Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
1.
Front Endocrinol (Lausanne) ; 14: 1251351, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38390373

RESUMO

Introduction: During thermogenesis, adipose tissue (AT) becomes more active and enhances oxidative metabolism. The promotion of this process in white AT (WAT) is called "browning" and, together with the brown AT (BAT) activation, is considered as a promising approach to counteract obesity and metabolic diseases. Transient receptor potential cation channel, subfamily M, member 2 (TRPM2), is an ion channel that allows extracellular Ca2+ influx into the cytosol, and is gated by adenosine diphosphate ribose (ADPR), produced from NAD+ degradation. The aim of this study was to investigate the relevance of TRPM2 in the regulation of energy metabolism in BAT, WAT, and liver during thermogenesis. Methods: Wild type (WT) and Trpm2-/- mice were exposed to 6°C and BAT, WAT and liver were collected to evaluate mRNA, protein levels and ADPR content. Furthermore, O2 consumption, CO2 production and energy expenditure were measured in these mice upon thermogenic stimulation. Finally, the effect of the pharmacological inhibition of TRPM2 was assessed in primary adipocytes, evaluating the response upon stimulation with the ß-adrenergic receptor agonist CL316,243. Results: Trpm2-/- mice displayed lower expression of browning markers in AT and lower energy expenditure in response to thermogenic stimulus, compared to WT animals. Trpm2 gene overexpression was observed in WAT, BAT and liver upon cold exposure. In addition, ADPR levels and mono/poly-ADPR hydrolases expression were higher in mice exposed to cold, compared to control mice, likely mediating ADPR generation. Discussion: Our data indicate TRPM2 as a fundamental player in BAT activation and WAT browning. TRPM2 agonists may represent new pharmacological strategies to fight obesity.


Assuntos
Canais de Cátion TRPM , Camundongos , Animais , Canais de Cátion TRPM/genética , Canais de Cátion TRPM/metabolismo , Tecido Adiposo Marrom/metabolismo , Tecido Adiposo Branco/metabolismo , Obesidade/genética , Obesidade/metabolismo , Termogênese/genética
2.
Nature ; 625(7994): 385-392, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38123683

RESUMO

Digested dietary fats are taken up by enterocytes where they are assembled into pre-chylomicrons in the endoplasmic reticulum followed by transport to the Golgi for maturation and subsequent secretion to the circulation1. The role of mitochondria in dietary lipid processing is unclear. Here we show that mitochondrial dysfunction in enterocytes inhibits chylomicron production and the transport of dietary lipids to peripheral organs. Mice with specific ablation of the mitochondrial aspartyl-tRNA synthetase DARS2 (ref. 2), the respiratory chain subunit SDHA3 or the assembly factor COX10 (ref. 4) in intestinal epithelial cells showed accumulation of large lipid droplets (LDs) in enterocytes of the proximal small intestine and failed to thrive. Feeding a fat-free diet suppressed the build-up of LDs in DARS2-deficient enterocytes, which shows that the accumulating lipids derive mostly from digested fat. Furthermore, metabolic tracing studies revealed an impaired transport of dietary lipids to peripheral organs in mice lacking DARS2 in intestinal epithelial cells. DARS2 deficiency caused a distinct lack of mature chylomicrons concomitant with a progressive dispersal of the Golgi apparatus in proximal enterocytes. This finding suggests that mitochondrial dysfunction results in impaired trafficking of chylomicrons from the endoplasmic reticulum to the Golgi, which in turn leads to storage of dietary lipids in large cytoplasmic LDs. Taken together, these results reveal a role for mitochondria in dietary lipid transport in enterocytes, which might be relevant for understanding the intestinal defects observed in patients with mitochondrial disorders5.


Assuntos
Gorduras na Dieta , Enterócitos , Metabolismo dos Lipídeos , Mitocôndrias , Animais , Camundongos , Aspartato-tRNA Ligase/metabolismo , Quilomícrons/metabolismo , Gorduras na Dieta/metabolismo , Complexo II de Transporte de Elétrons/metabolismo , Retículo Endoplasmático/metabolismo , Enterócitos/metabolismo , Enterócitos/patologia , Células Epiteliais/metabolismo , Complexo de Golgi/metabolismo , Intestinos , Gotículas Lipídicas/metabolismo , Mitocôndrias/metabolismo , Mitocôndrias/patologia
3.
Mol Metab ; 71: 101705, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36907508

RESUMO

OBJECTIVE: In brown adipose tissue (iBAT), the balance between lipid/glucose uptake and lipolysis is tightly regulated by insulin signaling. Downstream of the insulin receptor, PDK1 and mTORC2 phosphorylate AKT, which activates glucose uptake and lysosomal mTORC1 signaling. The latter requires the late endosomal/lysosomal adaptor and MAPK and mTOR activator (LAMTOR/Ragulator) complex, which serves to translate the nutrient status of the cell to the respective kinase. However, the role of LAMTOR in metabolically active iBAT has been elusive. METHODS: Using an AdipoqCRE-transgenic mouse line, we deleted LAMTOR2 (and thereby the entire LAMTOR complex) in adipose tissue (LT2 AKO). To examine the metabolic consequences, we performed metabolic and biochemical studies in iBAT isolated from mice housed at different temperatures (30 °C, room temperature and 5 °C), after insulin treatment, or in fasted and refed condition. For mechanistic studies, mouse embryonic fibroblasts (MEFs) lacking LAMTOR 2 were analyzed. RESULTS: Deletion of the LAMTOR complex in mouse adipocytes resulted in insulin-independent AKT hyperphosphorylation in iBAT, causing increased glucose and fatty acid uptake, which led to massively enlarged lipid droplets. As LAMTOR2 was essential for the upregulation of de novo lipogenesis, LAMTOR2 deficiency triggered exogenous glucose storage as glycogen in iBAT. These effects are cell autonomous, since AKT hyperphosphorylation was abrogated by PI3K inhibition or by deletion of the mTORC2 component Rictor in LAMTOR2-deficient MEFs. CONCLUSIONS: We identified a homeostatic circuit for the maintenance of iBAT metabolism that links the LAMTOR-mTORC1 pathway to PI3K-mTORC2-AKT signaling downstream of the insulin receptor.


Assuntos
Proteínas Proto-Oncogênicas c-akt , Receptor de Insulina , Camundongos , Animais , Receptor de Insulina/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Tecido Adiposo Marrom/metabolismo , Fibroblastos/metabolismo , Alvo Mecanístico do Complexo 2 de Rapamicina/metabolismo , Insulina/metabolismo , Camundongos Transgênicos , Lisossomos/metabolismo , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Nutrientes , Homeostase , Glucose/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas/metabolismo
4.
Cells ; 12(3)2023 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-36766683

RESUMO

Nonalcoholic fatty liver disease (NAFLD) is the most common liver pathology worldwide. In mice and humans, NAFLD progression is characterized by the appearance of TREM2-expressing macrophages in the liver. However, their mechanistic contributions to disease progression have not been completely elucidated. Here, we show that TREM2+ macrophages prevent the generation of a pro-inflammatory response elicited by LPS-laden lipoproteins in vitro. Further, Trem2 expression regulates bone-marrow-derived macrophages (BMDMs) and Kupffer cell capacity to phagocyte apoptotic cells in vitro, which is dependent on CD14 activation. In line with this, loss of Trem2 resulted in an increased pro-inflammatory response, which ultimately aggravated liver fibrosis in murine models of NAFLD. Similarly, in a human NAFLD cohort, plasma levels of TREM2 were increased and hepatic TREM2 expression was correlated with higher levels of liver triglycerides and the acquisition of a fibrotic gene signature. Altogether, our results suggest that TREM2+ macrophages have a protective function during the progression of NAFLD, as they are involved in the processing of pro-inflammatory lipoproteins and phagocytosis of apoptotic cells and, thereby, are critical contributors for the re-establishment of liver homeostasis.


Assuntos
Hepatopatia Gordurosa não Alcoólica , Humanos , Camundongos , Animais , Hepatopatia Gordurosa não Alcoólica/metabolismo , Cirrose Hepática/patologia , Macrófagos/metabolismo , Apoptose , Glicoproteínas de Membrana/genética , Receptores Imunológicos
5.
Front Immunol ; 14: 1308456, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38264660

RESUMO

Next to white and brown adipocytes present in white and brown adipose tissue (WAT, BAT), vascular endothelial cells, tissue-resident macrophages and other immune cells have important roles in maintaining adipose tissue homeostasis but also contribute to the etiology of obesity-associated chronic inflammatory metabolic diseases. In addition to hormonal signals such as insulin and norepinephrine, extracellular adenine nucleotides modulate lipid storage, fatty acid release and thermogenic responses in adipose tissues. The complex regulation of extracellular adenine nucleotides involves a network of ectoenzymes that convert ATP via ADP and AMP to adenosine. However, in WAT and BAT the processing of extracellular adenine nucleotides and its relevance for intercellular communications are still largely unknown. Based on our observations that in adipose tissues the adenosine-generating enzyme CD73 is mainly expressed by vascular endothelial cells, we studied glucose and lipid handling, energy expenditure and adaptive thermogenesis in mice lacking endothelial CD73 housed at different ambient temperatures. Under conditions of thermogenic activation, CD73 expressed by endothelial cells is dispensable for the expression of thermogenic genes as well as energy expenditure. Notably, thermoneutral housing leading to a state of low energy expenditure and lipid accumulation in adipose tissues resulted in enhanced glucose uptake into WAT of endothelial CD73-deficient mice. This effect was associated with elevated expression levels of de novo lipogenesis genes. Mechanistic studies provide evidence that extracellular adenosine is imported into adipocytes and converted to AMP by adenosine kinase. Subsequently, activation of the AMP kinase lowers the expression of de novo lipogenesis genes, most likely via inactivation of the transcription factor carbohydrate response element binding protein (ChREBP). In conclusion, this study demonstrates that endothelial-derived extracellular adenosine generated via the ectoenzyme CD73 is a paracrine factor shaping lipid metabolism in WAT.


Assuntos
5'-Nucleotidase , Células Endoteliais , Lipogênese , Animais , Camundongos , Nucleotídeos de Adenina , Adenosina , Monofosfato de Adenosina , Adipócitos Marrons , Tecido Adiposo Marrom , Lipídeos , 5'-Nucleotidase/metabolismo
6.
Nature ; 609(7926): 361-368, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35790189

RESUMO

Brown adipose tissue (BAT) dissipates energy1,2 and promotes cardiometabolic health3. Loss of BAT during obesity and ageing is a principal hurdle for BAT-centred obesity therapies, but not much is known about BAT apoptosis. Here, untargeted metabolomics demonstrated that apoptotic brown adipocytes release a specific pattern of metabolites with purine metabolites being highly enriched. This apoptotic secretome enhances expression of the thermogenic programme in healthy adipocytes. This effect is mediated by the purine inosine that stimulates energy expenditure in brown adipocytes by the cyclic adenosine monophosphate-protein kinase A signalling pathway. Treatment of mice with inosine increased BAT-dependent energy expenditure and induced 'browning' of white adipose tissue. Mechanistically, the equilibrative nucleoside transporter 1 (ENT1, SLC29A1) regulates inosine levels in BAT: ENT1-deficiency increases extracellular inosine levels and consequently enhances thermogenic adipocyte differentiation. In mice, pharmacological inhibition of ENT1 as well as global and adipose-specific ablation enhanced BAT activity and counteracted diet-induced obesity, respectively. In human brown adipocytes, knockdown or blockade of ENT1 increased extracellular inosine, which enhanced thermogenic capacity. Conversely, high ENT1 levels correlated with lower expression of the thermogenic marker UCP1 in human adipose tissues. Finally, the Ile216Thr loss of function mutation in human ENT1 was associated with significantly lower body mass index and 59% lower odds of obesity for individuals carrying the Thr variant. Our data identify inosine as a metabolite released during apoptosis with a 'replace me' signalling function that regulates thermogenic fat and counteracts obesity.


Assuntos
Adipócitos Marrons , Tecido Adiposo Marrom , Metabolismo Energético , Inosina , Adipócitos Marrons/efeitos dos fármacos , Adipócitos Marrons/metabolismo , Tecido Adiposo Marrom/efeitos dos fármacos , Tecido Adiposo Marrom/metabolismo , Tecido Adiposo Branco/efeitos dos fármacos , Tecido Adiposo Branco/metabolismo , Animais , Metabolismo Energético/efeitos dos fármacos , Transportador Equilibrativo 1 de Nucleosídeo/antagonistas & inibidores , Transportador Equilibrativo 1 de Nucleosídeo/metabolismo , Humanos , Inosina/metabolismo , Inosina/farmacologia , Camundongos , Obesidade/genética , Obesidade/metabolismo , Termogênese/genética , Proteína Desacopladora 1/metabolismo
7.
Immunology ; 162(4): 452-463, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33346377

RESUMO

Autoimmune diseases are caused by adaptive immune responses to self-antigens. The development of antigen-specific therapies that suppress disease-related, but not unrelated immune responses in general, is an important goal of biomedical research. We have previously shown that delivery of myelin peptides to liver sinusoidal endothelial cells (LSECs) using LSEC-targeting nanoparticles provides effective protection from CD4 T-cell-driven autoimmune encephalomyelitis. Here, we investigated whether this methodology might also serve antigen-specific treatment of a CD8 T-cell-driven autoimmune disease. As a model for CD8 T-cell-mediated autoimmunity, we used OT-1 T-cell-driven cholangitis in K14-OVAp mice expressing the cognate MHC I-restricted SIINFEKL peptide in cholangiocytes. To study whether peptide delivery to LSECs could modulate cholangitis, SIINFEKL peptide-conjugated nanoparticles were administered intravenously one day before transfer of OT-1 T cells; five days after cell transfer, liver pathology and hepatic infiltrates were analysed. SIINFEKL peptide-conjugated nanoparticles were rapidly taken up by LSECs in vivo, which effectively cross-presented the delivered peptide on MHC I molecules. Intriguingly, K14-OVAp mice receiving SIINFEKL-loaded nanoparticles manifested significantly reduced liver damage compared with vehicle-treated K14-OVAp mice. Mechanistically, treatment with LSEC-targeting SIINFEKL-loaded nanoparticles significantly reduced the number of liver-infiltrating OT-1 T cells, which up-regulated expression of the co-inhibitory receptor PD-1 and down-regulated cytotoxic effector function and inflammatory cytokine production. These findings show that tolerogenic LSECs can effectively internalize circulating nanoparticles and cross-present nanoparticle-bound peptides on MHC I molecules. Therefore, nanoparticle-mediated autoantigen peptide delivery to LSECs might serve the antigen-specific treatment of CD8 T-cell-driven autoimmune disease.


Assuntos
Autoantígenos/administração & dosagem , Doenças Autoimunes/imunologia , Linfócitos T CD8-Positivos/imunologia , Colangite/imunologia , Células Endoteliais/imunologia , Imunoterapia/métodos , Fígado/patologia , Nanopartículas Magnéticas de Óxido de Ferro/administração & dosagem , Ovalbumina/administração & dosagem , Linfócitos T Reguladores/imunologia , Animais , Autoantígenos/química , Doenças Autoimunes/terapia , Células Cultivadas , Colangite/terapia , Apresentação Cruzada , Citotoxicidade Imunológica , Modelos Animais de Doenças , Humanos , Terapia de Imunossupressão , Fígado/irrigação sanguínea , Nanopartículas Magnéticas de Óxido de Ferro/química , Camundongos , Camundongos Transgênicos , Ovalbumina/química , Fragmentos de Peptídeos/administração & dosagem , Fragmentos de Peptídeos/química , Receptor de Morte Celular Programada 1/metabolismo
8.
Cell Metab ; 33(3): 547-564.e7, 2021 03 02.
Artigo em Inglês | MEDLINE | ID: mdl-33357458

RESUMO

In response to cold exposure, thermogenic adipocytes internalize large amounts of fatty acids after lipoprotein lipase-mediated hydrolysis of triglyceride-rich lipoproteins (TRL) in the capillary lumen of brown adipose tissue (BAT) and white adipose tissue (WAT). Here, we show that in cold-exposed mice, vascular endothelial cells in adipose tissues endocytose substantial amounts of entire TRL particles. These lipoproteins subsequently follow the endosomal-lysosomal pathway, where they undergo lysosomal acid lipase (LAL)-mediated processing. Endothelial cell-specific LAL deficiency results in impaired thermogenic capacity as a consequence of reduced recruitment of brown and brite/beige adipocytes. Mechanistically, TRL processing by LAL induces proliferation of endothelial cells and adipocyte precursors via beta-oxidation-dependent production of reactive oxygen species, which in turn stimulates hypoxia-inducible factor-1α-dependent proliferative responses. In conclusion, this study demonstrates a physiological role for TRL particle uptake into BAT and WAT and establishes endothelial lipoprotein processing as an important determinant of adipose tissue remodeling during thermogenic adaptation.


Assuntos
Tecido Adiposo Marrom/metabolismo , Tecido Adiposo Branco/metabolismo , Lipoproteínas/metabolismo , Lisossomos/metabolismo , Termogênese , Triglicerídeos/metabolismo , Adiponectina/genética , Adiponectina/metabolismo , Tecido Adiposo Marrom/patologia , Tecido Adiposo Branco/patologia , Animais , Antígenos CD36/metabolismo , Diferenciação Celular , Proliferação de Células , Temperatura Baixa , Células Endoteliais/citologia , Células Endoteliais/metabolismo , Humanos , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Lipoproteínas/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Espécies Reativas de Oxigênio/metabolismo , Receptores de Lipoproteínas/genética , Receptores de Lipoproteínas/metabolismo , Esterol Esterase/deficiência , Esterol Esterase/genética , Esterol Esterase/metabolismo , Triglicerídeos/genética
9.
Artigo em Inglês | MEDLINE | ID: mdl-33010451

RESUMO

Different strategies to boost NAD+ levels are considered promising means to promote healthy aging and ameliorate dysfunctional metabolism. CD38 is a NAD+-dependent enzyme involved in the regulation of different cell functions. In the context of systemic energy metabolism, it has been demonstrated that brown adipocytes, the parenchymal cells of brown adipose tissue (BAT) as well as beige adipocytes that emerge in white adipose tissue (WAT) depots in response to catabolic conditions, are important to maintain metabolic homeostasis. In this study we aim to understand the functional relevance of CD38 for NAD+ and energy metabolism in BAT and WAT, also using a CD38-/- mouse model. During cold exposure, an increase in NAD+ levels occurred in BAT of wild type mice, together with a marked downregulation of CD38, as detected at the mRNA and protein level. CD38 downregulation was observed also in WAT of cold-exposed mice, where it was accompanied by a strong increase in NADP(H) levels. Accordingly, NAD kinase and glucose-6-phosphate dehydrogenase activities were enhanced in WAT (but not in BAT). Increased NAD+ levels were observed in BAT/WAT from CD38-/- compared with wild type mice, in line with CD38 being a major NAD+-consumer in AT. CD38-/- mice kept at 6 °C had higher levels of Ucp1 and Pgc-1α in BAT and WAT, and increased levels of phosphorylated hormone-sensitive lipase in BAT, compared with wild type mice. These results demonstrate that CD38, by modulating cellular NAD(P)+ levels, is involved in the regulation of thermogenic responses in cold-activated BAT and WAT.


Assuntos
ADP-Ribosil Ciclase 1/genética , Tecido Adiposo Marrom/metabolismo , Tecido Adiposo Branco/metabolismo , Glicoproteínas de Membrana/genética , NADP/metabolismo , NAD/metabolismo , RNA Mensageiro/genética , Termogênese/genética , ADP-Ribosil Ciclase 1/deficiência , Adipócitos Bege/citologia , Adipócitos Bege/metabolismo , Adipócitos Marrons/citologia , Adipócitos Marrons/metabolismo , Tecido Adiposo Marrom/citologia , Tecido Adiposo Branco/citologia , Animais , Temperatura Baixa , Metabolismo Energético/genética , Regulação da Expressão Gênica , Glucosefosfato Desidrogenase/genética , Glucosefosfato Desidrogenase/metabolismo , Homeostase/genética , Glicoproteínas de Membrana/deficiência , Camundongos , Camundongos Knockout , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/genética , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/metabolismo , Fosforilação , Fosfotransferases (Aceptor do Grupo Álcool)/genética , Fosfotransferases (Aceptor do Grupo Álcool)/metabolismo , RNA Mensageiro/metabolismo , Transdução de Sinais , Proteína Desacopladora 1/genética , Proteína Desacopladora 1/metabolismo
10.
Cancers (Basel) ; 12(2)2020 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-32046143

RESUMO

The majority of cancer-related deaths are due to hematogenous metastases, and the bone marrow (BM) represents one of the most frequent metastatic sites. To study BM metastasis formation in vivo, the most efficient approach is based on intracardiac injection of human tumor cells into immunodeficient mice. However, such a procedure circumvents the early steps of the metastatic cascade. Here we describe the development of xenograft mouse models (balb/c rag2-/- and severe combined immunodeficient (SCID)), in which BM metastases are spontaneously derived from subcutaneous (s.c.) primary tumors (PTs). As verified by histology, the described methodology including ex vivo bioluminescence imaging (BLI) even enabled the detection of micrometastases in the BM. Furthermore, we established sublines from xenograft primary tumors (PTs) and corresponding BM (BM) metastases using LAN-1 neuroblastoma xenografts as a first example. In vitro "metastasis" assays (viability, proliferation, transmigration, invasion, colony formation) partially indicated pro-metastatic features of the LAN-1-BM compared to the LAN-1-PT subline. Unexpectedly, after s.c. re-injection into mice, LAN-1-BM xenografts developed spontaneous BM metastases less frequently than LAN-1-PT xenografts. This study provides a novel methodologic approach for modelling the spontaneous metastatic cascade of human BM metastasis formation in mice. Moreover, our data indicate that putative bone-metastatic features get rapidly lost upon routine cell culture.

11.
Mol Metab ; 16: 88-99, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30100244

RESUMO

OBJECTIVE: Insulin resistance is associated with impaired receptor dependent hepatic uptake of triglyceride-rich lipoproteins (TRL), promoting hypertriglyceridemia and atherosclerosis. Next to low-density lipoprotein (LDL) receptor (LDLR) and syndecan-1, the LDLR-related protein 1 (LRP1) stimulated by insulin action contributes to the rapid clearance of TRL in the postprandial state. Here, we investigated the hypothesis that the adaptor protein phosphotyrosine interacting domain-containing protein 1 (PID1) regulates LRP1 function, thereby controlling hepatic endocytosis of postprandial lipoproteins. METHODS: Localization and interaction of PID1 and LRP1 in cultured hepatocytes was studied by confocal microscopy of fluorescent tagged proteins, by indirect immunohistochemistry of endogenous proteins, by GST-based pull down and by immunoprecipitation experiments. The in vivo relevance of PID1 was assessed using whole body as well as liver-specific Pid1-deficient mice on a wild type or Ldlr-deficient (Ldlr-/-) background. Intravital microscopy was used to study LRP1 translocation in the liver. Lipoprotein metabolism was investigated by lipoprotein profiling, gene and protein expression as well as organ-specific uptake of radiolabelled TRL. RESULTS: PID1 co-localized in perinuclear endosomes and was found associated with LRP1 under fasting conditions. We identified the distal NPxY motif of the intracellular C-terminal domain (ICD) of LRP1 as the site critical for the interaction with PID1. Insulin-mediated NPxY-phosphorylation caused the dissociation of PID1 from the ICD, causing LRP1 translocation to the plasma membrane. PID1 deletion resulted in higher LRP1 abundance at the cell surface, higher LDLR protein levels and, paradoxically, reduced total LRP1. The latter can be explained by higher receptor shedding, which we observed in cultured Pid1-deficient hepatocytes. Consistently, PID1 deficiency alone led to increased LDLR-dependent endocytosis of postprandial lipoproteins and lower plasma triglycerides. In contrast, hepatic PID1 deletion on an Ldlr-/- background reduced lipoprotein uptake into liver and caused plasma TRL accumulation. CONCLUSIONS: By acting as an insulin-dependent retention adaptor, PID1 serves as a regulator of LRP1 function controlling the disposal of postprandial lipoproteins. PID1 inhibition provides a novel approach to lower plasma levels of pro-atherogenic TRL remnants by stimulating endocytic function of both LRP1 and LDLR in the liver.


Assuntos
Proteínas de Transporte/metabolismo , Hipertrigliceridemia/metabolismo , Lipoproteínas/metabolismo , Triglicerídeos/metabolismo , Animais , Carcinoma Hepatocelular , Proteínas de Transporte/genética , Linhagem Celular Tumoral , Endocitose/fisiologia , Hepatócitos/metabolismo , Humanos , Hipertrigliceridemia/genética , Insulina/metabolismo , Resistência à Insulina/fisiologia , Lipoproteínas/fisiologia , Fígado/metabolismo , Neoplasias Hepáticas , Proteína-1 Relacionada a Receptor de Lipoproteína de Baixa Densidade/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Período Pós-Prandial , Receptores de LDL/metabolismo , Sinapsinas/metabolismo , Sinapsinas/fisiologia , Triglicerídeos/fisiologia , Proteínas Supressoras de Tumor/metabolismo
12.
Cell Metab ; 28(4): 644-655.e4, 2018 10 02.
Artigo em Inglês | MEDLINE | ID: mdl-30033199

RESUMO

The coordination of the organ-specific responses regulating systemic energy distribution to replenish lipid stores in acutely activated brown adipose tissue (BAT) remains elusive. Here, we show that short-term cold exposure or acute ß3-adrenergic receptor (ß3AR) stimulation results in secretion of the anabolic hormone insulin. This process is diminished in adipocyte-specific Atgl-/- mice, indicating that lipolysis in white adipose tissue (WAT) promotes insulin secretion. Inhibition of pancreatic ß cells abolished uptake of lipids delivered by triglyceride-rich lipoproteins into activated BAT. Both increased lipid uptake into BAT and whole-body energy expenditure in response to ß3AR stimulation were blunted in mice treated with the insulin receptor antagonist S961 or lacking the insulin receptor in brown adipocytes. In conclusion, we introduce the concept that acute cold and ß3AR stimulation trigger a systemic response involving WAT, ß cells, and BAT, which is essential for insulin-dependent fuel uptake and adaptive thermogenesis.


Assuntos
Tecido Adiposo Marrom/metabolismo , Tecido Adiposo Branco/metabolismo , Temperatura Baixa , Células Secretoras de Insulina/metabolismo , Insulina/metabolismo , Lipólise/fisiologia , Receptores Adrenérgicos beta 3/metabolismo , Adipócitos Marrons/metabolismo , Agonistas de Receptores Adrenérgicos beta 3/farmacologia , Animais , Dieta Hiperlipídica , Dioxóis/farmacologia , Metabolismo Energético/fisiologia , Lipase/metabolismo , Lipoproteínas/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Peptídeos/farmacologia , Receptor de Insulina/antagonistas & inibidores , Termogênese/fisiologia , Triglicerídeos/metabolismo
13.
PLoS One ; 12(6): e0180547, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28666011

RESUMO

Key metabolic hormones, such as insulin, leptin, and adiponectin, have been studied extensively in obesity, however the pathophysiologic relevance of the calcitonin family of peptides remains unclear. This family includes calcitonin (CT), its precursor procalcitonin (PCT), and alpha calcitonin-gene related peptide (αCGRP), which are all encoded by the gene Calca. Here, we studied the role of Calca-derived peptides in diet-induced obesity (DIO) by challenging Calcr-/- (encoding the calcitonin receptor, CTR), Calca-/-, and αCGRP-/- mice and their respective littermates with high-fat diet (HFD) feeding for 16 weeks. HFD-induced pathologies were assessed by glucose tolerance, plasma cytokine and lipid markers, expression studies and histology. We found that DIO in mice lacking the CTR resulted in impaired glucose tolerance, features of enhanced nonalcoholic steatohepatitis (NASH) and adipose tissue inflammation compared to wildtype littermates. Furthermore, CTR-deficient mice were characterized by dyslipidemia and elevated HDL levels. In contrast, mice lacking Calca were protected from DIO, NASH and adipose tissue inflammation, and displayed improved glucose tolerance. Mice exclusively lacking αCGRP displayed a significantly less improved DIO phenotype compared to Calca-deficient mice. In summary, we demonstrate that the CT/CTR axis is involved in regulating plasma cholesterol levels while Calca, presumably through PCT, seems to have a detrimental effect in the context of metabolic disease. Our study provides the first comparative analyses of the roles of Calca-derived peptides and the CTR in metabolic disease.


Assuntos
Peptídeo Relacionado com Gene de Calcitonina/química , Dieta Hiperlipídica , Obesidade/metabolismo , Peptídeos/fisiologia , Animais , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Obesidade/etiologia
14.
Nat Med ; 23(7): 839-849, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28604703

RESUMO

Adaptive thermogenesis is an energy-demanding process that is mediated by cold-activated beige and brown adipocytes, and it entails increased uptake of carbohydrates, as well as lipoprotein-derived triglycerides and cholesterol, into these thermogenic cells. Here we report that cold exposure in mice triggers a metabolic program that orchestrates lipoprotein processing in brown adipose tissue (BAT) and hepatic conversion of cholesterol to bile acids via the alternative synthesis pathway. This process is dependent on hepatic induction of cytochrome P450, family 7, subfamily b, polypeptide 1 (CYP7B1) and results in increased plasma levels, as well as fecal excretion, of bile acids that is accompanied by distinct changes in gut microbiota and increased heat production. Genetic and pharmacological interventions that targeted the synthesis and biliary excretion of bile acids prevented the rise in fecal bile acid excretion, changed the bacterial composition of the gut and modulated thermogenic responses. These results identify bile acids as important metabolic effectors under conditions of sustained BAT activation and highlight the relevance of cholesterol metabolism by the host for diet-induced changes of the gut microbiota and energy metabolism.


Assuntos
Ácidos e Sais Biliares/metabolismo , Colesterol/metabolismo , Temperatura Baixa , Microbioma Gastrointestinal , Termogênese , Subfamília B de Transportador de Cassetes de Ligação de ATP/genética , Tecido Adiposo Marrom/metabolismo , Alanina Transaminase/metabolismo , Animais , Aspartato Aminotransferases/metabolismo , Western Blotting , Calorimetria Indireta , Estudos de Casos e Controles , Família 7 do Citocromo P450/genética , Família 7 do Citocromo P450/metabolismo , Microbioma Gastrointestinal/genética , Perfilação da Expressão Gênica , Humanos , Fígado/metabolismo , Camundongos , Camundongos Knockout , Obesidade , RNA Ribossômico 16S/genética , Receptores de LDL/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Esteroide Hidroxilases/genética , Esteroide Hidroxilases/metabolismo , Membro 4 da Subfamília B de Transportadores de Cassetes de Ligação de ATP
15.
Proc Natl Acad Sci U S A ; 114(9): 2325-2330, 2017 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-28193901

RESUMO

Medical imaging is routine in the diagnosis and staging of a wide range of medical conditions. In particular, magnetic resonance imaging (MRI) is critical for visualizing soft tissue and organs, with over 60 million MRI procedures performed each year worldwide. About one-third of these procedures are contrast-enhanced MRI, and gadolinium-based contrast agents (GBCAs) are the mainstream MRI contrast agents used in the clinic. GBCAs have shown efficacy and are safe to use with most patients; however, some GBCAs have a small risk of adverse effects, including nephrogenic systemic fibrosis (NSF), the untreatable condition recently linked to gadolinium (Gd) exposure during MRI with contrast. In addition, Gd deposition in the human brain has been reported following contrast, and this is now under investigation by the US Food and Drug Administration (FDA). To address a perceived need for a Gd-free contrast agent with pharmacokinetic and imaging properties comparable to GBCAs, we have designed and developed zwitterion-coated exceedingly small superparamagnetic iron oxide nanoparticles (ZES-SPIONs) consisting of ∼3-nm inorganic cores and ∼1-nm ultrathin hydrophilic shell. These ZES-SPIONs are free of Gd and show a high T1 contrast power. We demonstrate the potential of ZES-SPIONs in preclinical MRI and magnetic resonance angiography.


Assuntos
Meios de Contraste/farmacocinética , Óxido Ferroso-Férrico/química , Imageamento por Ressonância Magnética/métodos , Nanopartículas de Magnetita/química , Albuminas/química , Albuminas/farmacocinética , Animais , Meios de Contraste/química , Óxido Ferroso-Férrico/farmacocinética , Óxido Ferroso-Férrico/urina , Gadolínio DTPA/química , Gadolínio DTPA/farmacocinética , Gadolínio DTPA/urina , Humanos , Imageamento por Ressonância Magnética/instrumentação , Nanopartículas de Magnetita/administração & dosagem , Camundongos , Ácido Oleico/química , Tamanho da Partícula , Distribuição Tecidual
16.
Invest Radiol ; 51(3): 194-202, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26674208

RESUMO

OBJECTIVES: The aim of this study was to determine metabolic activity of brown adipose tissue (BAT) with in vivo magnetic resonance imaging (MRI) after intravenous (IV) and intraperitoneal (IP) injection of radioactively labeled superparamagnetic iron oxide nanoparticles (SPIOs) embedded into a lipoprotein layer. MATERIALS AND METHODS: Fe-labeled SPIOs were either polymer-coated or embedded into the lipid core of triglyceride-rich lipoproteins (TRL-Fe-SPIOs). First biodistribution and blood half time analysis in thermoneutral mice after IP injection of either TRL-Fe-SPIOs or polymer-coated Fe-SPIOs (n = 3) were performed. In the next step, cold-exposed (24 hours), BAT-activated mice (n = 10), and control thermoneutral mice (n = 10) were starved for 4 hours before IP (n = 10) or IV (n = 10) injection of TRL-Fe-SPIOs. In vivo MRI was performed before and 24 hours after the application of the particles at a 7 T small animal MRI scanner using a T2*-weighted multiecho gradient echo sequence. R2* and ΔR2* were estimated in the liver, BAT, and muscle. The biodistribution of polymer-coated Fe-SPIOs and TRL-Fe-SPIOs was analyzed ex vivo using a sensitive, large-volume Hamburg whole-body radioactive counter. The amount of Fe-SPIOs in the liver, BAT, and muscle was correlated with the MRI measurements using the Pearson correlation coefficient. Tissue uptake of Fe-SPIOs was confirmed by histological and transmission electron microscopy analyses. RESULTS: Triglyceride-rich lipoprotein Fe-SPIOs exhibited a higher blood concentration after IP injection (10.1% ± 0.91% after 24 hours) and a greater [INCREMENT]R2* in the liver (103 ± 5.0 s), while polymer-coated SPIOs did not increase substantially in the blood stream (0.19% ± 0.01% after 24 hours; P < 0.001) and the liver (57 ± 4.08 s; P < 0.001). In BAT activity studies, significantly higher uptake of TRL-Fe-SPIOs was detected in the BAT of cold-exposed mice, with [INCREMENT]R2* of 107 ± 5.5 s after IV application (control mice: [INCREMENT]R2* of 22 ± 5.8 s; P < 0.001) and 45 ± 5.5 s after IP application (control mice: [INCREMENT]R2* of 11 ± 2.9 s; P < 0.01). Fe radioactivity measurements and [INCREMENT]R2* values correlated strongly in BAT (r > 0.85; P < 0.001) and liver tissue (r > 0.85; P < 0.001). Histological and transmission electron microscopy analyses confirmed the uptake of TRL-Fe-SPIOs within the liver and BAT for both application approaches. CONCLUSIONS: Triglyceride-rich lipoprotein-embedded SPIOs were able to escape the abdominal cavity barrier, whereas polymer-coated SPIOs did not increase substantially in the blood stream. Brown adipose tissue activity can be determined via MRI using TRL-Fe-SPIOs. The quantification of [INCREMENT]R2* using TRL-Fe-SPIOs is feasible and may serve as a noninvasive tool for the quantitative estimation of BAT activity.


Assuntos
Tecido Adiposo Marrom/metabolismo , Lipoproteínas/farmacologia , Imageamento por Ressonância Magnética/métodos , Triglicerídeos/farmacologia , Animais , Meios de Contraste/administração & dosagem , Compostos Férricos/administração & dosagem , Injeções Intraperitoneais , Injeções Intravenosas , Lipoproteínas/administração & dosagem , Camundongos , Nanopartículas , Distribuição Tecidual , Triglicerídeos/administração & dosagem
17.
Beilstein J Nanotechnol ; 6: 111-123, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25671156

RESUMO

(51)Cr-labeled, superparamagnetic, iron oxide nanoparticles ((51)Cr-SPIOs) and (65)Zn-labeled CdSe/CdS/ZnS-quantum dots ((65)Zn-Qdots) were prepared using an easy, on demand, exchange-labeling technique and their particokinetic parameters were studied in mice after intravenous injection. The results indicate that the application of these heterologous isotopes can be used to successfully mark the nanoparticles during initial distribution and organ uptake, although the (65)Zn-label appeared not to be fully stable. As the degradation of the nanoparticles takes place, the individual transport mechanisms for the different isotopes must be carefully taken into account. Although this variation in transport paths can bring new insights with regard to the respective trace element homeostasis, it can also limit the relevance of such trace material-based approaches in nanobioscience. By monitoring (51)Cr-SPIOs after oral gavage, the gastrointestinal non-absorption of intact SPIOs in a hydrophilic or lipophilic surrounding was measured in mice with such high sensitivity for the first time. After intravenous injection, polymer-coated, (65)Zn-Qdots were mainly taken up by the liver and spleen, which was different from that of ionic (65)ZnCl2. Following the label for 4 weeks, an indication of substantial degradation of the nanoparticles and the release of the label into the Zn pool was observed. Confocal microscopy of rat liver cryosections (prepared 2 h after intravenous injection of polymer-coated Qdots) revealed a colocalization with markers for Kupffer cells and liver sinusoidal endothelial cells (LSEC), but not with hepatocytes. In J774 macrophages, fluorescent Qdots were found colocalized with lysosomal markers. After 24 h, no signs of degradation could be detected. However, after 12 weeks, no fluorescent nanoparticles could be detected in the liver cryosections, which would confirm our (65)Zn data showing a substantial degradation of the polymer-coated CdSe/CdS/ZnS-Qdots in the liver.

18.
Contrast Media Mol Imaging ; 10(2): 153-62, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25078884

RESUMO

Accurate determination of tissue concentration of ultrasmall superparamagnetic iron oxide nanoparticles (USPIO) using T2 * MR relaxometry is still challenging. We present a reliable quantification method for local USPIO amount with the estimation of the liver specific relaxivity r2 * using monodisperse (59) Fe-core-labeled USPIO ((59) FeUSPIO). Dynamic and relaxometric in vivo characteristics of unlabeled monodisperse USPIO were determined in MRI at 3 T. The in vivo MR studies were performed for liver tissue with (59) FeUSPIO using iron dosages of 9 (n = 3), 18 (n = 2) and 27 (n = 3) µmol Fe kg(-1) body weight. The R2 * of the liver before and after USPIO injection (∆R2 *) was measured and correlated with (59) Fe activity measurements of excised organs by a whole body radioactivity counter (HAMCO) to define the dependency of ∆R2 * and (59) FeUSPIO liver concentration and calculate the r2 * of (59) FeUSPIO for the liver. Ultrastructural analysis of liver uptake was performed by histology and transmission electron microscopy. ∆R2 * of the liver revealed a dosage-dependent accumulation of (59) FeUSPIO with a percentage uptake of 70-88% of the injection dose. Hepatic ∆R2 * showed a dose-dependent linear correlation to (59) FeUSPIO activity measurements (r = 0.92) and an r2 * in the liver of 481 ± 74.9 mm(-1) s(-1) in comparison to an in vitro r2 * of 60.5 ± 3.3 mm(-1) s(-1) . Our results indicate that core-labeled (59) FeUSPIO can be used to quantify the local amount of USPIO and to estimate the liver-specific relaxivity r2 *.


Assuntos
Meios de Contraste , Compostos Férricos , Marcação por Isótopo/métodos , Fígado , Imageamento por Ressonância Magnética/métodos , Nanopartículas/química , Animais , Meios de Contraste/química , Meios de Contraste/farmacologia , Relação Dose-Resposta a Droga , Compostos Férricos/química , Compostos Férricos/farmacologia , Isótopos de Ferro/química , Isótopos de Ferro/farmacologia , Fígado/diagnóstico por imagem , Fígado/metabolismo , Camundongos , Camundongos SCID , Radiografia
19.
Beilstein J Nanotechnol ; 5: 1432-1440, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25247125

RESUMO

Semiconductor quantum dots (QD) and superparamagnetic iron oxide nanocrystals (SPIO) have exceptional physical properties that are well suited for biomedical applications in vitro and in vivo. For future applications, the direct injection of nanocrystals for imaging and therapy represents an important entry route into the human body. Therefore, it is crucial to investigate biological responses of the body to nanocrystals to avoid harmful side effects. In recent years, we established a system to embed nanocrystals with a hydrophobic oleic acid shell either by lipid micelles or by the amphiphilic polymer poly(maleic anhydride-alt-1-octadecene) (PMAOD). The goal of the current study is to investigate the uptake processes as well as pro-inflammatory responses in the liver after the injection of these encapsulated nanocrystals. By immunofluorescence and electron microscopy studies using wild type mice, we show that 30 min after injection polymer-coated nanocrystals are primarily taken up by liver sinusoidal endothelial cells. In contrast, by using wild type, Ldlr (-/-) as well as Apoe (-/-) mice we show that nanocrystals embedded within lipid micelles are internalized by Kupffer cells and, in a process that is dependent on the LDL receptor and apolipoprotein E, by hepatocytes. Gene expression analysis of pro-inflammatory markers such as tumor necrosis factor alpha (TNFα) or chemokine (C-X-C motif) ligand 10 (Cxcl10) indicated that 48 h after injection internalized nanocrystals did not provoke pro-inflammatory pathways. In conclusion, internalized nanocrystals at least in mouse liver cells, namely endothelial cells, Kupffer cells and hepatocytes are at least not acutely associated with potential adverse side effects, underlining their potential for biomedical applications.

20.
PLoS One ; 9(4): e92327, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24699516

RESUMO

Metastasis formation is the major reason for the extremely poor prognosis in small cell lung cancer (SCLC) patients. The molecular interaction partners regulating metastasis formation in SCLC are largely unidentified, however, from other tumor entities it is known that tumor cells use the adhesion molecules of the leukocyte adhesion cascade to attach to the endothelium at the site of the future metastasis. Using the human OH-1 SCLC line as a model, we found that these cells expressed E- and P-selectin binding sites, which could be in part attributed to the selectin binding carbohydrate motif sialyl Lewis A. In addition, protein backbones known to carry these glycotopes in other cell lines including PSGL-1, CD44 and CEA could be detected in in vitro and in vivo grown OH1 SCLC cells. By intravital microscopy of murine mesenterial vasculature we could capture SCLC cells while rolling along vessel walls demonstrating that SCLC cells mimic leukocyte rolling behavior in terms of selectin and selectin ligand interaction in vivo indicating that this mechanism might indeed be important for SCLC cells to seed distant metastases. Accordingly, formation of spontaneous distant metastases was reduced by 50% when OH-1 cells were xenografted into E-/P-selectin-deficient mice compared with wild type mice (p = 0.0181). However, as metastasis formation was not completely abrogated in selectin deficient mice, we concluded that this adhesion cascade is redundant and that other molecules of this cascade mediate metastasis formation as well. Using several of these adhesion molecules as interaction partners presumably make SCLC cells so highly metastatic.


Assuntos
Selectina E/metabolismo , Neoplasias Pulmonares/patologia , Selectina-P/metabolismo , Carcinoma de Pequenas Células do Pulmão/secundário , Adulto , Idoso , Idoso de 80 Anos ou mais , Animais , Antígeno CA-19-9 , Feminino , Citometria de Fluxo , Humanos , Técnicas Imunoenzimáticas , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/mortalidade , Masculino , Camundongos , Camundongos Knockout , Camundongos SCID , Pessoa de Meia-Idade , Metástase Neoplásica , Estadiamento de Neoplasias , Oligossacarídeos/metabolismo , Prognóstico , Carcinoma de Pequenas Células do Pulmão/metabolismo , Carcinoma de Pequenas Células do Pulmão/mortalidade , Taxa de Sobrevida , Análise Serial de Tecidos , Células Tumorais Cultivadas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA