis and function of ribosomes at multiple points provides a potential new strategy to treat MYC-driven malignancies. SIGNIFICANCE: Treatment options for the high proportion of cancers driven by MYC are limited. We demonstrate that combining pharmacologic targeting of ribosome biogenesis and mTORC1-dependent translation provides a remarkable therapeutic benefit to Eµ-Myc lymphoma-bearing mice. These results establish a rationale for targeting ribosome biogenesis and function to treat MYC-driven cancer.


Assuntos
Benzotiazóis/administração & dosagem , DNA Ribossômico/antagonistas & inibidores , Everolimo/administração & dosagem , Linfoma de Células B/terapia , Naftiridinas/administração & dosagem , Proteínas Proto-Oncogênicas c-myc/genética , Animais , Protocolos de Quimioterapia Combinada Antineoplásica/administração & dosagem , Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Benzotiazóis/farmacologia , Sinergismo Farmacológico , Everolimo/farmacologia , Humanos , Linfoma de Células B/genética , Camundongos , Naftiridinas/farmacologia , Biossíntese de Proteínas/efeitos dos fármacos , Proto-Oncogene Mas , Transdução de Sinais/efeitos dos fármacos , Análise de Sobrevida , Transcrição Gênica/efeitos dos fármacos , Resultado do Tratamento , Ensaios Antitumorais Modelo de Xenoenxerto
16.
Trends Mol Med ; 19(11): 643-54, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23953479

RESUMO

For over 100 years, pathologists have utilised an increase in size and number of nucleoli, the subnuclear site of ribosome synthesis, as a marker of aggressive tumours. Despite this, the contribution of the nucleolus and ribosomal RNA synthesis to cancer has been largely overlooked. This concept has recently changed with the demonstration that the nucleolus indirectly controls numerous other cellular functions, in particular, the cellular activity of the critical tumour suppressor protein, p53. Moreover, selective inhibition of ribosomal gene transcription in the nucleolus has been shown to be an effective therapeutic strategy to promote cancer-specific activation of p53. This article reviews the largely untapped potential of the nucleolus and ribosomal gene transcription as exciting new targets for cancer therapy.


Assuntos
Antineoplásicos/farmacologia , Nucléolo Celular/genética , Neoplasias/tratamento farmacológico , Neoplasias/metabolismo , Animais , Nucléolo Celular/efeitos dos fármacos , Nucléolo Celular/metabolismo , DNA Ribossômico/genética , DNA Ribossômico/metabolismo , Regulação Neoplásica da Expressão Gênica , Humanos , Neoplasias/genética , Neoplasias/patologia
17.
Cancer Cell ; 22(1): 51-65, 2012 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-22789538

RESUMO

Increased transcription of ribosomal RNA genes (rDNA) by RNA Polymerase I is a common feature of human cancer, but whether it is required for the malignant phenotype remains unclear. We show that rDNA transcription can be therapeutically targeted with the small molecule CX-5461 to selectively kill B-lymphoma cells in vivo while maintaining a viable wild-type B cell population. The therapeutic effect is a consequence of nucleolar disruption and activation of p53-dependent apoptotic signaling. Human leukemia and lymphoma cell lines also show high sensitivity to inhibition of rDNA transcription that is dependent on p53 mutational status. These results identify selective inhibition of rDNA transcription as a therapeutic strategy for the cancer specific activation of p53 and treatment of hematologic malignancies.


Assuntos
Neoplasias/metabolismo , RNA Polimerase I/antagonistas & inibidores , Proteína Supressora de Tumor p53/metabolismo , Animais , Apoptose , Benzotiazóis/farmacologia , DNA Ribossômico/genética , Feminino , Camundongos , Camundongos Transgênicos , Naftiridinas/farmacologia , Neoplasias/genética , Neoplasias/patologia , RNA Ribossômico/genética , Transcrição Gênica
18.
IUBMB Life ; 63(2): 79-85, 2011 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-21360636

RESUMO

It is becoming increasingly clear that dysregulation of protein synthesis contributes to a range of diseases characterized by tissue overgrowth. These include arterial stenosis, cardiac hypertrophy, hamartomas, and cancer. The central hub for the regulation of protein synthesis is the ribosome, where the key signaling pathways downstream of RAS, MYC, and phosphatidylinositol-3-kinase (PI3K) converge to confer exquisite, coordinated control of ribosome synthesis and function. Such cooperation ensures strict regulation of protein synthesis rates and cell growth. This review will focus on the role the PI3K/AKT/mammalian target of rapamycin complex 1 (mTORC1) pathway plays in regulating ribosome function during both health and disease, its interaction with the other key growth regulatory pathways activated by RAS and MYC, and the therapeutic potential for targeting this network.


Assuntos
Neoplasias/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais , Animais , Proliferação de Células , Humanos , Alvo Mecanístico do Complexo 1 de Rapamicina , Camundongos , Complexos Multiproteicos , Neoplasias/genética , Neoplasias/fisiopatologia , Fosfatidilinositol 3-Quinases/genética , Fosforilação , Biossíntese de Proteínas , Proteínas/genética , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-myc/genética , Proteínas Proto-Oncogênicas c-myc/metabolismo , Ribossomos/metabolismo , Sirolimo/química , Serina-Treonina Quinases TOR , Proteínas ras/genética , Proteínas ras/metabolismo
19.
BMC Mol Biol ; 12: 9, 2011 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-21345218

RESUMO

BACKGROUND: The MAD1 protein, a member of the MYC/MAX/MAD network of transcriptional regulators, controls cell proliferation, differentiation and apoptosis. MAD1 functions as a transcriptional repressor, one direct target gene being the tumor suppressor PTEN. Repression of this gene is critical to mediate the anti-apoptotic function of MAD1. Under certain conditions it also antagonizes the functions of the oncoprotein MYC. Previous studies have demonstrated that MAD1 expression is controlled by different cytokines and growth factors. Moreover we have recently demonstrated that the MAD1 promoter is controlled by the cytokine granulocyte colony-stimulating factor (G-CSF) through the activation of STAT3, MAP kinases and C/EBP transcription factors. RESULTS: We observed that in addition to G-CSF, the cytokine transforming growth factor ß (TGFß1) rapidly induced the expression of MAD1 mRNA and protein in promyelocytic tumor cells. Moreover we found that C/EBP and SP transcription factors cooperated in regulating the expression of MAD1. This cooperativity was dependent on the respective binding sites in the proximal promoter, with the CCAAT boxes being bound by C/EBPα/ß heterodimers. Both C/EBP and SP transcription factors bound constitutively to DNA without obvious changes in response to TGFß1. In addition SMAD3 stimulated the MAD1 reporter, cooperated with C/EBPα and was bound to the core promoter region. Thus SMAD3 appears to be a potential link between TGFß1 signaling and C/EBP regulated promoter activity. Moreover TGFß1 stimulated the phosphorylation of polymerase II at serine 2 and its progression into the gene body, consistent with enhanced processivity. CONCLUSIONS: Our findings suggest that C/EBP and SP factors provide a platform of transcription factors near the core promoter of the MAD1 gene that participate in mediating signal transduction events emanating from different cytokine receptors. SMAD3, a target of TGFß1 signaling, appears to be functionally relevant. We suggest that a key event induced by TGFß1 at the MAD1 promoter is the recruitment or activation of cofactors, possibly in complex with C/EBP, SP, and SMAD3 transcriptional regulators, that control polymerase activity.


Assuntos
Proteína alfa Estimuladora de Ligação a CCAAT/metabolismo , Proteína beta Intensificadora de Ligação a CCAAT/metabolismo , Proteínas de Ciclo Celular/genética , DNA Polimerase II/metabolismo , Proteínas Nucleares/genética , Proteína Smad3/metabolismo , Fator de Transcrição Sp1/metabolismo , Fator de Crescimento Transformador beta1/metabolismo , Regulação para Cima , Proteína alfa Estimuladora de Ligação a CCAAT/genética , Proteína beta Intensificadora de Ligação a CCAAT/genética , Proteínas de Ciclo Celular/metabolismo , Linhagem Celular , DNA Polimerase II/genética , Regulação da Expressão Gênica , Humanos , Proteínas Nucleares/metabolismo , Fosforilação , Regiões Promotoras Genéticas , Ligação Proteica , Proteína Smad3/genética , Fator de Transcrição Sp1/genética , Fator de Crescimento Transformador beta1/genética
20.
Proc Natl Acad Sci U S A ; 107(1): 58-63, 2010 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-19966300

RESUMO

The MYC and RAS oncogenes are frequently activated in cancer and, together, are sufficient to transform rodent cells. The basis for this cooperativity remains unclear. We found that although Ras interfered with Myc-induced apoptosis, Myc repressed Ras-induced senescence, together abrogating two main barriers of tumorigenesis. Inhibition of cellular senescence required phosphorylation of Myc at Ser-62 by cyclin E/cyclin-dependent kinase (Cdk) 2. Cdk2 interacted with Myc at promoters, where it affected Myc-dependent regulation of genes, including Bmi-1, p16, p21, and hTERT, which encode proteins known to control senescence. Repression of senescence by Myc was abrogated by the Cdk inhibitor p27Kip1, which is induced by antiproliferative signals like IFN-gamma or by pharmacological inhibitors of Cdk2 but not by inhibitors of other Cdks. In contrast, a phospho-mimicking Myc-S62D mutant was resistant to these manipulations. Inhibition of cyclin E/Cdk2 reversed the senescence-associated gene expression pattern imposed by Myc/cyclin E/Cdk2. This indicates a role of Cdk2 as a transcriptional cofactor and activator of the antisenescence function of Myc and provides mechanistic insight into the Myc-p27Kip1 antagonism. Finally, our findings highlight that pharmacological inhibition of Cdk2 activity is a potential therapeutical principle for cancer therapy, in particular for tumors with activated Myc or Ras.


Assuntos
Transformação Celular Neoplásica/metabolismo , Senescência Celular/fisiologia , Quinase 2 Dependente de Ciclina/metabolismo , Proteínas Proto-Oncogênicas c-myc/metabolismo , Proteínas ras/metabolismo , Animais , Linhagem Celular Tumoral , Ciclina E/genética , Ciclina E/metabolismo , Quinase 2 Dependente de Ciclina/antagonistas & inibidores , Quinase 2 Dependente de Ciclina/genética , Inibidor de Quinase Dependente de Ciclina p27/genética , Inibidor de Quinase Dependente de Ciclina p27/metabolismo , Fibroblastos/citologia , Fibroblastos/fisiologia , Humanos , Interferon gama/metabolismo , Fosforilação , Regiões Promotoras Genéticas , Proteínas Proto-Oncogênicas c-myc/genética , Ratos , Serina/metabolismo , Proteínas ras/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA