Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Physiol Rep ; 12(3): e15948, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38346816

RESUMO

Obstructive sleep apnea (OSA) is associated with increased risk for diabetes, and standard treatment with positive airway pressure (PAP) device shows inconsistent effects on glucose metabolism. Metformin is known to treat and prevent diabetes, but its effects on skeletal muscle mitochondrial function are not completely understood. Here, we evaluate the effects of metformin on glucose metabolism and skeletal muscle mitochondrial function in patients with OSA. Sixteen adults with obesity (50.9 ± 6.7 years, BMI: 36.5 ± 2.9 kg/m2 ) and moderate-to-severe OSA were provided with PAP treatment and randomized to 3 months of placebo (n = 8) or metformin (n = 8) treatment in a double-blind parallel-group design. Whole body glucose metabolism was determined by oral glucose tolerance test. A skeletal muscle biopsy was obtained to evaluate mitochondrial respiratory capacity and expression of proteins related to mitochondrial dynamics and energy metabolism. Whole body insulin-sensitivity (Matsuda index) did not change in metformin or placebo treated groups. However, metformin treatment prevented increases in insulin release relative to placebo during follow-up. Insulin area under the curve (AUC) and insulin to glucose AUC ratio increased in placebo but remained unchanged with metformin. Furthermore, metformin treatment improved skeletal muscle mitochondrial respiratory capacity and dynamics relative to placebo. Metformin treatment prevented the decline in whole body glucose homeostasis and skeletal muscle mitochondrial function in patients with moderate to severe OSA. Patients with OSA may benefit from the addition of metformin to prevent diabetes.


Assuntos
Diabetes Mellitus , Metformina , Apneia Obstrutiva do Sono , Adulto , Humanos , Metformina/farmacologia , Metformina/uso terapêutico , Projetos Piloto , Glicemia/metabolismo , Apneia Obstrutiva do Sono/complicações , Insulina , Glucose
2.
Obesity (Silver Spring) ; 31(12): 2960-2971, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37731222

RESUMO

OBJECTIVE: Obesity is a driver of non-alcoholic fatty liver disease (NAFLD), and interventions that decrease body weight, such as bariatric surgery and/or calorie restriction (CR), may serve as effective therapies. This study compared the effects of Roux-en-Y gastric bypass surgery (RYGB) and CR on hepatic function in mice with obesity and NAFLD. METHODS: C57BL/6J mice were fed a high-fat diet to promote obesity. At 16 weeks of age, mice were randomized to sham surgery (sham), RYGB, or CR weight matched to RYGB (WM). Body weight/composition, food intake, and energy expenditure (EE) were measured throughout treatment. Liver histopathology was evaluated from H&E-stained sections. Hepatic enzymes and glycogen content were determined by ELISA. Transcriptional signatures were revealed via RNA sequencing. RESULTS: RYGB reduced hepatic lipid content and adiposity while increasing EE and lean body mass relative to WM. Hepatic glycogen and bile acid content were increased after RYGB relative to sham and WM. RYGB activated enterohepatic signaling and genes regulating hepatic lipid homeostasis. CONCLUSIONS: RYGB improved whole-body composition and hepatic lipid homeostasis to a greater extent than CR in mice. RYGB was associated with discrete remodeling of the hepatic transcriptome, suggesting that surgery may be mechanistically additive to CR.


Assuntos
Derivação Gástrica , Hepatopatia Gordurosa não Alcoólica , Animais , Camundongos , Lipídeos , Camundongos Endogâmicos C57BL , Hepatopatia Gordurosa não Alcoólica/cirurgia , Obesidade/cirurgia
3.
Surg Endosc ; 37(11): 8810-8817, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37620650

RESUMO

BACKGROUND: The obesity pandemic has worsened global disease burden, including type 2 diabetes, cardiovascular disease, and cancer. Metabolic/bariatric surgery (MBS) is the most effective and durable obesity treatment, but the mechanisms underlying its long-term weight loss efficacy remain unclear. MBS drives substrate oxidation that has been linked to improvements in metabolic function and improved glycemic control that are potentially mediated by mitochondria-a primary site of energy production. As such, augmentation of intestinal mitochondrial function may drive processes underlying the systemic metabolic benefits of MBS. Herein, we applied a highly sensitive technique to evaluate intestinal mitochondrial function ex vivo in a mouse model of MBS. METHODS: Mice were randomized to surgery, sham, or non-operative control. A simplified model of MBS, ileal interposition, was performed by interposition of a 2-cm segment of terminal ileum into the proximal bowel 5 mm from the ligament of Treitz. After a four-week recovery period, intestinal mucosa of duodenum, jejunum, ileum, and interposed ileum were assayed for determination of mitochondrial respiratory function. Citrate synthase activity was measured as a marker of mitochondrial content. RESULTS: Ileal interposition was well tolerated and associated with modest body weight loss and transient hypophagia relative to controls. Mitochondrial capacity declined in the native duodenum and jejunum of animals following ileal interposition relative to controls, although respiration remained unchanged in these segments. Similarly, ileal interposition lowered citrate synthase activity in the duodenum and jejunum following relative to controls but ileal function remained constant across all groups. CONCLUSION: Ileal interposition decreases mitochondrial volume in the proximal intestinal mucosa of mice. This change in concentration with preserved respiration suggests a global mucosal response to segment specific nutrition signals in the distal bowel. Future studies are required to understand the causes underlying these mitochondrial changes.


Assuntos
Cirurgia Bariátrica , Diabetes Mellitus Tipo 2 , Camundongos , Animais , Diabetes Mellitus Tipo 2/metabolismo , Citrato (si)-Sintase/metabolismo , Íleo/cirurgia , Jejuno/cirurgia , Mucosa Intestinal , Obesidade/cirurgia , Mitocôndrias
4.
Cancers (Basel) ; 14(16)2022 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-36011044

RESUMO

Hepatocellular carcinoma (HCC) is the most frequent primary hepatic malignancy and a leading cause of cancer-related death globally. HCC is associated with an indolent clinical presentation, resulting in frequent advanced stage diagnoses where surgical resection or transplant therapies are not an option and medical therapies are largely ineffective at improving survival. As such, there is a critical need to identify and enhance primary prevention strategies to mitigate HCC-related morbidity and mortality. Obesity is an independent risk factor for the onset and progression of HCC. Furthermore, obesity is a leading cause of nonalcoholic steatohepatitis (NASH), the fasting growing etiological factor of HCC. Herein, we review evolving clinical and mechanistic associations between obesity and hepatocarcinogenesis with an emphasis on the therapeutic efficacy of prevailing lifestyle/behavioral, medical, and surgical treatment strategies for weight reduction and NASH reversal.

5.
J Cachexia Sarcopenia Muscle ; 13(3): 1821-1836, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35304976

RESUMO

BACKGROUND: Sarcopenic obesity is a highly prevalent disease with poor survival and ineffective medical interventions. Mitochondrial dysfunction is purported to be central in the pathogenesis of sarcopenic obesity by impairing both organelle biogenesis and quality control. We have previously identified that a mitochondrial-targeted furazano[3,4-b]pyrazine named BAM15 is orally available and selectively lowers respiratory coupling efficiency and protects against diet-induced obesity in mice. Here, we tested the hypothesis that mitochondrial uncoupling simultaneously attenuates loss of muscle function and weight gain in a mouse model of sarcopenic obesity. METHODS: Eighty-week-old male C57BL/6J mice with obesity were randomized to 10 weeks of high fat diet (CTRL) or BAM15 (BAM15; 0.1% w/w in high fat diet) treatment. Body weight and food intake were measured weekly. Body composition, muscle function, energy expenditure, locomotor activity, and glucose tolerance were determined after treatment. Skeletal muscle was harvested and evaluated for histology, gene expression, protein signalling, and mitochondrial structure and function. RESULTS: BAM15 decreased body weight (54.0 ± 2.0 vs. 42.3 ± 1.3 g, P < 0.001) which was attributable to increased energy expenditure (10.1 ± 0.1 vs. 11.3 ± 0.4 kcal/day, P < 0.001). BAM15 increased muscle mass (52.7 ± 0.4 vs. 59.4 ± 1.0%, P < 0.001), strength (91.1 ± 1.3 vs. 124.9 ± 1.2 g, P < 0.0001), and locomotor activity (347.0 ± 14.4 vs. 432.7 ± 32.0 m, P < 0.001). Improvements in physical function were mediated in part by reductions in skeletal muscle inflammation (interleukin 6 and gp130, both P < 0.05), enhanced mitochondrial function, and improved endoplasmic reticulum homeostasis. Specifically, BAM15 activated mitochondrial quality control (PINK1-ubiquitin binding and LC3II, P < 0.01), increased mitochondrial activity (citrate synthase and complex II activity, all P < 0.05), restricted endoplasmic reticulum (ER) misfolding (decreased oligomer A11 insoluble/soluble ratio, P < 0.0001) while limiting ER stress (decreased PERK signalling, P < 0.0001), apoptotic signalling (decreased cytochrome C release and Caspase-3/9 activation, all P < 0.001), and muscle protein degradation (decreased 14-kDa actin fragment insoluble/soluble ratio, P < 0.001). CONCLUSIONS: Mitochondrial uncoupling by agents such as BAM15 may mitigate age-related decline in muscle mass and function by molecular and cellular bioenergetic adaptations that confer protection against sarcopenic obesity.


Assuntos
Sarcopenia , Animais , Peso Corporal , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Mitocôndrias/metabolismo , Mitofagia , Músculo Esquelético/metabolismo , Obesidade/complicações , Sarcopenia/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA