Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Hum Mol Genet ; 29(7): 1154-1167, 2020 05 08.
Artigo em Inglês | MEDLINE | ID: mdl-32160291

RESUMO

Human longevity is a complex trait influenced by both genetic and environmental factors, whose interaction is mediated by epigenetic mechanisms like DNA methylation. Here, we generated genome-wide whole-blood methylome data from 267 individuals, of which 71 were long-lived (90-104 years), by applying reduced representation bisulfite sequencing. We followed a stringent two-stage analysis procedure using discovery and replication samples to detect differentially methylated sites (DMSs) between young and long-lived study participants. Additionally, we performed a DNA methylation quantitative trait loci analysis to identify DMSs that underlie the longevity phenotype. We combined the DMSs results with gene expression data as an indicator of functional relevance. This approach yielded 21 new candidate genes, the majority of which are involved in neurophysiological processes or cancer. Notably, two candidates (PVRL2, ERCC1) are located on chromosome 19q, in close proximity to the well-known longevity- and Alzheimer's disease-associated loci APOE and TOMM40. We propose this region as a longevity hub, operating on both a genetic (APOE, TOMM40) and an epigenetic (PVRL2, ERCC1) level. We hypothesize that the heritable methylation and associated gene expression changes reported here are overall advantageous for the LLI and may prevent/postpone age-related diseases and facilitate survival into very old age.


Assuntos
Apolipoproteínas E/genética , Proteínas de Ligação a DNA/genética , Endonucleases/genética , Longevidade/genética , Proteínas de Membrana Transportadoras/genética , Nectinas/genética , Idoso de 80 Anos ou mais , Metilação de DNA/genética , Epigênese Genética/genética , Epigenoma/genética , Feminino , Regulação da Expressão Gênica/genética , Genoma Humano/genética , Humanos , Masculino , Proteínas do Complexo de Importação de Proteína Precursora Mitocondrial
2.
Gastroenterology ; 156(4): 1010-1015, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30391469

RESUMO

BACKGROUND & AIMS: Changes in intestinal microbiome composition are associated with inflammatory, metabolic, and malignant disorders. We studied how exocrine pancreatic function affects intestinal microbiota. METHODS: We performed 16S ribosomal RNA gene sequencing analysis of stool samples from 1795 volunteers from the population-based Study of Health in Pomerania who had no history of pancreatic disease. We also measured fecal pancreatic elastase by enzyme-linked immunosorbent assay and performed quantitative imaging of secretin-stimulated pancreatic fluid secretion. Associations of exocrine pancreatic function with microbial diversity or individual genera were calculated by permutational analysis of variance or linear regression, respectively. RESULTS: Differences in pancreatic elastase levels associated with significantly (P < .0001) greater changes in microbiota diversity than with participant age, body mass index, sex, smoking, alcohol consumption, or dietary factors. Significant changes in the abundance of 30 taxa, such as an increase in Prevotella (q < .0001) and a decrease of Bacteroides (q < .0001), indicated a shift from a type-1 to a type-2 enterotype. Changes in pancreatic fluid secretion alone were also associated with changes in microbial diversity (P = .0002), although to a lesser degree. CONCLUSIONS: In an analysis of fecal samples from 1795 volunteers, pancreatic acinar cell, rather than duct cell, function is presently the single most significant host factor to be associated with changes in intestinal microbiota composition.


Assuntos
Bactérias/isolamento & purificação , Insuficiência Pancreática Exócrina/fisiopatologia , Fezes/enzimologia , Microbioma Gastrointestinal , Pâncreas/fisiopatologia , Elastase Pancreática/metabolismo , Células Acinares/fisiologia , Bacteroides/isolamento & purificação , Biodiversidade , Interações entre Hospedeiro e Microrganismos , Humanos , Pâncreas/citologia , Testes de Função Pancreática , Prevotella/isolamento & purificação , RNA Ribossômico 16S/análise
3.
PLoS One ; 13(11): e0205275, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30485264

RESUMO

Human rhinovirus infection (HRVI) plays an important role in asthma exacerbations and is thought to be involved in asthma development during early childhood. We hypothesized that HRVI causes differential DNA methylation and subsequently differential mRNA expression in epithelial cells of children with asthma. Primary nasal epithelial cells from children with (n = 10) and without (n = 10) asthma were cultivated up to passage two and infected with Rhinovirus-16 (RV-16). HRVI-induced genome-wide differences of DNA methylation in asthmatics (vs. controls) and resulting mRNA expression were analyzed by the HumanMethylation450 BeadChip Kit (Illumina) and RNA sequencing. These results were further verified by pyrosequencing and quantitative PCR, respectively. 471 CpGs belonging to 268 genes were identified to have HRVI-induced asthma-specifically modified DNA methylation and mRNA expression. A minimum-change criteria was applied to restrict assessment of genes with changes in DNA methylation and mRNA expression of at least 3% and least 0.1 reads/kb per million mapped reads, respectively. Using this approach we identified 16 CpGs, including HLA-B-associated transcript 3 (BAT3) and Neuraminidase 1 (NEU1), involved in host immune response against HRVI. HRVI in nasal epithelial cells leads to specific modifications of DNA methylation with altered mRNA expression in children with asthma. The HRVI-induced alterations in DNA methylation occurred in genes involved in the host immune response against viral infections and asthma pathogenesis. The findings of our pilot study may partially explain how HRVI contribute to the persistence and progression of asthma, and aid to identify possible new therapeutic targets. The promising findings of this pilot study would benefit from replication in a larger cohort.


Assuntos
Asma/genética , Asma/virologia , Metilação de DNA/genética , Regulação da Expressão Gênica , Infecções por Picornaviridae/genética , Infecções por Picornaviridae/virologia , Rhinovirus/fisiologia , Adolescente , Biomarcadores/metabolismo , Estudos de Casos e Controles , Quimiocina CCL5/genética , Quimiocina CCL5/metabolismo , Criança , Ilhas de CpG/genética , Regulação para Baixo/genética , Células Epiteliais/patologia , Células Epiteliais/virologia , Feminino , Humanos , Masculino , Modelos Biológicos , Mucosa Nasal/patologia , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Reprodutibilidade dos Testes , Regulação para Cima/genética
4.
Epigenomics ; 10(2): 133-147, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29334255

RESUMO

AIM: To determine whether methylation differences between mostly fatal TCF3-HLF and curable TCF3-PBX1 pediatric acute lymphoblastic leukemia subtypes can be associated with differential gene expression and remission. MATERIALS & METHODS: Five (extremely rare) TCF3-HLF versus five (very similar) TCF3-PBX1 patients were sampled before and after remission and analyzed using reduced representation bisulfite sequencing and RNA-sequencing. RESULTS: We identified 7000 differentially methylated CpG sites between subtypes, of which 78% had lower methylation levels in TCF3-HLF. Gene expression was negatively correlated with CpG sites in 23 genes. KBTBD11 clearly differed in methylation and expression between subtypes and before and after remission in TCF3-HLF samples. CONCLUSION: KBTBD11 hypomethylation may be a promising potential target for further experimental validation especially for the TCF3-HLF subtype.


Assuntos
Ilhas de CpG , Metilação de DNA , Epigênese Genética , Proteínas de Fusão Oncogênica/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras B/genética , Adolescente , Linfócitos B/metabolismo , Criança , Expressão Gênica , Humanos , Proteínas de Fusão Oncogênica/biossíntese , Leucemia-Linfoma Linfoblástico de Células Precursoras B/imunologia , Leucemia-Linfoma Linfoblástico de Células Precursoras B/metabolismo
5.
Gut Microbes ; 9(1): 68-75, 2018 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-28816579

RESUMO

Factors shaping the human intestinal microbiota range from environmental influences, like smoking and exercise, over dietary patterns and disease to the host's genetic variation. Recently, we could show in a microbiome genome-wide association study (mGWAS) targeting genetic variation influencing the ß diversity of gut microbial communities, that approximately 10% of the overall gut microbiome variation can be explained by host genetics. Here, we report on the application of a new method for genotype-ß-diversity association testing, the distance-based F (DBF) test. With this we identified 4 loci with genome-wide significant associations, harboring the genes CBEP4, SLC9A8, TNFSF4, and SP140, respectively. Our findings highlight the utility of the high-performance DBF test in ß diversity GWAS and emphasize the important role of host genetics and immunity in shaping the human intestinal microbiota.


Assuntos
Bactérias/genética , Biodiversidade , Microbioma Gastrointestinal , Loci Gênicos/genética , Estudo de Associação Genômica Ampla , Modelos Estatísticos , Antígenos Nucleares/genética , Bactérias/classificação , Variação Genética , Interações Hospedeiro-Patógeno/genética , Interações Hospedeiro-Patógeno/imunologia , Humanos , Imunidade/genética , Ligante OX40/genética , Proteínas de Ligação a RNA/genética , Reprodutibilidade dos Testes , Trocadores de Sódio-Hidrogênio/genética , Fatores de Transcrição/genética
6.
Nucleic Acids Res ; 46(4): e23, 2018 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-29194524

RESUMO

The vast majority of microorganisms on Earth reside in often-inseparable environment-specific communities-microbiomes. Meta-genomic/-transcriptomic sequencing could reveal the otherwise inaccessible functionality of microbiomes. However, existing analytical approaches focus on attributing sequencing reads to known genes/genomes, often failing to make maximal use of available data. We created faser (functional annotation of sequencing reads), an algorithm that is optimized to map reads to molecular functions encoded by the read-correspondent genes. The mi-faser microbiome analysis pipeline, combining faser with our manually curated reference database of protein functions, accurately annotates microbiome molecular functionality. mi-faser's minutes-per-microbiome processing speed is significantly faster than that of other methods, allowing for large scale comparisons. Microbiome function vectors can be compared between different conditions to highlight environment-specific and/or time-dependent changes in functionality. Here, we identified previously unseen oil degradation-specific functions in BP oil-spill data, as well as functional signatures of individual-specific gut microbiome responses to a dietary intervention in children with Prader-Willi syndrome. Our method also revealed variability in Crohn's Disease patient microbiomes and clearly distinguished them from those of related healthy individuals. Our analysis highlighted the microbiome role in CD pathogenicity, demonstrating enrichment of patient microbiomes in functions that promote inflammation and that help bacteria survive it.


Assuntos
Metagenômica/métodos , Microbiota , Anotação de Sequência Molecular/métodos , Algoritmos , Proteínas de Bactérias/fisiologia , Criança , Doença de Crohn/microbiologia , Humanos , Síndrome de Prader-Willi/microbiologia , Alinhamento de Sequência
7.
Nat Med ; 23(7): 839-849, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28604703

RESUMO

Adaptive thermogenesis is an energy-demanding process that is mediated by cold-activated beige and brown adipocytes, and it entails increased uptake of carbohydrates, as well as lipoprotein-derived triglycerides and cholesterol, into these thermogenic cells. Here we report that cold exposure in mice triggers a metabolic program that orchestrates lipoprotein processing in brown adipose tissue (BAT) and hepatic conversion of cholesterol to bile acids via the alternative synthesis pathway. This process is dependent on hepatic induction of cytochrome P450, family 7, subfamily b, polypeptide 1 (CYP7B1) and results in increased plasma levels, as well as fecal excretion, of bile acids that is accompanied by distinct changes in gut microbiota and increased heat production. Genetic and pharmacological interventions that targeted the synthesis and biliary excretion of bile acids prevented the rise in fecal bile acid excretion, changed the bacterial composition of the gut and modulated thermogenic responses. These results identify bile acids as important metabolic effectors under conditions of sustained BAT activation and highlight the relevance of cholesterol metabolism by the host for diet-induced changes of the gut microbiota and energy metabolism.


Assuntos
Ácidos e Sais Biliares/metabolismo , Colesterol/metabolismo , Temperatura Baixa , Microbioma Gastrointestinal , Termogênese , Subfamília B de Transportador de Cassetes de Ligação de ATP/genética , Tecido Adiposo Marrom/metabolismo , Alanina Transaminase/metabolismo , Animais , Aspartato Aminotransferases/metabolismo , Western Blotting , Calorimetria Indireta , Estudos de Casos e Controles , Família 7 do Citocromo P450/genética , Família 7 do Citocromo P450/metabolismo , Microbioma Gastrointestinal/genética , Perfilação da Expressão Gênica , Humanos , Fígado/metabolismo , Camundongos , Camundongos Knockout , Obesidade , RNA Ribossômico 16S/genética , Receptores de LDL/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Esteroide Hidroxilases/genética , Esteroide Hidroxilases/metabolismo , Membro 4 da Subfamília B de Transportadores de Cassetes de Ligação de ATP
8.
Diabetes ; 66(9): 2407-2415, 2017 09.
Artigo em Inglês | MEDLINE | ID: mdl-28576837

RESUMO

Obesity is associated with hypothalamic inflammation (HI) in animal models. In the current study, we examined the mediobasal hypothalamus (MBH) of 57 obese human subjects and 54 age- and sex- matched nonobese control subjects by MRI and analyzed the T2 hyperintensity as a measure of HI. Obese subjects exhibited T2 hyperintensity in the left but not the right MBH, which was strongly associated with systemic low-grade inflammation. MRS revealed the number of neurons in the left hypothalamic region to be similar in obese versus control subjects, suggesting functional but not structural impairment due to the inflammatory process. To gain mechanistic insights, we performed nutritional analysis and 16S rDNA microbiome sequencing, which showed that high-fat diet induces reduction of Parasutterella sp. in the gut, which is significantly correlated with MBH T2 hyperintensity. In addition to these environmental factors, we found subjects carrying common polymorphisms in the JNK or the MC4R gene to be more susceptible to HI. Finally, in a subgroup analysis, bariatric surgery had no effect on MBH T2 hyperintensity despite inducing significant weight loss and improvement of peripheral insulin sensitivity. In conclusion, obesity in humans is associated with HI and disturbances in the gut-brain axis, which are influenced by both environmental and genetic factors.


Assuntos
Epigênese Genética/fisiologia , Hipotálamo/diagnóstico por imagem , Inflamação/genética , Inflamação/metabolismo , Obesidade/etiologia , Adulto , Bactérias/classificação , Biomarcadores , Estudos de Casos e Controles , Feminino , Trato Gastrointestinal/microbiologia , Humanos , Hipertrigliceridemia , Hipotálamo/fisiologia , Resistência à Insulina , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Obesidade/metabolismo , RNA Ribossômico 16S/genética , RNA Ribossômico 16S/metabolismo
9.
Gut Microbes ; 6(4): 243-54, 2015 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-26178862

RESUMO

Gut microbiota play a key role in the host's health system. Broad antibiotic therapy is known to disrupt the microbial balance affecting pathogenic as well as host-associated microbes. The aim of the present study was to investigate the influence of antibiotic paromomycin on the luminal and mucosa-associated microbiota at the DNA (abundance) and RNA (potential activity) level as well as to identify possible differences. The influence of antibiotic treatment on intestinal microbiota was investigated in 5 healthy individuals (age range: 20-22 years). All participants received the antibiotic paromomycin for 3 d. Fecal samples as well as sigmoidal biopsies were collected before and immediately after cessation of antibiotic treatment as well as after a recovery phase of 42 d. Compartment- and treatment status-specific indicator operational taxonomic units (OTUs) as well as abundance- and activity-specific patterns were identified by 16S rRNA and 16S rRNA gene amplicon libraries and high-throughput pyrosequencing. Microbial composition of lumen and mucosa were significantly different at the DNA compared to the RNA level. Antibiotic treatment resulted in changes of the microbiota, affecting the luminal and mucosal bacteria in a similar way. Several OTUs were identified as compartment- and/or treatment status-specific. Abundance and activity patterns of some indicator OTUs differed considerably. The study shows fundamental changes in composition of gut microbiota under antibiotic therapy at both the potential activity and the abundance level at different treatment status. It may help to understand the complex processes of gut microbiota changes involved in resilience mechanisms and on development of antibiotic-associated clinical diseases.


Assuntos
Antibacterianos/administração & dosagem , Bactérias/classificação , Bactérias/efeitos dos fármacos , Fezes/microbiologia , Microbioma Gastrointestinal/efeitos dos fármacos , Mucosa Intestinal/microbiologia , Paromomicina/administração & dosagem , Adulto , Bactérias/genética , Biópsia , DNA Ribossômico/química , DNA Ribossômico/genética , Voluntários Saudáveis , Humanos , Dados de Sequência Molecular , Filogenia , RNA Ribossômico 16S/genética , Adulto Jovem
10.
PLoS One ; 9(1): e86188, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24465950

RESUMO

Genetic factors have been estimated to account for about 25% of the variation in an adult's life span. The complement component C4 with the isotypes C4A and C4B is an effector protein of the immune system, and differences in the overall C4 copy number or gene size (long C4L; short C4S) may influence the strength of the immune response and disease susceptibilities. Previously, an association between C4B copy number and life span was reported for Hungarians and Icelanders, where the C4B*Q0 genotype, which is defined by C4B gene deficiency, showed a decrease in frequency with age. Additionally, one of the studies indicated that a low C4B copy number might be a genetic trait that is manifested only in the presence of the environmental risk factor "smoking". These observations prompted us to investigate the role of the C4 alleles in our large German longevity sample (∼ 700 cases; 94-110 years and ∼ 900 younger controls). No significant differences in the number of C4A, C4B and C4S were detected. Besides, the C4B*Q0 carrier state did not decrease with age, irrespective of smoking as an interacting variable. However, for C4L*Q0 a significantly different carrier frequency was observed in the cases compared with controls (cases: 5.08%; controls: 9.12%; p = 0.003). In a replication sample of 714 German cases (91-108 years) and 890 controls this result was not replicated (p = 0.14) although a similar trend of decreased C4L*Q0 carrier frequency in cases was visible (cases: 7.84%; controls: 10.00%).


Assuntos
Complemento C4/genética , Variações do Número de Cópias de DNA , Longevidade/genética , Adulto , Idoso , Idoso de 80 Anos ou mais , Alelos , Feminino , Frequência do Gene , Genótipo , Alemanha , Humanos , Masculino , Pessoa de Meia-Idade , Fatores de Risco , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA