Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Front Immunol ; 13: 1021500, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36275772

RESUMO

Noroviruses (NoV) are the leading cause of epidemic acute gastroenteritis in humans worldwide and a safe and effective vaccine is needed. Here, a phase I, double-blind, placebo-controlled clinical trial was performed in 60 healthy adults, 18 to 40 years old. Safety (primary objective) and immunogenicity (secondary and exploratory objectives) of a bivalent (GI.4 and GII.4), plant-produced, virus-like particle (VLP), NoV vaccine candidate formulation were investigated at two dose levels (50 µg + 50 µg and 150 µg + 150 µg) without adjuvant. Overall, 13 subjects (65.0%) in the 50 µg group, 16 subjects (80.0%) in the 150 µg group, and 14 subjects (70.0%) in the placebo group reported at least 1 solicited local or general symptom during the 7-day post-vaccination periods following each dose. Severe solicited adverse events (AEs) were rare (2 events in the 50 µg group). A total of 8 subjects (40.0%) in each group reported at least one unsolicited AE during the 28-day post-vaccination periods. Immunogenicity was assessed on days 1, 8, 29, 57, 183 and 365. All subjects were pre-exposed to norovirus as indicated by baseline levels of the different immunological parameters examined. Vaccine-specific humoral and cellular immune responses increased after the first dose but did not rise further after the second vaccination. Increased GI.4- and GII.4-specific IgG titers persisted until day 365. The vaccine elicited cross-reactive IgG antibodies against non-vaccine NoV VLPs, which was more pronounced for NoV strains of the same genotype as the GII.4 vaccine strain than for non-vaccine genotypes. Significant blocking anti-GI.4 and anti-GII.4 VLP titers were triggered in both dose groups. Lymphoproliferation assays revealed strong cell-mediated immune responses that persisted until day 365. In conclusion, both dose levels were safe and well-tolerated, and no higher incidence of AEs was observed in the higher dose group. The data show that a single dose of the vaccine formulated at 50 µg of each VLP is sufficient to reach a peak immune response after 8 to 28 days. The results of this Phase I study warrant further evaluation of the non-adjuvanted vaccine candidate. Clinical trial registration: https://clinicaltrials.gov/ct2/show/record/NCT05508178, identifier (NCT05508178).


Assuntos
Infecções por Caliciviridae , Gastroenterite , Norovirus , Vacinas Virais , Adulto , Humanos , Adolescente , Adulto Jovem , Imunoglobulina G , Adjuvantes Imunológicos
2.
J Nanobiotechnology ; 19(1): 25, 2021 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-33468139

RESUMO

BACKGROUND: Virus-like particle (VLP) vaccines have recently emerged as a safe and effective alternative to conventional vaccine technologies. The strong immunogenic effects of VLPs can be harnessed for making vaccines against any pathogen by decorating VLPs with antigens from the pathogen. Producing the antigenic pathogen fragments and the VLP platform separately makes vaccine development rapid and convenient. Here we decorated the norovirus-like particle with two conserved influenza antigens and tested for the immunogenicity of the vaccine candidates in BALB/c mice. RESULTS: SpyTagged noro-VLP was expressed with high efficiency in insect cells and purified using industrially scalable methods. Like the native noro-VLP, SpyTagged noro-VLP is stable for months when refrigerated in a physiological buffer. The conserved influenza antigens were produced separately as SpyCatcher fusions in E. coli before covalent conjugation on the surface of noro-VLP. The noro-VLP had a high adjuvant effect, inducing high titers of antibody production against the antigens presented on its surface. CONCLUSIONS: The modular noro-VLP vaccine platform presented here offers a rapid, convenient and safe method to present various soluble protein antigens to the immune system for vaccination and antibody production purposes.


Assuntos
Vacinas contra Influenza/imunologia , Norovirus/imunologia , Vacinas de Partículas Semelhantes a Vírus/imunologia , Animais , Anticorpos Antivirais/imunologia , Formação de Anticorpos , Modelos Animais de Doenças , Escherichia coli , Feminino , Humanos , Vacinas contra Influenza/química , Influenza Humana/prevenção & controle , Camundongos , Camundongos Endogâmicos BALB C , Infecções por Orthomyxoviridae/prevenção & controle , Vacinação , Proteínas Virais de Fusão
3.
Arch Virol ; 166(1): 213-217, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33067651

RESUMO

Recombinant protein technology enables the engineering of modern vaccines composed of a carrier protein displaying poorly immunogenic heterologous antigens. One promising carrier is based on the rotavirus inner-capsid VP6 protein. We explored different VP6 insertion sites for the presentation of two peptides (23 and 140 amino acids) derived from the M2 and HA genes of influenza A virus. Both termini and three surface loops of VP6 were successfully exploited as genetic fusion sites, as demonstrated by the expression of the fusion proteins. However, further studies are needed to assess the morphology and immunogenicity of these constructs.


Assuntos
Antígenos Virais/genética , Proteínas do Capsídeo/genética , Vírus da Influenza A/genética , Peptídeos/genética , Rotavirus/genética , Anticorpos Antivirais/genética , Formação de Anticorpos/genética , Capsídeo/metabolismo , Proteínas Recombinantes/genética
4.
J Immunol Res ; 2020: 3194704, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32411793

RESUMO

We have previously shown that rotavirus (RV) inner capsid protein VP6 has an adjuvant effect on norovirus (NoV) virus-like particle- (VLP-) induced immune responses and studied the adjuvant mechanism in immortalized cell lines used as antigen-presenting cells (APCs). Here, we investigated the uptake and presentation of RV VP6 and NoV GII.4 VLPs by primary bone marrow-derived dendritic cells (BMDCs). The adjuvant effect of VP6 on GII.4 VLP presentation and NoV-specific immune response induction by BMDC in vivo was also studied. Intracellular staining demonstrated that BMDCs internalized both antigens, but VP6 more efficiently than NoV VLPs. Both antigens were processed and presented to antigen-primed T cells, which responded by robust interferon γ secretion. When GII.4 VLPs and VP6 were mixed in the same pulsing reaction, a subpopulation of the cells had uptaken both antigens. Furthermore, VP6 copulsing increased GII.4 VLP uptake by 37% and activated BMDCs to secrete 2-5-fold increased levels of interleukin 6 and tumor necrosis factor α compared to VLP pulsing alone. When in vitro-pulsed BMDCs were transferred to syngeneic BALB/c mice, VP6 improved NoV-specific antibody responses. The results of this study support the earlier findings of VP6 adjuvant effect in vitro and in vivo.


Assuntos
Adjuvantes Imunológicos/administração & dosagem , Antígenos Virais/administração & dosagem , Infecções por Caliciviridae/prevenção & controle , Proteínas do Capsídeo/administração & dosagem , Células Dendríticas/imunologia , Norovirus/imunologia , Vacinas Virais/administração & dosagem , Animais , Antígenos Virais/imunologia , Infecções por Caliciviridae/imunologia , Infecções por Caliciviridae/virologia , Proteínas do Capsídeo/imunologia , Células Cultivadas , Reações Cruzadas , Células Dendríticas/metabolismo , Modelos Animais de Doenças , Feminino , Humanos , Imunogenicidade da Vacina , Interleucina-6/metabolismo , Camundongos , Cultura Primária de Células , Fator de Necrose Tumoral alfa/metabolismo , Vacinas Virais/imunologia
5.
Vaccine ; 37(40): 5962-5971, 2019 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-31471148

RESUMO

Type B Coxsackieviruses (CVBs) belong to the enterovirus genus, and they cause both acute and chronic diseases in humans. CVB infections usually lead to flu-like symptoms but can also result in more serious diseases such as myocarditis, aseptic meningitis and life-threatening multi-organ infections in young infants. Thus, CVBs have long been considered as important targets of future vaccines. We have previously observed CVB1 capsid disintegration and virus concentration decrease with 12-day long formalin inactivation protocol. Here a scalable ion exchange chromatography purification method was developed, and purified CVB1 was inactivated with UV-C or formalin. Virus morphology and concentration remained unchanged, when the UV (2 min) or formalin (5 days) inactivation were performed in the presence of tween80 detergent. The concentration of the native and UV inactivated CVB1 remained constant at 4 °C during a six months stability study, whereas the concentration of the formalin inactivated vaccine decreased 29% during this time. UV treatment decreased, whereas formalin treatment increased the thermal stability of the capsid. The formalin inactivated CVB1 vaccine was more immunogenic than the UV inactivated vaccine; the protective neutralizing antibody levels were higher in mice immunized with formalin inactivated vaccine. High levels of CVB1 neutralizing antibodies as well as IgG1 antibodies were detected in mice that were protected against viremia induced by experimental CVB1 infection. In conclusion, this study describes a scalable ion exchange chromatography purification method and optimized 5-day long formalin inactivation method that preserves CVB1 capsid structure and immunogenicity. Formalin treatment stabilizes the virus particle at elevated temperatures, and the formalin inactivated vaccine induces high levels of serum IgG1 antibodies (Th2 type response) and protective levels of neutralizing antibodies. Formalin inactivated CVB vaccines are promising candidates for human clinical trials.


Assuntos
Infecções por Coxsackievirus/imunologia , Infecções por Coxsackievirus/prevenção & controle , Enterovirus Humano B/imunologia , Imunogenicidade da Vacina/imunologia , Vacinas Virais/imunologia , Animais , Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/imunologia , Capsídeo/imunologia , Proteínas do Capsídeo/imunologia , Chlorocebus aethiops , Formaldeído , Camundongos , Camundongos Endogâmicos C57BL , Raios Ultravioleta , Vacinação/métodos , Vacinas de Produtos Inativados/imunologia , Células Vero/imunologia
6.
J Immunol Res ; 2018: 3487095, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29682589

RESUMO

Norovirus (NoV) is a main cause of acute gastroenteritis across all ages worldwide. NoV vaccine candidates currently in clinical trials are based on noninfectious highly immunogenic virus-like particles (VLPs) delivered intramuscularly (IM). Since NoV is an enteric pathogen, it is likely that mucosal immunity has a significant role in protection from infection in the intestine. Due to the fact that IM delivery of NoV VLPs does not generate mucosal immunity, we investigated whether NoV genotype GII.4 VLPs coadministered with aluminum hydroxide (Al(OH)3) or monophosphoryl lipid A (MPLA) would induce mucosal antibodies in mice. Systemic as well as mucosal IgG and IgA antibodies in serum and intestinal and nasal secretions were measured. As expected, strong serum IgG, IgG1, and IgG2a antibodies as well as a dose sparing effect were induced by both Al(OH)3 and MPLA, but no mucosal IgA antibodies were detected. In contrast, IN immunization with GII.4 VLPs without an adjuvant induced systemic as well as mucosal IgA antibody response. These results indicate that mucosal delivery of NoV VLPs is needed for induction of mucosal responses.


Assuntos
Infecções por Caliciviridae/imunologia , Norovirus/fisiologia , Vacinas Virais/imunologia , Adjuvantes Imunológicos , Hidróxido de Alumínio/imunologia , Animais , Anticorpos Antivirais/metabolismo , Infecções por Caliciviridae/prevenção & controle , Feminino , Humanos , Imunidade Humoral , Imunidade nas Mucosas , Imunoglobulina A/metabolismo , Imunoglobulina G/metabolismo , Lipídeo A/análogos & derivados , Lipídeo A/imunologia , Camundongos , Camundongos Endogâmicos BALB C , Vacinação , Vacinas de Partículas Semelhantes a Vírus
7.
Vaccine ; 36(4): 484-490, 2018 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-29246474

RESUMO

Norovirus (NoV) is the main cause of acute gastroenteritis worldwide across all age groups. Current NoV vaccine candidates are based on non-infectious highly immunogenic virus-like particles (VLPs) produced in cell cultures in vitro. As NoVs infecting human population are highly divergent, it is proposed that the vaccine should contain at least two different NoV genotypes, potentially affecting the immunogenicity of each other. We investigated the immunogenicity of NoV GII.4 VLPs administered by intramuscular (IM) or intradermal (ID) injections to BALB/c mice either alone or co-delivered with genogroup I (GI) and other genogroup GII VLPs. Serum NoV-specific IgG binding antibody titers and antibody functionality in terms of avidity and blocking potential were assessed. Furthermore, the specificity and functional avidity of CD4+ and CD8+ T cell responses were analyzed using synthetic peptides previously identified to contain NoV VP1 P2 domain-specific H-2d epitopes. The results showed that IM and ID immunization induced comparable GII.4-specific antibodies and T cell responses. Similar magnitude and functionality of antibodies and interferon-gamma producing T cells were developed using monovalent GII.4 VLPs or different genotype combinations. For the first time, degranulation assay using multicolor flow cytometry showed that NoV GII.4-specific CD8+ T cells had cytotoxic T lymphocyte phenotype. To conclude, our results demonstrate that there is no immunological interference even if up to five different NoV VLP genotypes were co-administered at the same time. Furthermore, no inhibition of NoV-specific antibody functionality or the magnitude, specificity and affinity of T cell responses was observed in any of the immunized animals, observations relevant for the development of a multivalent NoV VLP vaccine.


Assuntos
Anticorpos Antivirais/imunologia , Infecções por Caliciviridae/imunologia , Gastroenterite/imunologia , Norovirus/imunologia , Linfócitos T/imunologia , Vacinas de Partículas Semelhantes a Vírus/imunologia , Animais , Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/sangue , Especificidade de Anticorpos/imunologia , Infecções por Caliciviridae/virologia , Degranulação Celular/imunologia , Reações Cruzadas , Epitopos/imunologia , Gastroenterite/virologia , Genótipo , Humanos , Imunoglobulina G/sangue , Imunoglobulina G/imunologia , Camundongos , Norovirus/genética , Peptídeos/imunologia , Proteínas Recombinantes/imunologia , Especificidade do Receptor de Antígeno de Linfócitos T , Subpopulações de Linfócitos T/imunologia , Subpopulações de Linfócitos T/metabolismo , Linfócitos T/metabolismo , Vacinas Virais/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA