Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 65
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Circulation ; 149(10): 774-787, 2024 03 05.
Artigo em Inglês | MEDLINE | ID: mdl-38018436

RESUMO

BACKGROUND: Cholesterol efflux capacity (CEC) predicts cardiovascular disease independently of high-density lipoprotein (HDL) cholesterol levels. Isolated small HDL particles are potent promoters of macrophage CEC by the ABCA1 (ATP-binding cassette transporter A1) pathway, but the underlying mechanisms are unclear. METHODS: We used model system studies of reconstituted HDL and plasma from control and lecithin-cholesterol acyltransferase (LCAT)-deficient subjects to investigate the relationships among the sizes of HDL particles, the structure of APOA1 (apolipoprotein A1) in the different particles, and the CECs of plasma and isolated HDLs. RESULTS: We quantified macrophage and ABCA1 CEC of 4 distinct sizes of reconstituted HDL. CEC increased as particle size decreased. Tandem mass spectrometric analysis of chemically cross-linked peptides and molecular dynamics simulations of APOA1, the major protein of HDL, indicated that the mobility of C-terminus of that protein was markedly higher and flipped off the surface in the smallest particles. To explore the physiological relevance of the model system studies, we isolated HDL from LCAT-deficient subjects, whose small HDLs (like reconstituted HDLs) are discoidal and composed of APOA1, cholesterol, and phospholipid. Despite their very low plasma levels of HDL particles, these subjects had normal CEC. In both the LCAT-deficient subjects and control subjects, the CEC of isolated extra-small HDL (a mixture of extra-small and small HDL by calibrated ion mobility analysis) was 3- to 5-fold greater than that of the larger sizes of isolated HDL. Incubating LCAT-deficient plasma and control plasma with human LCAT converted extra-small and small HDL particles into larger particles, and it markedly inhibited CEC. CONCLUSIONS: We present a mechanism for the enhanced CEC of small HDLs. In smaller particles, the C-termini of the 2 antiparallel molecules of APOA1 are "flipped" off the lipid surface of HDL. This extended conformation allows them to engage with ABCA1. In contrast, the C-termini of larger HDLs are unable to interact productively with ABCA1 because they form a helical bundle that strongly adheres to the lipid on the particle. Enhanced CEC, as seen with the smaller particles, predicts decreased cardiovascular disease risk. Thus, extra-small and small HDLs may be key mediators and indicators of the cardioprotective effects of HDL.


Assuntos
Apolipoproteína A-I , Doenças Cardiovasculares , Humanos , Apolipoproteína A-I/metabolismo , Doenças Cardiovasculares/metabolismo , Lipoproteínas HDL/metabolismo , Colesterol , Transportador 1 de Cassete de Ligação de ATP/genética , Transportador 1 de Cassete de Ligação de ATP/metabolismo , Macrófagos/metabolismo , HDL-Colesterol
2.
J Lipid Res ; 63(4): 100196, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35300983

RESUMO

Atherosclerotic CVD is the major cause of death in patients with type 1 diabetes mellitus (T1DM). Alterations in the HDL proteome have been shown to associate with prevalent CVD in T1DM. We therefore sought to determine which proteins carried by HDL might predict incident CVD in patients with T1DM. Using targeted MS/MS, we quantified 50 proteins in HDL from 181 T1DM subjects enrolled in the prospective Coronary Artery Calcification in Type 1 Diabetes study. We used Cox proportional regression analysis and a case-cohort design to test associations of HDL proteins with incident CVD (myocardial infarction, coronary artery bypass grafting, angioplasty, or death from coronary heart disease). We found that only one HDL protein-SFTPB (pulmonary surfactant protein B)-predicted incident CVD in all the models tested. In a fully adjusted model that controlled for lipids and other risk factors, the hazard ratio was 2.17 per SD increase of SFTPB (95% confidence interval, 1.12-4.21, P = 0.022). In addition, plasma fractionation demonstrated that SFTPB is nearly entirely bound to HDL. Although previous studies have shown that high plasma levels of SFTPB associate with prevalent atherosclerosis only in smokers, we found that SFTPB predicted incident CVD in T1DM independently of smoking status and a wide range of confounding factors, including HDL-C, LDL-C, and triglyceride levels. Because SFTPB is almost entirely bound to plasma HDL, our observations support the proposal that SFTPB carried by HDL is a marker-and perhaps mediator-of CVD risk in patients with T1DM.


Assuntos
Aterosclerose , Doenças Cardiovasculares , Diabetes Mellitus Tipo 1 , Proteína B Associada a Surfactante Pulmonar , HDL-Colesterol , Diabetes Mellitus Tipo 1/complicações , Humanos , Estudos Prospectivos , Fatores de Risco , Espectrometria de Massas em Tandem
3.
J Lipid Res ; 63(3): 100168, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35051413

RESUMO

Because of its critical role in HDL formation, significant efforts have been devoted to studying apolipoprotein A-I (APOA1) structural transitions in response to lipid binding. To assess the requirements for the conformational freedom of its termini during HDL particle formation, we generated three dimeric APOA1 molecules with their termini covalently joined in different combinations. The dimeric (d)-APOA1C-N mutant coupled the C-terminus of one APOA1 molecule to the N-terminus of a second with a short alanine linker, whereas the d-APOA1C-C and d-APOA1N-N mutants coupled the C-termini and the N-termini of two APOA1 molecules, respectively, using introduced cysteine residues to form disulfide linkages. We then tested the ability of these constructs to generate reconstituted HDL by detergent-assisted and spontaneous phospholipid microsolubilization methods. Using cholate dialysis, we demonstrate WT and all APOA1 mutants generated reconstituted HDL particles of similar sizes, morphologies, compositions, and abilities to activate lecithin:cholesterol acyltransferase. Unlike WT, however, the mutants were incapable of spontaneously solubilizing short chain phospholipids into discoidal particles. We found lipid-free d-APOA1C-N and d-APOA1N-N retained most of WT APOA1's ability to promote cholesterol efflux via the ATP binding cassette transporter A1, whereas d-APOA1C-C exhibited impaired cholesterol efflux. Our data support the double belt model for a lipid-bound APOA1 structure in nascent HDL particles and refute other postulated arrangements like the "double super helix." Furthermore, we conclude the conformational freedom of both the N- and C-termini of APOA1 is important in spontaneous microsolubilization of bulk phospholipid but is not critical for ABCA1-mediated cholesterol efflux.


Assuntos
Apolipoproteína A-I , Colesterol , Transportador 1 de Cassete de Ligação de ATP/metabolismo , Apolipoproteína A-I/metabolismo , Transporte Biológico , Colesterol/metabolismo , Fosfatidilcolina-Esterol O-Aciltransferase/metabolismo , Fosfolipídeos/metabolismo
5.
J Clin Lipidol ; 15(1): 151-161.e0, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33288437

RESUMO

BACKGROUND: The cardiovascular (CV) safety of estrogen replacement therapy (ERT) in perimenopausal women remains uncertain. Although exogenous estrogens increase HDL cholesterol (HDL-C), estrogen-mediated effects on alternative metrics of HDL that may better predict CV risk are unknown. OBJECTIVE: To determine the effects of transdermal ERT on HDL composition and cholesterol efflux capacity (CEC), as well as the relationships between these metrics and CV risk factors. METHODS: Fasting plasma samples were analyzed from 101 healthy, perimenopausal women randomized to receive either transdermal placebo or transdermal estradiol (100 µg/24 h) with intermittent micronized progesterone. At baseline and after 6 months of treatment, serum HDL CEC, HDL particle concentration, HDL protein composition, insulin resistance and brachial artery flow-mediated dilatation (FMD) were measured. RESULTS: No difference between groups was found for change in plasma HDL-C (p = 0.69). Between-group differences were found for changes in serum HDL total CEC [median change from baseline -5.4 (-17.3,+8.4)% ERT group versus +5.8 (-6.3,+16.9)% placebo group, p = 0.01] and ABCA1-specific CEC [median change from baseline -5.3 (-10.7,+6.7)% ERT group versus +7.4 (-1.5,+18.1)% placebo group, p = 0.0002]. Relative to placebo, transdermal ERT led to reductions in LDL-C (p < 0.0001) and insulin resistance (p = 0.0002). An inverse correlation was found between changes in serum HDL total CEC and FMD (ß = -0.26, p = 0.004). CONCLUSIONS: Natural menopause leads to an increase in serum HDL CEC, an effect that is abrogated by transdermal ERT. However, transdermal ERT leads to favorable changes in major CV risk factors.


Assuntos
Fatores de Risco de Doenças Cardíacas , Adulto , HDL-Colesterol , Estradiol , Feminino , Humanos , Pessoa de Meia-Idade
6.
Circ Res ; 127(9): 1198-1210, 2020 10 09.
Artigo em Inglês | MEDLINE | ID: mdl-32819213

RESUMO

RATIONALE: HDL (high-density lipoprotein) may be cardioprotective because it accepts cholesterol from macrophages via the cholesterol transport proteins ABCA1 (ATP-binding cassette transporter A1) and ABCG1 (ATP-binding cassette transporter G1). The ABCA1-specific cellular cholesterol efflux capacity (ABCA1 CEC) of HDL strongly and negatively associates with cardiovascular disease risk, but how diabetes mellitus impacts that step is unclear. OBJECTIVE: To test the hypothesis that HDL's cholesterol efflux capacity is impaired in subjects with type 2 diabetes mellitus. METHODS AND RESULTS: We performed a case-control study with 19 subjects with type 2 diabetes mellitus and 20 control subjects. Three sizes of HDL particles, small HDL, medium HDL, and large HDL, were isolated by high-resolution size exclusion chromatography from study subjects. Then we assessed the ABCA1 CEC of equimolar concentrations of particles. Small HDL accounted for almost all of ABCA1 CEC activity of HDL. ABCA1 CEC-but not ABCG1 CEC-of small HDL was lower in the subjects with type 2 diabetes mellitus than the control subjects. Isotope dilution tandem mass spectrometry demonstrated that the concentration of SERPINA1 (serpin family A member 1) in small HDL was also lower in subjects with diabetes mellitus. Enriching small HDL with SERPINA1 enhanced ABCA1 CEC. Structural analysis of SERPINA1 identified 3 amphipathic α-helices clustered in the N-terminal domain of the protein; biochemical analyses demonstrated that SERPINA1 binds phospholipid vesicles. CONCLUSIONS: The ABCA1 CEC of small HDL is selectively impaired in type 2 diabetes mellitus, likely because of lower levels of SERPINA1. SERPINA1 contains a cluster of amphipathic α-helices that enable apolipoproteins to bind phospholipid and promote ABCA1 activity. Thus, impaired ABCA1 activity of small HDL particles deficient in SERPINA1 could increase cardiovascular disease risk in subjects with diabetes mellitus.


Assuntos
Transportador 1 de Cassete de Ligação de ATP/metabolismo , Membro 1 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/metabolismo , Doenças Cardiovasculares/etiologia , Colesterol/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Lipoproteínas HDL/metabolismo , alfa 1-Antitripsina/metabolismo , Apolipoproteína C-II/análise , Apolipoproteínas/metabolismo , Estudos de Casos e Controles , Diabetes Mellitus Tipo 2/sangue , Feminino , Humanos , Macrófagos/metabolismo , Masculino , Pessoa de Meia-Idade , Fosfolipídeos/metabolismo , Estrutura Terciária de Proteína , Risco , Triglicerídeos/análise , alfa 1-Antitripsina/química
7.
Arterioscler Thromb Vasc Biol ; 39(12): e253-e272, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31578081

RESUMO

OBJECTIVE: HDL (high-density lipoprotein) infusion reduces atherosclerosis in animal models and is being evaluated as a treatment in humans. Studies have shown either anti- or proinflammatory effects of HDL in macrophages, and there is no consensus on the underlying mechanisms. Here, we interrogate the effects of HDL on inflammatory gene expression in macrophages. Approach and Results: We cultured bone marrow-derived macrophages, treated them with reconstituted HDL or HDL isolated from APOA1Tg;Ldlr-/- mice, and challenged them with lipopolysaccharide. Transcriptional profiling showed that HDL exerts a broad anti-inflammatory effect on lipopolysaccharide-induced genes and proinflammatory effect in a subset of genes enriched for chemokines. Cholesterol removal by POPC (1-palmitoyl-2-oleoyl-glycero-3-phosphocholine) liposomes or ß-methylcyclodextrin mimicked both pro- and anti-inflammatory effects of HDL, whereas cholesterol loading by POPC/cholesterol-liposomes or acetylated LDL (low-density lipoprotein) before HDL attenuated these effects, indicating that these responses are mediated by cholesterol efflux. While early anti-inflammatory effects reflect reduced TLR (Toll-like receptor) 4 levels, late anti-inflammatory effects are due to reduced IFN (interferon) receptor signaling. Proinflammatory effects occur late and represent a modified endoplasmic reticulum stress response, mediated by IRE1a (inositol-requiring enzyme 1a)/ASK1 (apoptosis signal-regulating kinase 1)/p38 MAPK (p38 mitogen-activated protein kinase) signaling, that occurs under conditions of extreme cholesterol depletion. To investigate the effects of HDL on inflammatory gene expression in myeloid cells in atherosclerotic lesions, we injected reconstituted HDL into Apoe-/- or Ldlr-/- mice fed a Western-type diet. Reconstituted HDL infusions produced anti-inflammatory effects in lesion macrophages without any evidence of proinflammatory effects. CONCLUSIONS: Reconstituted HDL infusions in hypercholesterolemic atherosclerotic mice produced anti-inflammatory effects in lesion macrophages suggesting a beneficial therapeutic effect of HDL in vivo.


Assuntos
Aorta Torácica/patologia , Proteínas de Transporte/genética , Regulação da Expressão Gênica , Inflamação/genética , Lipoproteínas HDL/farmacologia , Macrófagos/metabolismo , Placa Aterosclerótica/genética , Animais , Aorta Torácica/metabolismo , Proteínas de Transporte/biossíntese , Células Cultivadas , Modelos Animais de Doenças , Feminino , Citometria de Fluxo , Immunoblotting , Inflamação/metabolismo , Inflamação/patologia , Macrófagos/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Placa Aterosclerótica/metabolismo , Placa Aterosclerótica/patologia , Proteínas Recombinantes
8.
Circulation ; 140(14): 1170-1184, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31567014

RESUMO

BACKGROUND: Despite robust cholesterol lowering, cardiovascular disease risk remains increased in patients with diabetes mellitus. Consistent with this, diabetes mellitus impairs atherosclerosis regression after cholesterol lowering in humans and mice. In mice, this is attributed in part to hyperglycemia-induced monocytosis, which increases monocyte entry into plaques despite cholesterol lowering. In addition, diabetes mellitus skews plaque macrophages toward an atherogenic inflammatory M1 phenotype instead of toward the atherosclerosis-resolving M2 state typical with cholesterol lowering. Functional high-density lipoprotein (HDL), typically low in patients with diabetes mellitus, reduces monocyte precursor proliferation in murine bone marrow and has anti-inflammatory effects on human and murine macrophages. Our study aimed to test whether raising functional HDL levels in diabetic mice prevents monocytosis, reduces the quantity and inflammation of plaque macrophages, and enhances atherosclerosis regression after cholesterol lowering. METHODS: Aortic arches containing plaques developed in Ldlr-/- mice were transplanted into either wild-type, diabetic wild-type, or diabetic mice transgenic for human apolipoprotein AI, which have elevated functional HDL. Recipient mice all had low levels of low-density lipoprotein cholesterol to promote plaque regression. After 2 weeks, plaques in recipient mouse aortic grafts were examined. RESULTS: Diabetic wild-type mice had impaired atherosclerosis regression, which was normalized by raising HDL levels. This benefit was linked to suppressed hyperglycemia-driven myelopoiesis, monocytosis, and neutrophilia. Increased HDL improved cholesterol efflux from bone marrow progenitors, suppressing their proliferation and monocyte and neutrophil production capacity. In addition to reducing circulating monocytes available for recruitment into plaques, in the diabetic milieu, HDL suppressed the general recruitability of monocytes to inflammatory sites and promoted plaque macrophage polarization to the M2, atherosclerosis-resolving state. There was also a decrease in plaque neutrophil extracellular traps, which are atherogenic and increased by diabetes mellitus. CONCLUSIONS: Raising apolipoprotein AI and functional levels of HDL promotes multiple favorable changes in the production of monocytes and neutrophils and in the inflammatory environment of atherosclerotic plaques of diabetic mice after cholesterol lowering and may represent a novel approach to reduce cardiovascular disease risk in people with diabetes mellitus.


Assuntos
Apolipoproteína A-I/genética , Aterosclerose/patologia , Diabetes Mellitus Experimental/patologia , Animais , Apolipoproteína A-I/metabolismo , Aterosclerose/complicações , Aterosclerose/tratamento farmacológico , Colesterol/metabolismo , HDL-Colesterol/sangue , Diabetes Mellitus Experimental/induzido quimicamente , Diabetes Mellitus Experimental/complicações , Feminino , Células-Tronco Hematopoéticas/citologia , Células-Tronco Hematopoéticas/metabolismo , Humanos , Inibidores de Hidroximetilglutaril-CoA Redutases/uso terapêutico , Leucocitose , Lipoproteínas HDL/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Células Mieloides/citologia , Células Mieloides/metabolismo , Mielopoese , Ativação de Neutrófilo , Receptores de LDL/deficiência , Receptores de LDL/genética
9.
Mol Cell Proteomics ; 18(5): 854-864, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30659061

RESUMO

Apolipoprotein A1 (APOA1), the major protein of high-density lipoprotein (HDL), contains 10 helical repeats that play key roles in protein-protein and protein-lipid interactions. The current structural model for HDL proposes that APOA1 forms an antiparallel dimer in which helix 5 in monomer 1 associates with helix 5 in monomer 2 along a left-left (LL5/5) interface, forming a protein complex with a 2-fold axis of symmetry centered on helix 5. However, computational studies suggest that other orientations are possible. To test this idea, we used a zero-length chemical cross-linking reagent that forms covalent bonds between closely apposed basic and acidic residues. Using proteolytic digestion and tandem mass spectrometry, we identified amino acids in the central region of the antiparallel APOA1 dimer of HDL that were in close contact. As predicted by the current model, we found six intermolecular cross-links that were consistent with the antiparallel LL5/5 registry. However, we also identified three intermolecular cross-links that were consistent with the antiparallel LL5/4 registry. The LL5/5 is the major structural conformation of the two complexes in both reconstituted discoidal HDL particles and in spherical HDL from human plasma. Molecular dynamic simulations suggest that that LL5/5 and LL5/4 APOA1 dimers possess similar free energies of dimerization, with LL5/5 having the lowest free energy. Our observations indicate that phospholipidated APOA1 in HDL forms different antiparallel dimers that could play distinct roles in enzyme regulation, assembly of specific protein complexes, and the functional properties of HDL in humans.


Assuntos
Apolipoproteína A-I/metabolismo , Lipoproteínas HDL/metabolismo , Multimerização Proteica , Sequência de Aminoácidos , Apolipoproteína A-I/química , Reagentes de Ligações Cruzadas/química , Humanos , Modelos Moleculares , Isótopos de Nitrogênio , Peptídeos/química
10.
Arterioscler Thromb Vasc Biol ; 39(1): 89-96, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30580560

RESUMO

Objective- To assess the role of HDL (high-density lipoprotein)-mediated cholesterol mass efflux capacity (CMEC) in incident cardiovascular disease and carotid plaque progression. Approach and Results- We measured CMEC in 2 cohorts aged 45 to 84 years at baseline derived from the MESA (Multi-Ethnic Study of Atherosclerosis). Cohort 1 comprised 465 cases with incident cardiovascular disease events during 10 years of follow-up and 465 age- and sex-matched controls; cohort 2 comprised 407 cases with progression of carotid plaque measured by ultrasonography at 2 exams >10 years and 407 similarly matched controls. Covariates and outcome events were ascertained according to the MESA protocol. CMEC level was modestly correlated with HDL cholesterol ( R=0.13; P<0.001) but was not associated with age, sex, race/ethnicity, body mass index, diabetes mellitus, alcohol use, smoking status, or statin use. Higher CMEC level was significantly associated with lower odds of cardiovascular disease (odds ratio, 0.82 per SD of CMEC [95% CI, 0.69-0.98; P=0.031] in the fully adjusted model) in cohort 1 but higher odds of carotid plaque progression (odds ratio, 1.24 per SD of CMEC [95% CI, 1.04-1.48; P=0.018] in the fully adjusted model) in cohort 2 but without dose-response effect. In subgroup analysis within cohort 1, higher CMEC was associated with lower risk of incident coronary heart disease events (odds ratio, 0.72 per SD of CMEC (95% CI, 0.5-0.91; P=0.007) while no association was found with stroke events. Conclusions- These findings support a role for HDL-mediated cholesterol efflux in an atheroprotective mechanism for coronary heart disease but not stroke.


Assuntos
Doenças Cardiovasculares/metabolismo , Doenças das Artérias Carótidas/etiologia , HDL-Colesterol/fisiologia , Colesterol/metabolismo , Placa Aterosclerótica/etiologia , Idoso , Idoso de 80 Anos ou mais , Doença das Coronárias/complicações , Doença das Coronárias/metabolismo , Progressão da Doença , Feminino , Humanos , Masculino , Pessoa de Meia-Idade
11.
Sci Rep ; 8(1): 11485, 2018 07 31.
Artigo em Inglês | MEDLINE | ID: mdl-30065264

RESUMO

In a GM-CSF driven myeloid cell deficient mouse model (Csf2-/-) that has preserved insulin sensitivity despite increased adiposity, we used unbiased three-dimensional integration of proteome profiles, metabolic profiles, and gene regulatory networks to understand adipose tissue proteome-wide changes and their metabolic implications. Multi-dimensional liquid chromatography mass spectrometry and extended multiplex mass labeling was used to analyze proteomes of epididymal adipose tissues isolated from Csf2+/+ and Csf2-/- mice that were fed low fat, high fat, or high fat plus cholesterol diets for 8 weeks. The metabolic health (as measured by body weight, adiposity, plasma fasting glucose, insulin, triglycerides, phospholipids, total cholesterol levels, and glucose and insulin tolerance tests) deteriorated with diet for both genotypes, while mice lacking Csf2 were protected from insulin resistance. Regardless of diet, 30 mostly mitochondrial, branch chain amino acids (BCAA), and lysine metabolism proteins were altered between Csf2-/- and Csf2+/+ mice (FDR < 0.05). Lack of GM-CSF driven myeloid cells lead to reduced adipose tissue 2-oxoglutarate dehydrogenase complex (DHTKD1) levels and subsequent increase in plasma 2-aminoadipate (2-AA) levels, both of which are reported to correlate with insulin resistance. Tissue DHTKD1 levels were >4-fold upregulated and plasma 2-AA levels were >2 fold reduced in Csf2-/- mice (p < 0.05). GM-CSF driven myeloid cells link peripheral insulin sensitivity to adiposity via lysine metabolism involving DHTKD1/2-AA axis in a diet independent manner.


Assuntos
Tecido Adiposo/metabolismo , Fator Estimulador de Colônias de Granulócitos e Macrófagos/metabolismo , Resistência à Insulina/fisiologia , Células Mieloides/metabolismo , Aumento de Peso/fisiologia , Adiposidade/fisiologia , Animais , Peso Corporal/fisiologia , Colesterol/metabolismo , Dieta Hiperlipídica , Gorduras na Dieta , Metabolismo Energético/fisiologia , Glucose/metabolismo , Insulina/metabolismo , Cetona Oxirredutases/metabolismo , Metabolismo dos Lipídeos/fisiologia , Masculino , Camundongos , Triglicerídeos/metabolismo
12.
J Clin Lipidol ; 12(4): 1072-1082, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29793828

RESUMO

BACKGROUND: Exogenous testosterone decreases serum concentrations of high-density lipoprotein cholesterol (HDL-C) in men, but whether this alters cardiovascular risk is uncertain. OBJECTIVE: To investigate the effects of testosterone and estradiol on HDL particle concentration (HDL-Pima) and metrics of HDL function. METHODS: We enrolled 53 healthy men, 19 to 55 years of age, in a double-blinded, placebo-controlled, randomized trial. Subjects were rendered medically castrate using the GnRH receptor antagonist acyline and administered either (1) placebo gel, (2) low-dose transdermal testosterone gel (1.62%, 1.25 g), (3) full replacement dose testosterone gel (1.62%, 5 g) or (4) full replacement dose testosterone gel together with an aromatase inhibitor for 4 weeks. At baseline and end of treatment, serum HDL total macrophage and ABCA1-specific cholesterol efflux capacity (CEC), HDL-Pima and size, and HDL protein composition were determined. RESULTS: Significant differences in serum HDL-C were observed with treatment across groups (P = .01 in overall repeated measures ANOVA), with increases in HDL-C seen after both complete and partial testosterone deprivation. Medical castration increased total HDL-Pima (median [interquartile range] 19.1 [1.8] nmol/L at baseline vs 21.3 [3.1] nmol/L at week 4, P = .006). However, corresponding changes in total macrophage CEC and ABCA1-specific CEC were not observed. Change in serum 17ß-estradiol concentration correlated with change in total macrophage CEC (ß = 0.33 per 10 pg/mL change in serum 17ß-estradiol, P = .03). CONCLUSIONS: Testosterone deprivation in healthy men leads to a dissociation between changes in serum HDL-C and HDL CEC. Changes in serum HDL-C specifically due to testosterone exposure may not reflect changes in HDL function.


Assuntos
HDL-Colesterol/sangue , Oligopeptídeos/administração & dosagem , Testosterona/administração & dosagem , Transportador 1 de Cassete de Ligação de ATP/metabolismo , Adulto , Inibidores da Aromatase/administração & dosagem , Doenças Cardiovasculares/diagnóstico , Linhagem Celular , HDL-Colesterol/química , Método Duplo-Cego , Estradiol/sangue , Humanos , Injeções Subcutâneas , Macrófagos/citologia , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Masculino , Pessoa de Meia-Idade , Tamanho da Partícula , Efeito Placebo , Testosterona/sangue , Testosterona/farmacologia , Adulto Jovem
13.
J Clin Endocrinol Metab ; 101(9): 3419-28, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27399353

RESUMO

CONTEXT: Growing evidence challenges the concept that high-density lipoprotein-cholesterol (HDL-C) is cardioprotective after menopause. HDL particle concentration (HDL-P) and cholesterol efflux capacity (CEC) might be better predictors of cardiovascular risk. OBJECTIVE: Quantify alterations in HDL-P and CEC during menopause, correlating those changes with alterations in estradiol (E2) and FSH. DESIGN: Longitudinal study of HDL metrics before and after menopause as indexed by the final menstrual period (FMP). PARTICIPANTS: Forty-six women, mean baseline age 47.1 years, 33% black, 67% white. MAIN OUTCOMES AND MEASURES: HDL-P concentration (HDL-PIMA) by calibrated ion mobility analysis (IMA); macrophage CEC with cAMP-stimulated macrophages; ATP-binding cassette transporter A1 (ABCA1)-specific CEC with BHK cells expressing human ABCA1. RESULTS: After a median of 2.1 years since FMP, both HDL-C (P = .03) and HDL-PIMA (P = .01) increased, with a selective increase in large HDL-PIMA (P = .01), whereas sizes of medium and small HDL-PIMA were decreased (P < .05). These changes were independent of race, body mass index, and time difference. Macrophage CEC and ABCA1-specific CEC increased after FMP (both P < .001). Greater declines in E2 correlated with larger increases in small HDL-PIMA (P = .01), whereas greater increases in FSH associated with greater reductions in the size of medium HDL-PIMA (P = .04). Macrophage CEC and ABCA1-specific CEC correlated positively with E2 levels only before menopause (P = .04 and .009, respectively). CONCLUSIONS: Large HDL-PIMA and CEC increased significantly in the early phase of the menopausal transition. Whether patterns of these alterations differ in late postmenopause is unknown. Further exploration is needed to assess that and to determine whether the reported changes in HDL metrics associate with increased cardiovascular risk after menopause.


Assuntos
Doenças Cardiovasculares/fisiopatologia , HDL-Colesterol/sangue , Colesterol/sangue , Transportador 1 de Cassete de Ligação de ATP/sangue , Adulto , Biomarcadores/metabolismo , Células Cultivadas , Feminino , Seguimentos , Humanos , Estudos Longitudinais , Macrófagos/citologia , Macrófagos/metabolismo , Menopausa , Pessoa de Meia-Idade , Prognóstico , Fatores de Risco , Saúde da Mulher
14.
Nat Rev Cardiol ; 13(1): 48-60, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26323267

RESUMO

High-density lipoproteins (HDLs) protect against atherosclerosis by removing excess cholesterol from macrophages through the ATP-binding cassette transporter A1 (ABCA1) and ATP-binding cassette transporter G1 (ABCG1) pathways involved in reverse cholesterol transport. Factors that impair the availability of functional apolipoproteins or the activities of ABCA1 and ABCG1 could, therefore, strongly influence atherogenesis. HDL also inhibits lipid oxidation, restores endothelial function, exerts anti-inflammatory and antiapoptotic actions, and exerts anti-inflammatory actions in animal models. Such properties could contribute considerably to the capacity of HDL to inhibit atherosclerosis. Systemic and vascular inflammation has been proposed to convert HDL to a dysfunctional form that has impaired antiatherogenic effects. A loss of anti-inflammatory and antioxidative proteins, perhaps in combination with a gain of proinflammatory proteins, might be another important component in rendering HDL dysfunctional. The proinflammatory enzyme myeloperoxidase induces both oxidative modification and nitrosylation of specific residues on plasma and arterial apolipoprotein A-I to render HDL dysfunctional, which results in impaired ABCA1 macrophage transport, the activation of inflammatory pathways, and an increased risk of coronary artery disease. Understanding the features of dysfunctional HDL or apolipoprotein A-I in clinical practice might lead to new diagnostic and therapeutic approaches to atherosclerosis.


Assuntos
Aterosclerose/fisiopatologia , Lipoproteínas HDL/metabolismo , Transportador 1 de Cassete de Ligação de ATP/metabolismo , Transportadores de Cassetes de Ligação de ATP/metabolismo , Apolipoproteína A-I/genética , Apolipoproteína A-I/metabolismo , Complicações do Diabetes/metabolismo , Humanos , Lipoproteínas HDL/genética , Macrófagos/metabolismo , Fumar/efeitos adversos , Fumar/metabolismo
15.
J Lipid Res ; 57(2): 246-57, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26673204

RESUMO

Cholesterol efflux capacity associates strongly and negatively with the incidence and prevalence of human CVD. We investigated the relationships of HDL's size and protein cargo with its cholesterol efflux capacity using APOB-depleted serum and HDLs isolated from five inbred mouse strains with different susceptibilities to atherosclerosis. Like humans, mouse HDL carried >70 proteins linked to lipid metabolism, the acute-phase response, proteinase inhibition, and the immune system. HDL's content of specific proteins strongly correlated with its size and cholesterol efflux capacity, suggesting that its protein cargo regulates its function. Cholesterol efflux capacity with macrophages strongly and positively correlated with retinol binding protein 4 (RBP4) and PLTP, but not APOA1. In contrast, ABCA1-specific cholesterol efflux correlated strongly with HDL's content of APOA1, APOC3, and APOD, but not RBP4 and PLTP. Unexpectedly, APOE had a strong negative correlation with ABCA1-specific cholesterol efflux capacity. Moreover, the ABCA1-specific cholesterol efflux capacity of HDL isolated from APOE-deficient mice was significantly greater than that of HDL from wild-type mice. Our observations demonstrate that the HDL-associated APOE regulates HDL's ABCA1-specific cholesterol efflux capacity. These findings may be clinically relevant because HDL's APOE content associates with CVD risk and ABCA1 deficiency promotes unregulated cholesterol accumulation in human macrophages.


Assuntos
Transportador 1 de Cassete de Ligação de ATP/metabolismo , Apolipoproteínas E/metabolismo , Aterosclerose/metabolismo , Colesterol/metabolismo , Transportador 1 de Cassete de Ligação de ATP/genética , Animais , Apolipoproteínas E/genética , Aterosclerose/genética , Aterosclerose/patologia , Linhagem Celular , Colesterol/genética , Humanos , Metabolismo dos Lipídeos/genética , Lipoproteínas HDL/biossíntese , Lipoproteínas HDL/metabolismo , Macrófagos/metabolismo , Camundongos , Camundongos Endogâmicos/metabolismo , Proteômica , Transdução de Sinais
16.
Arterioscler Thromb Vasc Biol ; 36(2): 404-11, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26681752

RESUMO

OBJECTIVE: We investigated relationships between statin and niacin/statin combination therapy and the concentration of high-density lipoprotein particles (HDL-P) and cholesterol efflux capacity, 2 HDL metrics that might better assess cardiovascular disease risk than HDL-cholesterol (HDL-C) levels. APPROACH: In the Carotid Plaque Composition Study, 126 subjects with a history of cardiovascular disease were randomized to atorvastatin or combination therapy (atorvastatin/niacin). At baseline and after 1 year of treatment, the concentration of HDL and its 3 subclasses (small, medium, and large) were quantified by calibrated ion mobility analysis (HDL-PIMA). We also measured total cholesterol efflux from macrophages and ATP-binding cassette transporter A1 (ABCA1)-specific cholesterol efflux capacity. RESULTS: Atorvastatin decreased low-density lipoprotein cholesterol by 39% and raised HDL-C by 11% (P=0.0001) but did not increase HDL-PIMA or macrophage cholesterol efflux. Combination therapy raised HDL-C by 39% (P<0.0001) but increased HDL-PIMA by only 14%. Triglyceride levels did not correlate with HDL-PIMA (P=0.39), in contrast to their strongly negative correlation with HDL-C (P<0.0001). Combination therapy increased macrophage cholesterol efflux capacity (16%, P<0.0001) but not ABCA1-specific efflux. ABCA1-specific cholesterol efflux capacity decreased significantly (P=0.013) in statin-treated subjects, with or without niacin therapy. CONCLUSIONS: Statin therapy increased HDL-C levels but failed to increase HDL-PIMA. It also reduced ABCA1-specific cholesterol efflux capacity. Adding niacin to statin therapy increased HDL-C and macrophage efflux, but had much less effect on HDL-PIMA. It also failed to improve ABCA1-specific efflux, a key cholesterol exporter in macrophages. Our observations raise the possibility that niacin might not target the relevant atheroprotective population of HDL.


Assuntos
Transportador 1 de Cassete de Ligação de ATP/metabolismo , Atorvastatina/uso terapêutico , Doenças das Artérias Carótidas/tratamento farmacológico , HDL-Colesterol/sangue , Colesterol/sangue , Dislipidemias/tratamento farmacológico , Inibidores de Hidroximetilglutaril-CoA Redutases/uso terapêutico , Macrófagos/efeitos dos fármacos , Niacina/uso terapêutico , Transportador 1 de Cassete de Ligação de ATP/genética , Animais , Transporte Biológico , Doenças das Artérias Carótidas/sangue , Doenças das Artérias Carótidas/diagnóstico , Linhagem Celular , Cricetinae , Combinação de Medicamentos , Dislipidemias/sangue , Dislipidemias/diagnóstico , Feminino , Humanos , Macrófagos/metabolismo , Masculino , Camundongos , Pessoa de Meia-Idade , Fatores de Tempo , Transfecção , Resultado do Tratamento
17.
J Lipid Res ; 57(1): 100-8, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26531812

RESUMO

Low-grade chronic inflammation plays an important role in the pathogenesis of obesity-induced insulin resistance. ABCA1 is essential for reverse cholesterol transport and HDL synthesis, and protects against macrophage inflammation. In the present study, the effects of ABCA1 deficiency in hematopoietic cells on diet-induced inflammation and insulin resistance were tested in vivo using bone marrow transplanted (BMT)-WT and BMT-ABCA1(-/-) mice. When challenged with a high-fat high-carbohydrate diabetogenic diet with added cholesterol (HFHSC), BMT-ABCA1(-/-) mice displayed enhanced insulin resistance and impaired glucose tolerance as compared with BMT-WT mice. The worsened insulin resistance and impaired glucose tolerance in BMT-ABCA1(-/-) mice were accompanied by increased macrophage accumulation and inflammation in adipose tissue and liver. Moreover, BMT-ABCA1(-/-) mice had significantly higher hematopoietic stem cell proliferation, myeloid cell expansion, and monocytosis when challenged with the HFHSC diet. In vitro studies indicated that macrophages from ABCA1(-/-) mice showed significantly increased inflammatory responses induced by saturated fatty acids. Taken together, these studies point to an important role for hematopoietic ABCA1 in modulating a feed-forward mechanism in obesity such that inflamed tissue macrophages stimulate the production of more monocytes, leading to an exacerbation of inflammation and associated disease processes.


Assuntos
Transportador 1 de Cassete de Ligação de ATP/deficiência , Resistência à Insulina/fisiologia , Transportador 1 de Cassete de Ligação de ATP/sangue , Transportador 1 de Cassete de Ligação de ATP/genética , Tecido Adiposo/metabolismo , Animais , Colesterol/metabolismo , Colesterol/farmacologia , Dieta Hiperlipídica , Intolerância à Glucose/metabolismo , Inflamação/metabolismo , Inflamação/patologia , Fígado/metabolismo , Macrófagos/metabolismo , Macrófagos/patologia , Masculino , Camundongos , Camundongos Endogâmicos DBA , Monócitos/metabolismo , Monócitos/patologia , Transtornos Mieloproliferativos/genética , Transtornos Mieloproliferativos/metabolismo , Transtornos Mieloproliferativos/patologia , Obesidade/patologia , Receptores de LDL/metabolismo
18.
Curr Opin Lipidol ; 26(5): 388-93, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26270810

RESUMO

PURPOSE OF REVIEW: Randomized clinical trials provide strong evidence that pharmacological elevation of HDL-cholesterol (HDL-C) fails to reduce cardiovascular disease (CVD) risk in statin-treated humans. It is thus critical to identify new metrics that capture HDL's cardioprotective effects. RECENT FINDINGS: We review recent evidence that HDL's cholesterol efflux capacity is a strong inverse predictor of incident and prevalent CVD in humans. In light of those findings, we assess the proposal that impaired macrophage cholesterol efflux to HDL contributes to disease risk. We also discuss recent studies implicating small HDL particles in cholesterol efflux from macrophages. SUMMARY: These observations lay the foundation for a new approach to understanding mechanistically how HDL's functional properties help reduce CVD risk.


Assuntos
Colesterol/metabolismo , Lipoproteínas HDL/fisiologia , Macrófagos/metabolismo , Animais , Transporte Biológico , Doenças Cardiovasculares/sangue , Resistência à Doença , Humanos
19.
J Proteome Res ; 14(7): 2792-806, 2015 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-26011469

RESUMO

Cardiovascular disease is the leading cause of death in end-stage renal disease (ESRD) patients treated with hemodialysis. An important contributor might be a decline in the cardioprotective effects of high-density lipoprotein (HDL). One important factor affecting HDL's cardioprotective properties may involve the alterations of protein composition in HDL. In the current study, we used complementary proteomics approaches to detect and quantify relative levels of proteins in HDL isolated from control and ESRD subjects. Shotgun proteomics analysis of HDL isolated from 20 control and 40 ESRD subjects identified 63 proteins in HDL. Targeted quantitative proteomics by isotope-dilution selective reaction monitoring revealed that 22 proteins were significantly enriched and 6 proteins were significantly decreased in ESRD patients. Strikingly, six proteins implicated in renal disease, including B2M, CST3, and PTGDS, were markedly increased in HDL of uremic subjects. Moreover, several of these proteins (SAA1, apoC-III, PON1, etc.) have been associated with atherosclerosis. Our observations indicate that the HDL proteome is extensively remodeled in uremic subjects. Alterations of the protein cargo of HDL might impact HDL's proposed cardioprotective properties. Quantifying proteins in HDL may be useful in the assessment of cardiovascular risk in patients with ESRD and in assessing response to therapeutic interventions.


Assuntos
Falência Renal Crônica/sangue , Lipoproteínas HDL/sangue , Diálise Renal , Adulto , Sequência de Aminoácidos , Cistatina C/química , Feminino , Humanos , Falência Renal Crônica/terapia , Masculino , Pessoa de Meia-Idade , Dados de Sequência Molecular
20.
J Lipid Res ; 56(8): 1519-30, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25995210

RESUMO

Recent studies demonstrate that HDL's ability to promote cholesterol efflux from macrophages associates strongly with cardioprotection in humans independently of HDL-cholesterol (HDL-C) and apoA-I, HDL's major protein. However, the mechanisms that impair cholesterol efflux capacity during vascular disease are unclear. Inflammation, a well-established risk factor for cardiovascular disease, has been shown to impair HDL's cholesterol efflux capacity. We therefore tested the hypothesis that HDL's impaired efflux capacity is mediated by specific changes of its protein cargo. Humans with acute inflammation induced by low-level endotoxin had unchanged HDL-C levels, but their HDL-C efflux capacity was significantly impaired. Proteomic analyses demonstrated that HDL's cholesterol efflux capacity correlated inversely with HDL content of serum amyloid A (SAA)1 and SAA2. In mice, acute inflammation caused a marked impairment of HDL-C efflux capacity that correlated with a large increase in HDL SAA. In striking contrast, the efflux capacity of mouse inflammatory HDL was preserved with genetic ablation of SAA1 and SAA2. Our observations indicate that the inflammatory impairment of HDL-C efflux capacity is due in part to SAA-mediated remodeling of HDL's protein cargo.


Assuntos
HDL-Colesterol/metabolismo , Proteoma/metabolismo , Adulto , Animais , HDL-Colesterol/sangue , HDL-Colesterol/química , Citoproteção , Endotoxinas/toxicidade , Humanos , Inflamação/sangue , Inflamação/metabolismo , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Masculino , Camundongos , Miocárdio/citologia , Miocárdio/metabolismo , Proteína Amiloide A Sérica/deficiência , Proteína Amiloide A Sérica/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA