Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 47
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Plant Cell ; 35(10): 3845-3869, 2023 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-37378592

RESUMO

Emerging evidence indicates that in addition to its well-recognized functions in antiviral RNA silencing, dsRNA elicits pattern-triggered immunity (PTI), likely contributing to plant resistance against virus infections. However, compared to bacterial and fungal elicitor-mediated PTI, the mode-of-action and signaling pathway of dsRNA-induced defense remain poorly characterized. Here, using multicolor in vivo imaging, analysis of GFP mobility, callose staining, and plasmodesmal marker lines in Arabidopsis thaliana and Nicotiana benthamiana, we show that dsRNA-induced PTI restricts the progression of virus infection by triggering callose deposition at plasmodesmata, thereby likely limiting the macromolecular transport through these cell-to-cell communication channels. The plasma membrane-resident SOMATIC EMBRYOGENESIS RECEPTOR-LIKE KINASE 1, the BOTRYTIS INDUCED KINASE1/AVRPPHB SUSCEPTIBLE1-LIKE KINASE1 kinase module, PLASMODESMATA-LOCATED PROTEINs 1/2/3, as well as CALMODULIN-LIKE 41 and Ca2+ signals are involved in the dsRNA-induced signaling leading to callose deposition at plasmodesmata and antiviral defense. Unlike the classical bacterial elicitor flagellin, dsRNA does not trigger a detectable reactive oxygen species (ROS) burst, substantiating the idea that different microbial patterns trigger partially shared immune signaling frameworks with distinct features. Likely as a counter strategy, viral movement proteins from different viruses suppress the dsRNA-induced host response leading to callose deposition to achieve infection. Thus, our data support a model in which plant immune signaling constrains virus movement by inducing callose deposition at plasmodesmata and reveals how viruses counteract this layer of immunity.

2.
New Phytol ; 238(3): 1115-1128, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36751904

RESUMO

Numerous plant endogenous mRNAs move via phloem and thus affect the growth and development of long-distant organs. mRNAs are transported with RNA-binding proteins forming a ribonucleoprotein complex. However, it remains elusive how such RNP complex assembles and facilitates mRNA trafficking. Protease digestion and RNA immunoprecipitation were used to investigate the RNP assembly function of the complete Chaperonin Containing T-complex Polypeptide-1. In situ hybridization, hairy root transformation, microprojectile bombardment, and grafting experiments demonstrate the role of CCT complex in the transport of a PbWoxT1-PbPTB3 RNP complex in Pyrus betulaefolia. PbCCT5 silenced caused defective movement of GFP-PbPTB3 and GFP-PbWoxT1 from hairy roots to new leaves via the phloem. PbCCT5 is shown to interact with PbPTB3. PbCCT complex enhanced PbPTB3 stabilization and permitted assembly of PbWoxT1 and PbPTB3 into an RNP complex. Furthermore, silencing of individual CCT subunits inhibited the intercellular movement of GFP-PbPTB3 and long-distance trafficking of PbWoxT1 and PbPTB3 in grafted plants. Taken together, the CCT complex assembles PbPTB3 and PbWoxT1 into an RNP complex in the phloem in order to facilitate the long-distance trafficking of PbWoxT1 in P. betulaefolia. This study therefore provides important insights into the mechanism of RNP complex formation and transport.


Assuntos
Pyrus , Chaperonina com TCP-1/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , RNA de Plantas/genética , RNA de Plantas/metabolismo , Ribonucleoproteínas/metabolismo
3.
Viruses ; 14(12)2022 12 08.
Artigo em Inglês | MEDLINE | ID: mdl-36560746

RESUMO

Movement proteins (MPs) of plant viruses enable the translocation of viral genomes from infected to healthy cells through plasmodesmata (PD). The MPs functions involve the increase of the PD permeability and routing of viral genome both to the PD entrance and through the modified PD. Hibiscus green spot virus encodes two MPs, termed BMB1 and BMB2, which act in concert to accomplish virus cell-to-cell transport. BMB1, representing an NTPase/helicase domain-containing RNA-binding protein, localizes to the cytoplasm and the nucleoplasm. BMB2 is a small hydrophobic protein that interacts with the endoplasmic reticulum (ER) membranes and induces local constrictions of the ER tubules. In plant cells, BMB2 localizes to PD-associated membrane bodies (PAMBs) consisting of modified ER tubules and directs BMB1 to PAMBs. Here, we demonstrate that BMB1 and BMB2 interact in vitro and in vivo, and that their specific interaction is essential for BMB2-directed targeting of BMB1 to PAMBs. Using mutagenesis, we show that the interaction involves the C-terminal BMB1 region and the N-terminal region of BMB2.


Assuntos
Hibiscus , Vírus de Plantas , Vírus de RNA , Hibiscus/metabolismo , Vírus de Plantas/genética , Vírus de Plantas/metabolismo , Retículo Endoplasmático , Vírus de RNA/metabolismo , Proteínas do Movimento Viral em Plantas/genética , Proteínas do Movimento Viral em Plantas/metabolismo , Nicotiana , Plasmodesmos
4.
Methods Mol Biol ; 2457: 411-426, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35349157

RESUMO

Cells have developed mechanisms for cytoplasmic RNA transport and localization that participate in the regulation and subcellular localization of protein synthesis. In addition, plants can exchange RNA molecules between cells through plasmodesmata and to distant tissues in the phloem. These mechanisms are hijacked by RNA viruses to establish their replication complexes and to disseminate their genomes throughout the plant organism with the help of virus-encoded movement proteins (MP). Live imaging of RNA molecules is a fundamental approach to understand the regulation and molecular basis of these processes. The most widely used experimental systems for the in vivo visualization of genetically encoded RNA molecules are based on fluorescently tagged RNA binding proteins that bind to specific motifs inserted into the RNA, thus allowing the tracking of the specific RNA molecule by fluorescent microscopy. Recently, we developed the use of the E. coli RNA binding protein BglG for the imaging of RNAs tagged with BglG-binding sites in planta. We describe here the detailed method by which we use this in vivo RNA tagging system for the real-time imaging of Tobacco mosaic virus (TMV) MP mRNA.


Assuntos
Escherichia coli , Proteínas do Movimento Viral em Plantas , Escherichia coli/genética , Proteínas do Movimento Viral em Plantas/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , RNA Viral/genética , RNA Viral/metabolismo , Nicotiana/metabolismo
5.
Front Plant Sci ; 12: 649768, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33868349

RESUMO

The increasing pace of global warming and climate instability will challenge the management of pests and diseases of cultivated plants. Several reports have shown that increases in environmental temperature can enhance the cell-to-cell and systemic propagation of viruses within their infected hosts. These observations suggest that earlier and longer periods of warmer weather may cause important changes in the interaction between viruses and their host's plants, thus posing risks of new viral diseases and outbreaks in agriculture and the wild. As viruses target plasmodesmata (PD) for cell-to-cell spread, these cell wall pores may play yet unknown roles in the temperature-sensitive regulation of intercellular communication and virus infection. Understanding the temperature-sensitive mechanisms in plant-virus interactions will provide important knowledge for protecting crops against diseases in a warmer climate.

6.
New Phytol ; 229(2): 1052-1066, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-32866987

RESUMO

Plant viruses encode movement proteins (MPs) that ensure the transport of viral genomes through plasmodesmata (PD) and use cell endomembranes, mostly the endoplasmic reticulum (ER), for delivery of viral genomes to PD and formation of PD-anchored virus replication compartments. Here, we demonstrate that the Hibiscus green spot virus BMB2 MP, an integral ER protein, induces constrictions of ER tubules, decreases the mobility of ER luminal content, and exhibits an affinity to highly curved membranes. These properties are similar to those described for reticulons, cellular proteins that induce membrane curvature to shape the ER tubules. Similar to reticulons, BMB2 adopts a W-like topology within the ER membrane. BMB2 targets PD and increases their size exclusion limit, and these BMB2 activities correlate with the ability to induce constrictions of ER tubules. We propose that the induction of ER constrictions contributes to the BMB2-dependent increase in PD permeability and formation of the PD-associated replication compartments, therefore facilitating the virus intercellular spread. Furthermore, we show that the ER tubule constrictions also occur in cells expressing TGB2, one of the three MPs of Potato virus X (PVX), and in PVX-infected cells, suggesting that reticulon-like MPs are employed by diverse RNA viruses.


Assuntos
Proteínas do Movimento Viral em Plantas , Vírus de Plantas , Retículo Endoplasmático , Plasmodesmos , Nicotiana
7.
Plant J ; 105(1): 271-282, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33098198

RESUMO

RNA transport and localization represent important post-transcriptional mechanisms to determine the subcellular localization of protein synthesis. Plants have the capacity to transport messenger (m)RNA molecules beyond the cell boundaries through plasmodesmata and over long distances in the phloem. RNA viruses exploit these transport pathways to disseminate their infections and represent important model systems to investigate RNA transport in plants. Here, we present an in vivo plant RNA-labeling system based on the Escherichia coli RNA-binding protein BglG. Using the detection of RNA in mobile RNA particles formed by viral movement protein (MP) as a model, we demonstrate the efficiency and specificity of mRNA detection by the BglG system as compared with MS2 and λN systems. Our observations show that MP mRNA is specifically associated with MP in mobile MP particles but hardly with MP localized at plasmodesmata. MP mRNA is clearly absent from MP accumulating along microtubules. We show that the in vivo BglG labeling of the MP particles depends on the presence of the BglG-binding stem-loop aptamers within the MP mRNA and that the aptamers enhance the coprecipitation of BglG by MP, thus demonstrating the presence of an MP:MP mRNA complex. The BglG system also allowed us to monitor the cell-to-cell transport of the MP mRNA, thus linking the observation of mobile MP mRNA granules with intercellular MP mRNA transport. Given its specificity demonstrated here, the BglG system may be widely applicable for studying mRNA transport and localization in plants.


Assuntos
Proteínas de Bactérias , RNA Mensageiro/ultraestrutura , RNA de Plantas/ultraestrutura , Proteínas de Ligação a RNA , Escherichia coli , Proteínas de Escherichia coli , Proteínas de Fluorescência Verde , Imunoprecipitação , Microscopia de Fluorescência , Epiderme Vegetal/metabolismo , RNA Mensageiro/metabolismo , RNA de Plantas/metabolismo , Nicotiana/genética
8.
Methods Mol Biol ; 2166: 103-120, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32710405

RESUMO

RNA transport and localization are evolutionarily conserved processes that allow protein translation to occur at specific subcellular sites and thereby having fundamental roles in the determination of cell fates, embryonic patterning, asymmetric cell division, and cell polarity. In addition to localizing RNA molecules to specific subcellular sites, plants have the ability to exchange RNA molecules between cells through plasmodesmata (PD). Plant RNA viruses hijack the mechanisms of intracellular and intercellular RNA transport to establish localized replication centers within infected cells and then to disseminate their infectious genomes between cells and throughout the plant organism with the help of their movement proteins (MP). In this chapter, we describe the transient expression of the tobacco mosaic virus movement protein (TMV-MP) and the application of the MS2 system for the in vivo labeling of the MP-encoding mRNA. The MS2 method is based on the binding of the bacteriophage coat protein (CP) to its origin of assembly (OAS) in the phage RNA. Thus, to label a specific mRNA in vivo, a tandem repetition of a 19-nucleotide-long stem-loop (SL) sequence derived from the MS2 OAS sequence (MSL) is transcriptionally fused to the RNA under investigation. The RNA is detected by the co-expression of fluorescent protein-tagged MS2 CP (MCP), which binds to each of the MSL elements. In providing a detailed protocol for the in vivo visualization of TMV-MP mRNA tagged with the MS2 system in Nicotiana benthamiana epidermal cells, we describe (1) the specific DNA constructs, (2) Agrobacterium tumefaciens-mediated transfection for their transient expression in plants, and (3) imaging conditions required to obtain high-quality mRNA imaging data.


Assuntos
Agrobacterium tumefaciens/genética , Levivirus/metabolismo , Proteínas do Movimento Viral em Plantas/genética , Transporte de RNA/genética , RNA Mensageiro/metabolismo , RNA de Plantas/metabolismo , RNA Viral/genética , Vírus do Mosaico do Tabaco/metabolismo , Transporte Biológico , Proteínas do Capsídeo/genética , Proteínas do Capsídeo/metabolismo , Clonagem Molecular , Expressão Gênica , Vetores Genéticos , Levivirus/genética , Proteínas Luminescentes , Microscopia de Fluorescência , Proteínas do Movimento Viral em Plantas/metabolismo , Plantas Geneticamente Modificadas/genética , Plasmodesmos/metabolismo , RNA Mensageiro/genética , Nicotiana/genética , Nicotiana/metabolismo , Vírus do Mosaico do Tabaco/genética
9.
Cancers (Basel) ; 11(10)2019 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-31652529

RESUMO

Components with self-assembly properties derived from plant viruses provide the opportunity to design biological nanoscaffolds for the ordered display of agents of diverse nature and with complementing functions. With the aim of designing a functionalized nanoscaffold to target cancer, the coat protein (CP) of Tobacco mosaic virus (TMV) was tested as nanocarrier for an insoluble, highly hydrophobic peptide that targets the transmembrane domain of the Neuropilin-1 (NRP1) receptor in cancer cells. The resulting construct CPL-K (CP-linker-"Kill") binds to NRP1 in cancer cells and disrupts NRP1 complex formation with PlexA1 as well as downstream Akt survival signaling. The application of CPL-K also inhibits angiogenesis and cell migration. CP was also fused to a peptide that targets the extracellular domain of NRP1 and this fusion protein (CPL-F, CP-Linker-"Find") is shown to bind to cultured cancer cells and to inhibit NRP1-dependent angiogenesis as well. CPL-K and CPL-F maintain their anti-angiogenic properties upon co-assembly to oligomers/nanoparticles together with CPL. The observations show that the CP of TMV can be employed to generate a functionalized nanoparticle with biological activity. Remarkably, fusion to CPL allowed us to solubilize the highly insoluble transmembrane NRP1 peptide and to retain its anti-angiogenic effect.

10.
Curr Biol ; 29(15): 2465-2476.e5, 2019 08 05.
Artigo em Inglês | MEDLINE | ID: mdl-31327714

RESUMO

In plants, transcripts move to distant body parts to potentially act as systemic signals regulating development and growth. Thousands of messenger RNAs (mRNAs) are transported across graft junctions via the phloem to distinct plant parts. Little is known regarding features, structural motifs, and potential base modifications of transported transcripts and how these may affect their mobility. We identified Arabidopsis thaliana mRNAs harboring the modified base 5-methylcytosine (m5C) and found that these are significantly enriched in mRNAs previously described as mobile, moving over graft junctions to distinct plant parts. We confirm this finding with graft-mobile methylated mRNAs TRANSLATIONALLY CONTROLLED TUMOR PROTEIN 1 (TCTP1) and HEAT SHOCK COGNATE PROTEIN 70.1 (HSC70.1), whose mRNA transport is diminished in mutants deficient in m5C mRNA methylation. Together, our results point toward an essential role of cytosine methylation in systemic mRNA mobility in plants and that TCTP1 mRNA mobility is required for its signaling function.


Assuntos
5-Metilcitosina/metabolismo , Proteínas de Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Choque Térmico HSP70/genética , Proteínas Associadas aos Microtúbulos/genética , RNA Mensageiro/metabolismo , RNA de Plantas/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Transporte Biológico , Proteínas de Choque Térmico HSP70/metabolismo , Metilação , Proteínas Associadas aos Microtúbulos/metabolismo
11.
J Virol ; 92(21)2018 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-30135122

RESUMO

Plant virus cell-to-cell movement is an essential step in viral infections. This process is facilitated by specific virus-encoded movement proteins (MPs), which manipulate the cell wall channels between neighboring cells known as plasmodesmata (PD). Citrus psorosis virus (CPsV) infection in sweet orange involves the formation of tubule-like structures within PD, suggesting that CPsV belongs to "tubule-forming" viruses that encode MPs able to assemble a hollow tubule extending between cells to allow virus movement. Consistent with this hypothesis, we show that the MP of CPsV (MPCPsV) indeed forms tubule-like structures at PD upon transient expression in Nicotiana benthamiana leaves. Tubule formation by MPCPsV depends on its cleavage capacity, mediated by a specific aspartic protease motif present in its primary sequence. A single amino acid mutation in this motif abolishes MPCPsV cleavage, alters the subcellular localization of the protein, and negatively affects its activity in facilitating virus movement. The amino-terminal 34-kDa cleavage product (34KCPsV), but not the 20-kDa fragment (20KCPsV), supports virus movement. Moreover, similar to tubule-forming MPs of other viruses, MPCPsV (and also the 34KCPsV cleavage product) can homooligomerize, interact with PD-located protein 1 (PDLP1), and assemble tubule-like structures at PD by a mechanism dependent on the secretory pathway. 20KCPsV retains the protease activity and is able to cleave a cleavage-deficient MPCPsV in trans Altogether, these results demonstrate that CPsV movement depends on the autolytic cleavage of MPCPsV by an aspartic protease activity, which removes the 20KCPsV protease and thereby releases the 34KCPsV protein for PDLP1-dependent tubule formation at PD.IMPORTANCE Infection by citrus psorosis virus (CPsV) involves a self-cleaving aspartic protease activity within the viral movement protein (MP), which results in the production of two peptides, termed 34KCPsV and 20KCPsV, that carry the MP and viral protease activities, respectively. The underlying protease motif within the MP is also found in the MPs of other members of the Aspiviridae family, suggesting that protease-mediated protein processing represents a conserved mechanism of protein expression in this virus family. The results also demonstrate that CPsV and potentially other ophioviruses move by a tubule-guided mechanism. Although several viruses from different genera were shown to use this mechanism for cell-to-cell movement, our results also demonstrate that this mechanism is controlled by posttranslational protein cleavage. Moreover, given that tubule formation and virus movement could be inhibited by a mutation in the protease motif, targeting the protease activity for inactivation could represent an important approach for ophiovirus control.


Assuntos
Ácido Aspártico Proteases/metabolismo , Citrus sinensis/virologia , Nicotiana/virologia , Proteínas do Movimento Viral em Plantas/metabolismo , Vírus de Plantas/crescimento & desenvolvimento , Plasmodesmos/fisiologia , Aminoácidos/genética , Ácido Aspártico Proteases/genética , Microscopia Eletrônica de Transmissão , Doenças das Plantas/virologia , Folhas de Planta/virologia , Proteínas do Movimento Viral em Plantas/genética , Vírus de Plantas/genética , Plasmodesmos/genética , Plasmodesmos/virologia
12.
Plant Biotechnol J ; 2018 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-29479789

RESUMO

Pathogens induce severe damages on cultivated plants and represent a serious threat to global food security. Emerging strategies for crop protection involve the external treatment of plants with double-stranded (ds)RNA to trigger RNA interference. However, applying this technology in greenhouses and fields depends on dsRNA quality, stability and efficient large-scale production. Using components of the bacteriophage phi6, we engineered a stable and accurate in vivo dsRNA production system in Pseudomonas syringae bacteria. Unlike other in vitro or in vivo dsRNA production systems that rely on DNA transcription and postsynthetic alignment of single-stranded RNA molecules, the phi6 system is based on the replication of dsRNA by an RNA-dependent RNA polymerase, thus allowing production of high-quality, long dsRNA molecules. The phi6 replication complex was reprogrammed to multiply dsRNA sequences homologous to tobacco mosaic virus (TMV) by replacing the coding regions within two of the three phi6 genome segments with TMV sequences and introduction of these constructs into P. syringae together with the third phi6 segment, which encodes the components of the phi6 replication complex. The stable production of TMV dsRNA was achieved by combining all the three phi6 genome segments and by maintaining the natural dsRNA sizes and sequence elements required for efficient replication and packaging of the segments. The produced TMV-derived dsRNAs inhibited TMV propagation when applied to infected Nicotiana benthamiana plants. The established dsRNA production system enables the broad application of dsRNA molecules as an efficient, highly flexible, nontransgenic and environmentally friendly approach for protecting crops against viruses and other pathogens.

13.
J Exp Bot ; 69(1): 117-132, 2017 12 18.
Artigo em Inglês | MEDLINE | ID: mdl-29036578

RESUMO

The infection of plants by viruses depends on cellular mechanisms that support the replication of the viral genomes, and the cell-to-cell and systemic movement of the virus via plasmodesmata (PD) and the connected phloem. While the propagation of some viruses requires the conventional endoplasmic reticulum (ER)-Golgi pathway, others replicate and spread between cells in association with the ER and are independent of this pathway. Using selected viruses as examples, this review re-examines the involvement of membranes and the cytoskeleton during virus infection and proposes potential roles of class VIII myosins and membrane-tethering proteins in controlling viral functions at specific ER subdomains, such as cortical microtubule-associated ER sites, ER-plasma membrane contact sites, and PD.


Assuntos
Membrana Celular/metabolismo , Citoesqueleto/metabolismo , Miosinas/metabolismo , Doenças das Plantas/virologia , Proteínas de Plantas/metabolismo , Vírus de Plantas/fisiologia , Replicação Viral , Retículo Endoplasmático/metabolismo , Microtúbulos/metabolismo , Plantas/metabolismo , Plantas/virologia , Plasmodesmos/metabolismo
14.
J Gen Virol ; 98(9): 2379-2391, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28869000

RESUMO

The cell-to-cell transport of many plant viruses through plasmodesmata requires viral movement proteins (MPs) encoded by a 'triple gene block' (TGB) and termed TGB1, TGB2 and TGB3. TGB3 is a small integral membrane protein that contains subcellular targeting signals and directs both TGB2 and the helicase domain-containing TGB1 protein to plasmodesmata-associated structures. Recently, we described a 'binary movement block' (BMB) coding for two MPs, BMB1 and BMB2. The BMB2 protein associates with endoplasmic reticulum (ER) membranes, accumulates at plasmodesmata-associated membrane bodies and directs the BMB1 helicase to these structures. TGB3 transport to cell peripheral bodies was previously shown to bypass the secretory pathway and involve a non-conventional mechanism. Here, we provide evidence that the intracellular transport of both poa semilatent virus TGB3 and hibiscus green spot virus BMB2 to plasmodesmata-associated sites can occur via lateral translocation along the ER membranes. Agrobacterium-mediated transient co-expression in Nicotiana benthamiana leaves revealed that green fluorescent protein (GFP)-fused actin-binding domains of Arabidopsis fimbrin (ABD2-GFP) and mouse talin (TAL-GFP) inhibited the subcellular targeting of TGB3 and BMB2 to plasmodesmata-associated bodies, which resulted in TGB3 and BMB2 accumulation in the cytoplasm in association with aberrant ER structures. Inhibition of COPII budding complex formation by the expression of a dominant-negative mutant of the small GTPase Sar1 had no detectable effect on BMB2 subcellular targeting, which therefore could occur without exit from the ER in COPII transport vesicles. Collectively, the presented data support the current view that plant viral MPs exploit the ER:actin network for their intracellular transport.


Assuntos
Proteínas do Movimento Viral em Plantas/metabolismo , Vírus de Plantas/metabolismo , Retículo Endoplasmático/metabolismo , Retículo Endoplasmático/virologia , Doenças das Plantas/virologia , Proteínas do Movimento Viral em Plantas/genética , Vírus de Plantas/genética , Transporte Proteico , Nicotiana/virologia
15.
Sci Rep ; 7(1): 1514, 2017 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-28473712

RESUMO

Cyclophilins (CYPs) are a group of ubiquitous proteins characterized by their ability to bind to the immunosuppressive drug cyclosporin A. The CYP family occurs in a wide range of organisms and contains a conserved peptidyl-prolyl cis/trans isomerase domain. In addition to fulfilling a basic role in protein folding, CYPs may also play diverse important roles, e.g. in protein degradation, mRNA processing, development, and stress responses. We performed a genome-wide database survey and identified a total of 94 CYP genes encoding 91 distinct proteins. Sequence alignment analysis of the putative BnCYP cyclophilin-like domains revealed highly conserved motifs. By using RNA-Seq, we could verify the presence of 77 BnCYP genes under control conditions. To identify phloem-specific BnCYP proteins in a complementary approach, we used LC-MS/MS to determine protein abundances in leaf and phloem extracts. We detected 26 BnCYPs in total with 12 being unique to phloem sap. Our analysis provides the basis for future studies concentrating on the functional characterization of individual members of this gene family in a plant of dual importance: as a crop and a model system for polyploidization and long-distance signalling.


Assuntos
Brassica napus/genética , Biologia Computacional/métodos , Ciclofilinas/genética , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/genética , Sequência de Aminoácidos , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/metabolismo , Sequência Conservada , Ciclofilinas/química , Ciclofilinas/metabolismo , Genes de Plantas , Genoma de Planta , Floema/genética , Filogenia , Folhas de Planta/genética , Proteínas de Plantas/química , Proteínas de Plantas/metabolismo , Domínios Proteicos , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Homologia Estrutural de Proteína , Frações Subcelulares/metabolismo
16.
Mol Plant Pathol ; 18(5): 611-624, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-27118327

RESUMO

Hibiscus green spot virus (HGSV) is a recently discovered and so far poorly characterized bacilliform plant virus with a positive-stranded RNA genome consisting of three RNA species. Here, we demonstrate that the proteins encoded by the ORF2 and ORF3 in HGSV RNA2 are necessary and sufficient to mediate cell-to-cell movement of transport-deficient Potato virus X in Nicotiana benthamiana. These two genes represent a specialized transport module called a 'binary movement block' (BMB), and ORF2 and ORF3 are termed BMB1 and BMB2 genes. In agroinfiltrated epidermal cells of N. benthamiana, green fluorescent protein (GFP)-BMB1 fusion protein was distributed diffusely in the cytoplasm and the nucleus. However, in the presence of BMB2, GFP-BMB1 was directed to cell wall-adjacent elongated bodies at the cell periphery, to cell wall-embedded punctate structures co-localizing with callose deposits at plasmodesmata, and to cells adjacent to the initially transformed cell. Thus, BMB2 can mediate the transport of BMB1 to and through plasmodesmata. In general, our observations support the idea that cell-to-cell trafficking of movement proteins involves an initial delivery to membrane compartments adjacent to plasmodesmata, subsequent entry of the plasmodesmata cavity and, finally, transport to adjacent cells. This process, as an alternative to tubule-based transport, has most likely evolved independently in triple gene block (TGB), double gene block (DGB), BMB and the single gene-coded transport system.


Assuntos
Vírus de Plantas/metabolismo , Vírus de Plantas/fisiologia , Proteínas Virais/metabolismo , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Proteínas do Movimento Viral em Plantas/genética , Proteínas do Movimento Viral em Plantas/metabolismo , Vírus de Plantas/genética , Plasmodesmos/metabolismo , Plasmodesmos/virologia , Transporte Proteico/genética , Transporte Proteico/fisiologia , Nicotiana/metabolismo , Nicotiana/virologia , Proteínas Virais/genética
17.
Methods Mol Biol ; 1217: 329-41, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25287213

RESUMO

The trafficking and asymmetric distribution of cytoplasmic RNA is a fundamental process during development and signaling across phyla. Plants support the intercellular trafficking of RNA molecules such as gene transcripts, small RNAs, and viral RNA genomes by targeting these RNA molecules to plasmodesmata (PD). Intercellular transport of RNA molecules through PD has fundamental implications in the cell-to-cell and systemic signaling during plant development and in the systemic spread of viral disease. Recent advances in time-lapse microscopy allow researchers to approach dynamic biological processes at the molecular level in living cells and tissues. These advances include the ability to label RNA molecules in vivo and thus to monitor their distribution and trafficking. In a broadly used RNA labeling approach, the MS2 method, the RNA of interest is tagged with a specific stem-loop (SL) RNA sequence derived from the origin of assembly region of the bacteriophage MS2 genome that binds to the bacteriophage coat protein (CP) and which, if fused to a fluorescent protein, allows the visualization of the tagged RNA by fluorescence microscopy. Here we describe a protocol for the in vivo visualization of transiently expressed SL-tagged RNA and discuss key aspects to study RNA localization and trafficking to and through plasmodesmata in Nicotiana benthamiana plants.


Assuntos
Levivirus/genética , Microscopia de Fluorescência/métodos , Nicotiana/genética , Folhas de Planta/genética , Plasmodesmos/genética , RNA Viral/análise , Vírus do Mosaico do Tabaco/genética , Agrobacterium tumefaciens/genética , Agrobacterium tumefaciens/metabolismo , Transporte Biológico , Proteínas do Capsídeo/genética , Proteínas do Capsídeo/metabolismo , Expressão Gênica , Vetores Genéticos , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Sequências Repetidas Invertidas , Levivirus/metabolismo , Proteínas Luminescentes/genética , Proteínas Luminescentes/metabolismo , Folhas de Planta/metabolismo , Folhas de Planta/virologia , Plantas Geneticamente Modificadas , Plasmídeos/química , Plasmídeos/metabolismo , Plasmodesmos/metabolismo , Plasmodesmos/virologia , Ligação Proteica , Engenharia de Proteínas , RNA Viral/metabolismo , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Imagem com Lapso de Tempo , Nicotiana/metabolismo , Nicotiana/virologia , Vírus do Mosaico do Tabaco/metabolismo , Proteína Vermelha Fluorescente
18.
Front Plant Sci ; 6: 1244, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26793221

RESUMO

Multi-photon intravital imaging has become a powerful tool to investigate the healthy and diseased brain vasculature in living animals. Although agents for multi-photon fluorescence microscopy of the microvasculature are available, issues related to stability, bioavailability, toxicity, cost or chemical adaptability remain to be solved. In particular, there is a need for highly fluorescent dyes linked to particles that do not cross the blood brain barrier (BBB) in brain diseases like tumor or stroke to estimate the functional blood supply. Plant virus particles possess a number of distinct advantages over other particles, the most important being the multi-valency of chemically addressable sites on the particle surface. This multi-valency, together with biological compatibility and inert nature, makes plant viruses ideal carriers for in vivo imaging agents. Here, we show that the well-known Tobacco mosaic virus is a suitable nanocarrier for two-photon dyes and for intravital imaging of the mouse brain vasculature.

19.
PLoS Pathog ; 10(10): e1004448, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25329993

RESUMO

Viruses are obligatory parasites that depend on host cellular factors for their replication as well as for their local and systemic movement to establish infection. Although myosin motors are thought to contribute to plant virus infection, their exact roles in the specific infection steps have not been addressed. Here we investigated the replication, cell-to-cell and systemic spread of Tobacco mosaic virus (TMV) using dominant negative inhibition of myosin activity. We found that interference with the functions of three class VIII myosins and two class XI myosins significantly reduced the local and long-distance transport of the virus. We further determined that the inactivation of myosins XI-2 and XI-K affected the structure and dynamic behavior of the ER leading to aggregation of the viral movement protein (MP) and to a delay in the MP accumulation in plasmodesmata (PD). The inactivation of myosin XI-2 but not of myosin XI-K affected the localization pattern of the 126k replicase subunit and the level of TMV accumulation. The inhibition of myosins VIII-1, VIII-2 and VIII-B abolished MP localization to PD and caused its retention at the plasma membrane. These results suggest that class XI myosins contribute to the viral propagation and intracellular trafficking, whereas myosins VIII are specifically required for the MP targeting to and virus movement through the PD. Thus, TMV appears to recruit distinct myosins for different steps in the cell-to-cell spread of the infection.


Assuntos
Miosinas/metabolismo , Nicotiana/virologia , Proteínas do Movimento Viral em Plantas/metabolismo , Plasmodesmos/virologia , Vírus do Mosaico do Tabaco , Plasmodesmos/metabolismo , Vírus do Mosaico do Tabaco/fisiologia , Replicação Viral/fisiologia
20.
PLoS One ; 9(8): e105364, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25133612

RESUMO

The cytoskeleton is a dynamic network composed of filamentous polymers and regulatory proteins that provide a flexible structural scaffold to the cell and plays a fundamental role in developmental processes. Mutations that alter the spatial orientation of the cortical microtubule (MT) array of plants are known to cause important changes in the pattern of cell wall synthesis and developmental phenotypes; however, the consequences of such alterations on other MT-network-associated functions in the cytoplasm are not known. In vivo observations suggested a role of cortical MTs in the formation and movement of Tobacco mosaic virus (TMV) RNA complexes along the endoplasmic reticulum (ER). Thus, to probe the significance of dynamic MT behavior in the coordination of MT-network-associated functions related to TMV infection and, thus, in the formation and transport of RNA complexes in the cytoplasm, we performed an evolution experiment with TMV in Arabidopsis thaliana tor1/spr2 and tor2 mutants with specific defects in MT dynamics and asked whether TMV is sensitive to these changes. We show that the altered cytoskeleton induced genetic changes in TMV that were correlated with efficient spread of infection in the mutant hosts. These observations demonstrate a role of dynamic MT rearrangements and of the MT-associated protein TORTIFOLIA1/SPIRAL2 in cellular functions related to virus spread and indicate that MT dynamics and MT-associated proteins represent constraints for virus evolution and adaptation. The results highlight the importance of the dynamic plasticity of the MT network in directing cytoplasmic functions in macromolecular assembly and trafficking and illustrate the value of experimental virus evolution for addressing the cellular functions of dynamic, long-range order systems in multicellular organisms.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/virologia , Proteínas Associadas aos Microtúbulos/metabolismo , Microtúbulos/metabolismo , Doenças das Plantas/virologia , Transporte de RNA , Vírus do Mosaico do Tabaco/fisiologia , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Evolução Biológica , Interações Hospedeiro-Patógeno , Proteínas Associadas aos Microtúbulos/genética , Microtúbulos/genética , Mutação , Doenças das Plantas/genética , RNA/genética , RNA/metabolismo , Vírus do Mosaico do Tabaco/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA