Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 73
Filtrar
1.
Mov Disord ; 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38718138

RESUMO

OBJECTIVE: Gene therapy by convection-enhanced delivery of type 2 adeno-associated virus-glial cell derived neurotrophic factor (AAV2-GDNF) to the bilateral putamina seeks to increase GDNF gene expression and treat Parkinson's disease (PD). METHODS: A 63-year-old man with advanced PD received AAV2-GDNF in a clinical trial. He died from pneumonia after anterior cervical discectomy and fusion 45 months later. An autopsy included brain examination for GDNF transgene expression. Putaminal catecholamine concentrations were compared to in vivo 18F-Fluorodopa (18F-FDOPA) positron emission tomography (PET) scanning results before and 18 months after AAV2-GDNF infusion. RESULTS: Parkinsonian progression stabilized clinically. Postmortem neuropathology confirmed PD. Bilateral putaminal regions previously infused with AAV2-GDNF expressed the GDNF gene. Total putaminal dopamine was 1% of control, confirming the striatal dopaminergic deficiency suggested by baseline 18F-DOPA-PET scanning. Putaminal regions responded as expected to AAV2-GDNF. CONCLUSION: After AAV2-GDNF infusion, infused putaminal regions showed increased GDNF gene expression, tyrosine hydroxylase immunoreactive sprouting, catechol levels, and 18F-FDOPA-PET signal, suggesting the regenerative potential of AAV2-GDNF in PD. © 2024 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society. This article has been contributed to by U.S. Government employees and their work is in the public domain in the USA.

2.
Cancers (Basel) ; 16(9)2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38730705

RESUMO

Outcomes for glioblastoma (GBM) remain poor despite standard-of-care treatments including surgical resection, radiation, and chemotherapy. Intratumoral heterogeneity contributes to treatment resistance and poor prognosis, thus demanding novel therapeutic approaches. Drug repositioning studies on antiretroviral therapy (ART) have shown promising potent antineoplastic effects in multiple cancers; however, its efficacy in GBM remains unclear. To better understand the pleiotropic anticancer effects of ART on GBM, we conducted a comprehensive drug repurposing analysis of ART in GBM to highlight its utility in translational neuro-oncology. To uncover the anticancer role of ART in GBM, we conducted a comprehensive bioinformatic and in vitro screen of antiretrovirals against glioblastoma. Using the DepMap repository and reversal of gene expression score, we conducted an unbiased screen of 16 antiretrovirals in 40 glioma cell lines to identify promising candidates for GBM drug repositioning. We utilized patient-derived neurospheres and glioma cell lines to assess neurosphere viability, proliferation, and stemness. Our in silico screen revealed that several ART drugs including reverse transcriptase inhibitors (RTIs) and protease inhibitors (PIs) demonstrated marked anti-glioma activity with the capability of reversing the GBM disease signature. RTIs effectively decreased cell viability, GBM stem cell markers, and proliferation. Our study provides mechanistic and functional insight into the utility of ART repurposing for malignant gliomas, which supports the current literature. Given their safety profile, preclinical efficacy, and neuropenetrance, ARTs may be a promising adjuvant treatment for GBM.

3.
Adv Tech Stand Neurosurg ; 50: 307-334, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38592536

RESUMO

The diagnosis of Chiari I malformation is straightforward in patients with typical signs and symptoms of Chiari I malformation and magnetic resonance imaging (MRI) confirming ≥5 mm of cerebellar tonsillar ectopia, with or without a syrinx. However, in many cases, Chiari I malformation is discovered incidentally on MRI to evaluate global headache, cervical radiculopathy, or other conditions. In those cases, the clinician must consider if cerebellar tonsillar ectopia is related to the presenting symptoms. Surgical decompression of the cerebellar tonsils and foramen magnum in patients with symptomatic Chiari I malformation effectively relieves suboccipital headache, reduces syrinx distension, and arrests syringomyelia progression. Neurosurgeons must avoid operative treatments decompressing incidental tonsillar ectopia, not causing symptoms. Such procedures unnecessarily place patients at risk of operative complications and tissue injuries related to surgical exploration. This chapter reviews the typical signs and symptoms of Chiari I malformation and its variant, Chiari 0 malformation, which has <5 mm of cerebellar tonsillar ectopia and is often associated with syringomyelia. Chiari I and Chiari 0 malformations are associated with incomplete occipital bone development, reduced volume and height of the posterior fossa, tonsillar ectopia, and compression of the neural elements and cerebrospinal fluid (CSF) pathways at the foramen magnum. Linear, angular, cross-sectional area, and volume measurements of the posterior fossa, craniocervical junction, and upper cervical spine identify morphometric abnormalities in Chiari I and Chiari 0 malformation patients. Chiari 0 patients respond like Chiari I patients to foramen magnum decompression and should not be excluded from surgical treatment because their tonsillar ectopia is <5 mm. The authors recommend the adoption of diagnostic criteria for Chiari 0 malformation without syringomyelia. This chapter provides updated information and guidance to the physicians managing Chiari I and Chiari 0 malformation patients and neuroscientists interested in Chiari malformations.


Assuntos
Malformação de Arnold-Chiari , Coristoma , Siringomielia , Humanos , Siringomielia/diagnóstico por imagem , Malformação de Arnold-Chiari/complicações , Fossa Craniana Posterior , Osso Occipital , Cefaleia
4.
J Neurooncol ; 167(2): 349-359, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38427131

RESUMO

PURPOSE: Multidisciplinary tumor boards (MTBs) integrate clinical, molecular, and radiological information and facilitate coordination of neuro-oncology care. During the COVID-19 pandemic, our MTB transitioned to a virtual and multi-institutional format. We hypothesized that this expansion would allow expert review of challenging neuro-oncology cases and contribute to the care of patients with limited access to specialized centers. METHODS: We retrospectively reviewed records from virtual MTBs held between 04/2020-03/2021. Data collected included measures of potential clinical impact, including referrals to observational or therapeutic studies, referrals for specialized neuropathology analysis, and whether molecular findings led to a change in diagnosis and/or guided management suggestions. RESULTS: During 25 meetings, 32 presenters discussed 44 cases. Approximately half (n = 20; 48%) involved a rare central nervous system (CNS) tumor. In 21% (n = 9) the diagnosis was changed or refined based on molecular profiling obtained at the NIH and in 36% (n = 15) molecular findings guided management. Clinical trial suggestions were offered to 31% (n = 13), enrollment in the observational NCI Natural History Study to 21% (n = 9), neuropathology review and molecular testing at the NIH to 17% (n = 7), and all received management suggestions. CONCLUSION: Virtual multi-institutional MTBs enable remote expert review of CNS tumors. We propose them as a strategy to facilitate expert opinions from specialized centers, especially for rare CNS tumors, helping mitigate geographic barriers to patient care and serving as a pre-screening tool for studies. Advanced molecular testing is key to obtaining a precise diagnosis, discovering potentially actionable targets, and guiding management.


Assuntos
Neoplasias do Sistema Nervoso Central , Pandemias , Humanos , Estudos Retrospectivos , Neoplasias do Sistema Nervoso Central/diagnóstico , Neoplasias do Sistema Nervoso Central/terapia , Equipe de Assistência ao Paciente , Encaminhamento e Consulta
5.
N Engl J Med ; 390(12): 1092-1104, 2024 03 21.
Artigo em Inglês | MEDLINE | ID: mdl-38507752

RESUMO

BACKGROUND: Giant axonal neuropathy is a rare, autosomal recessive, pediatric, polysymptomatic, neurodegenerative disorder caused by biallelic loss-of-function variants in GAN, the gene encoding gigaxonin. METHODS: We conducted an intrathecal dose-escalation study of scAAV9/JeT-GAN (a self-complementary adeno-associated virus-based gene therapy containing the GAN transgene) in children with giant axonal neuropathy. Safety was the primary end point. The key secondary clinical end point was at least a 95% posterior probability of slowing the rate of change (i.e., slope) in the 32-item Motor Function Measure total percent score at 1 year after treatment, as compared with the pretreatment slope. RESULTS: One of four intrathecal doses of scAAV9/JeT-GAN was administered to 14 participants - 3.5×1013 total vector genomes (vg) (in 2 participants), 1.2×1014 vg (in 4), 1.8×1014 vg (in 5), and 3.5×1014 vg (in 3). During a median observation period of 68.7 months (range, 8.6 to 90.5), of 48 serious adverse events that had occurred, 1 (fever) was possibly related to treatment; 129 of 682 adverse events were possibly related to treatment. The mean pretreatment slope in the total cohort was -7.17 percentage points per year (95% credible interval, -8.36 to -5.97). At 1 year after treatment, posterior mean changes in slope were -0.54 percentage points (95% credible interval, -7.48 to 6.28) with the 3.5×1013-vg dose, 3.23 percentage points (95% credible interval, -1.27 to 7.65) with the 1.2×1014-vg dose, 5.32 percentage points (95% credible interval, 1.07 to 9.57) with the 1.8×1014-vg dose, and 3.43 percentage points (95% credible interval, -1.89 to 8.82) with the 3.5×1014-vg dose. The corresponding posterior probabilities for slowing the slope were 44% (95% credible interval, 43 to 44); 92% (95% credible interval, 92 to 93); 99% (95% credible interval, 99 to 99), which was above the efficacy threshold; and 90% (95% credible interval, 89 to 90). Between 6 and 24 months after gene transfer, sensory-nerve action potential amplitudes increased, stopped declining, or became recordable after being absent in 6 participants but remained absent in 8. CONCLUSIONS: Intrathecal gene transfer with scAAV9/JeT-GAN for giant axonal neuropathy was associated with adverse events and resulted in a possible benefit in motor function scores and other measures at some vector doses over a year. Further studies are warranted to determine the safety and efficacy of intrathecal AAV-mediated gene therapy in this disorder. (Funded by the National Institute of Neurological Disorders and Stroke and others; ClinicalTrials.gov number, NCT02362438.).


Assuntos
Técnicas de Transferência de Genes , Terapia Genética , Neuropatia Axonal Gigante , Criança , Humanos , Proteínas do Citoesqueleto/genética , Terapia Genética/efeitos adversos , Terapia Genética/métodos , Neuropatia Axonal Gigante/genética , Neuropatia Axonal Gigante/terapia , Transgenes , Injeções Espinhais
6.
J Transl Med ; 21(1): 893, 2023 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-38071304

RESUMO

Glioblastoma (GBM) comprises 45.6% of all primary malignant brain cancers and is one of the most common and aggressive intracranial tumors in adults. Intratumoral heterogeneity with a wide range of proteomic, genetic, and epigenetic dysregulation contributes to treatment resistance and poor prognosis, thus demanding novel therapeutic approaches. To date, numerous clinical trials have been developed to target the proteome and epigenome of high-grade gliomas with promising results. However, studying RNA modifications, or RNA epitranscriptomics, is a new frontier within neuro-oncology. RNA epitranscriptomics was discovered in the 1970s, but in the last decade, the extent of modification of mRNA and various non-coding RNAs has emerged and been implicated in transposable element activation and many other oncogenic processes within the tumor microenvironment. This review provides background information and discusses the therapeutic potential of agents modulating epitranscriptomics in high-grade gliomas. A particular emphasis will be placed on how combination therapies that include immune agents targeting hERV-mediated viral mimicry could improve the treatment of GBM.


Assuntos
Neoplasias Encefálicas , Retrovirus Endógenos , Glioblastoma , Glioma , Adulto , Humanos , Retrovirus Endógenos/genética , Microambiente Tumoral , Proteômica , Glioma/genética , Glioblastoma/patologia , Neoplasias Encefálicas/patologia , RNA Mensageiro/uso terapêutico
7.
J Clin Med ; 12(21)2023 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-37959191

RESUMO

Neurosurgeons evaluate MRI scans to document whether surgical treatment has reduced syrinx size. Manual measurement of syrinx volume is time-consuming and potentially introduces operator error and bias. Developing convenient semiautomated volumetric analysis methods may encourage their clinical implementation and improve syringomyelia monitoring. We analyzed 30 SPGR axial MRI scans from 15 pre- and postoperative Chiari I and syringomyelia patients using two semiautomated (SCAT and 3DQI) methods and a manual Cavalieri (CAV) method. Patients' spinal cord and syrinx volumes pre- and postoperatively were compared by paired t-test. A decrease in syrinx volume (mm3) after surgery was detected across all methods. Mean syrinx volume (± SD) measured by CAV (n = 30) was, preoperatively, 4515 mm3 ± 3720, postoperatively 1109 ± 1469; (p = 0.0004). SCAT was, pre, 4584 ± 3826, post, 1064 ± 1465; (p = 0.0007) and 3DQI was, pre, 4027 ± 3805, post, 819 ± 1242; (p = 0.001). 3DQI and CAV detected similar mean spinal cord volumes before (p = 0.53) and after surgery (p = 0.23), but SCAT volumes differed significantly (p = 0.005, p = 0.0001). The SCAT and 3DQI semiautomated methods recorded surgically related syrinx volume changes efficiently and with enough accuracy for clinical decision-making and research studies.

8.
Cells ; 12(21)2023 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-37947640

RESUMO

Glioblastoma is the most common malignant primary brain tumor. The outcome is dismal, despite the multimodal therapeutic approach that includes surgical resection, followed by radiation and chemotherapy. The quest for novel therapeutic targets to treat glioblastoma is underway. FKBP38, a member of the immunophilin family of proteins, is a multidomain protein that plays an important role in the regulation of cellular functions, including apoptosis and autophagy. In this study, we tested the role of FKBP38 in glioblastoma tumor biology. Expression of FKBP38 was upregulated in the patient-derived primary glioblastoma neurospheres (GBMNS), compared to normal human astrocytes. Attenuation of FKBP38 expression decreased the viability of GBMNSs and increased the caspase 3/7 activity, indicating that FKBP38 is required for the survival of GBMNSs. Further, the depletion of FKBP38 significantly reduced the number of neurospheres that were formed, implying that FKBP38 regulates the self-renewal of GBMNSs. Additionally, the transient knockdown of FKBP38 increased the LC3-II/I ratio, suggesting the induction of autophagy with the depletion of FKBP38. Further investigation showed that the negative regulation of autophagy by FKBP38 in GBMNSs is mediated through the JNK/C-Jun-PTEN-AKT pathway. In vivo, FKBP38 depletion significantly extended the survival of tumor-bearing mice. Overall, our results suggest that targeting FKBP38 imparts an anti-glioblastoma effect by inducing apoptosis and autophagy and thus can be a potential therapeutic target for glioblastoma therapy.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Animais , Humanos , Camundongos , Apoptose , Neoplasias Encefálicas/metabolismo , Glioblastoma/metabolismo
9.
AJNR Am J Neuroradiol ; 44(10): 1150-1156, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37709353

RESUMO

BACKGROUND AND PURPOSE: The time course of changes in posterior fossa morphology, quality of life, and neurologic function of patients with Chiari I malformation after craniocervical decompression requires further elaboration. To better understand the pace of these changes, we longitudinally studied patients with Chiari I malformation, with or without syringomyelia, before and after the operation for up to 5 years. MATERIALS AND METHODS: Thirty-eight symptomatic adult patients (35 women, 3 men) diagnosed with Chiari I malformation only (n = 15) or Chiari I malformation and syringomyelia (n = 23) and without previous Chiari I malformation surgery were enrolled in a clinical study. Patients underwent outpatient study visits and MR imaging at 7 time points (ie, initial [before the operation], 3 months, 1 year, 2 years, 3 years, 4 years, and 5 years) during 5 years. The surgical procedure for all patients was suboccipital craniectomy, C1 laminectomy, and autologous duraplasty. RESULTS: Morphometric measurements demonstrated an enlargement of the CSF areas posterior to the cerebellar tonsils after the operation, which remained largely stable through the following years. There was a decrease in pain and improved quality of life after the operation, which remained steady during the following years. Reduction in pain and improved quality of life correlated with CSF area morphometrics. CONCLUSIONS: Most changes in MR imaging morphometrics and quality of life measures occurred within the first year after the operation. A 1-year follow-up period after Chiari I malformation surgery is usually sufficient for evaluating surgical efficacy and postoperative MR imaging changes.


Assuntos
Malformação de Arnold-Chiari , Siringomielia , Adulto , Masculino , Humanos , Feminino , Estudos Prospectivos , Siringomielia/diagnóstico por imagem , Siringomielia/etiologia , Siringomielia/cirurgia , Estudos Longitudinais , Qualidade de Vida , Malformação de Arnold-Chiari/complicações , Malformação de Arnold-Chiari/diagnóstico por imagem , Malformação de Arnold-Chiari/cirurgia , Imageamento por Ressonância Magnética , Dor/cirurgia , Descompressão Cirúrgica/efeitos adversos , Descompressão Cirúrgica/métodos , Resultado do Tratamento
10.
J Clin Invest ; 133(13)2023 07 03.
Artigo em Inglês | MEDLINE | ID: mdl-37395282

RESUMO

Human endogenous retroviruses (HERVs) are ancestral viral relics that constitute nearly 8% of the human genome. Although normally silenced, the most recently integrated provirus HERV-K (HML-2) can be reactivated in certain cancers. Here, we report pathological expression of HML-2 in malignant gliomas in both cerebrospinal fluid and tumor tissue that was associated with a cancer stem cell phenotype and poor outcomes. Using single-cell RNA-Seq, we identified glioblastoma cellular populations with elevated HML-2 transcripts in neural progenitor-like cells (NPC-like) that drive cellular plasticity. Using CRISPR interference, we demonstrate that HML-2 critically maintained glioblastoma stemness and tumorigenesis in both glioblastoma neurospheres and intracranial orthotopic murine models. Additionally, we demonstrate that HML-2 critically regulated embryonic stem cell programs in NPC-derived astroglia and altered their 3D cellular morphology by activating the nuclear transcription factor OCT4, which binds to an HML-2-specific long-terminal repeat (LTR5Hs). Moreover, we discovered that some glioblastoma cells formed immature retroviral virions, and inhibiting HML-2 expression with antiretroviral drugs reduced reverse transcriptase activity in the extracellular compartment, tumor viability, and pluripotency. Our results suggest that HML-2 fundamentally contributes to the glioblastoma stem cell niche. Because persistence of glioblastoma stem cells is considered responsible for treatment resistance and recurrence, HML-2 may serve as a unique therapeutic target.


Assuntos
Retrovirus Endógenos , Glioblastoma , Humanos , Animais , Camundongos , Retrovirus Endógenos/genética , Glioblastoma/genética , Nicho de Células-Tronco , Provírus/genética
11.
Front Neurol ; 14: 1154753, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37332990

RESUMO

Epigenetic mechanisms allow cells to fine-tune gene expression in response to environmental stimuli. For decades, it has been known that mitochondria have genetic material. Still, only recently have studies shown that epigenetic factors regulate mitochondrial DNA (mtDNA) gene expression. Mitochondria regulate cellular proliferation, apoptosis, and energy metabolism, all critical areas of dysfunction in gliomas. Methylation of mtDNA, alterations in mtDNA packaging via mitochondrial transcription factor A (TFAM), and regulation of mtDNA transcription via the micro-RNAs (mir 23-b) and long noncoding RNAs [RNA mitochondrial RNA processing (RMRP)] have all been identified as contributing to glioma pathogenicity. Developing new interventions interfering with these pathways may improve glioma therapy.

12.
Viruses ; 14(9)2022 09 12.
Artigo em Inglês | MEDLINE | ID: mdl-36146825

RESUMO

Human endogenous retrovirus-K (HERV-K) is the most recently integrated retrovirus in the human genome, with implications for multiple disorders, including cancer. Although typically transcriptionally silenced in normal adult cells, dysregulation of HERV-K (HML-2) elements has been observed in cancer, including breast, germ cell tumors, pancreatic, melanoma, and brain cancer. While multiple methods of carcinogenesis have been proposed, here we discuss the role of HERV-K (HML-2) in the promotion and maintenance of the stem-cell in cancer. Aberrant expression of HERV-K has been shown to promote expression of stem cell markers and promote dedifferentiation. In this review, we discuss HERV-K (HML-2) as a potential therapeutic target based on evidence that some tumors depend on the expression of its proteins for survival.


Assuntos
Retrovirus Endógenos , Melanoma , Adulto , Retrovirus Endógenos/genética , Genoma Humano , Humanos , Melanoma/genética
13.
Mol Ther ; 30(12): 3632-3638, 2022 12 07.
Artigo em Inglês | MEDLINE | ID: mdl-35957524

RESUMO

Direct putaminal infusion of adeno-associated virus vector (serotype 2) (AAV2) containing the human glial cell line-derived neurotrophic factor (GDNF) transgene was studied in a phase I clinical trial of participants with advanced Parkinson's disease (PD). Convection-enhanced delivery of AAV2-GDNF with a surrogate imaging tracer (gadoteridol) was used to track infusate distribution during real-time intraoperative magnetic resonance imaging (iMRI). Pre-, intra-, and serial postoperative (up to 5 years after infusion) MRI were analyzed in 13 participants with PD treated with bilateral putaminal co-infusions (52 infusions in total) of AAV2-GDNF and gadoteridol (infusion volume, 450 mL per putamen). Real-time iMRI confirmed infusion cannula placement, anatomic quantification of volumetric perfusion within the putamen, and direct visualization of off-target leakage or cannula reflux (which permitted corresponding infusion rate/cannula adjustments). Serial post-treatment MRI assessment (n = 13) demonstrated no evidence of cerebral parenchyma toxicity in the corresponding regions of AAV2-GDNF and gadoteridol co-infusion or surrounding regions over long-term follow-up. Direct confirmation of key intraoperative safety and efficacy parameters underscores the safety and tissue targeting value of real-time imaging with co-infused gadoteridol and putative therapeutic agents (i.e., AAV2-GDNF). This delivery-imaging platform enhances safety, permits delivery personalization, improves therapeutic distribution, and facilitates assessment of efficacy and dosing effect.


Assuntos
Doença de Parkinson , Humanos , Doença de Parkinson/diagnóstico por imagem , Doença de Parkinson/genética , Doença de Parkinson/terapia , Imageamento por Ressonância Magnética
14.
Front Oncol ; 12: 954879, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35982947

RESUMO

Most tumors, including brain tumors, are sporadic. However, a small subset of CNS tumors are associated with hereditary cancer conditions like Lynch Syndrome (LS). Here, we present a case of an oligodendroglioma, IDH-mutant and 1p/19q-codeleted, and LS with a germline pathogenic PMS2 mutation. To our knowledge, this has only been reported in a few cases in the literature. While the family history is less typical of LS, previous studies have indicated the absence of a significant family history in patient cohorts with PMS2 mutations due to its low penetrance. Notably, only a handful of studies have worked on characterizing PMS2 mutations in LS, and even fewer have looked at these mutations in the context of brain tumor development. This report aims to add to the limited literature on germline PMS2 mutations and oligodendrogliomas. It highlights the importance of genetic testing in neuro-oncology.

15.
Neurooncol Adv ; 4(1): vdac095, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35875691

RESUMO

Background: The prognosis of glioblastoma (GBM) remains dismal because therapeutic approaches have limited effectiveness. A new targeted treatment using MEK inhibitors, including trametinib, has been proposed to improve GBM therapy. Trametinib had a promising preclinical effect against several cancers, but its adaptive treatment resistance precluded its clinical translation in GBM. Previously, we have demonstrated that protein arginine methyltransferase 5 (PRMT5) is upregulated in GBM and its inhibition promotes apoptosis and senescence in differentiated and stem-like tumor cells, respectively. We tested whether inhibition of PRMT5 can enhance the efficacy of trametinib against GBM. Methods: Patient-derived primary GBM neurospheres (GBMNS) with transient PRMT5 knockdown were treated with trametinib and cell viability, proliferation, cell cycle progression, ELISA, and western blot were analyzed. In vivo, NSG mice were intracranially implanted with PRMT5-intact and -depleted GBMNS, treated with trametinib by daily oral gavage, and observed for tumor progression and mice survival rate. Results: PRMT5 depletion enhanced trametinib-induced cytotoxicity in GBMNS. PRMT5 knockdown significantly decreased trametinib-induced AKT and ERBB3 escape pathways. However, ERBB3 inhibition alone failed to block trametinib-induced AKT activity suggesting that the enhanced antitumor effect imparted by PRMT5 knockdown in trametinib-treated GBMNS resulted from AKT inhibition and not ERBB3 inhibition. In orthotopic murine xenograft models, PRMT5-depletion extended the survival of tumor-bearing mice, and combination with trametinib further increased survival. Conclusion: Combined PRMT5/MEK inhibition synergistically inhibited GBM in animal models and is a promising strategy for GBM therapy.

16.
J Neurooncol ; 159(3): 571-579, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35857248

RESUMO

INTRODUCTION: As lifespans for persons living with HIV (PLWH) have improved over the last decade, there has been a simultaneous increase in non-AIDS-related cancer in that group. However, there is a paucity of data regarding the incidence of glioblastoma multiforme (GBM) in PLWH. Better understanding of the oncogenesis, natural history, and treatment outcomes of GBM in PLWH should lead to improved treatment strategies. METHODS: We performed a comprehensive literature search of six electronic databases to identify eligible cases of GBM among PLWH. Kaplan-Meier estimates, Fisher's exact test, and logistic regression were used to interrogate the data. Epidemiologic data on global HIV prevalence was obtained from the 2016 UNAIDS incidence report, and CNS cancer incidence was obtained from the GDB 2016 Brain and Other CNS Cancer Collaborators. RESULTS: There is an inverse relationship between the incidence of HIV and CNS cancer globally. Median overall survival (OS) from GBM diagnosis was 8 months. Estimates for survival at 1 and 2 years were 28 and 5%, respectively. There were no statistically significant predictors of OS in this setting. There was a significant difference (p < 0.01) in OS in PLWH and GBM when compared to TCGA age matched cohorts. CONCLUSION: The diagnosis of GBM in PLWH is severely underreported in the literature. Despite maximal treatment, OS in this patient population is significantly less than in HIV-negative people. There was a poor prognosis of GBM in PLWH, which is inconsistent with previous reports. Further investigation is required for PLWH and concomitant GBM. Analyses must consider if HAART is maintained in PLWH during GBM treatment.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Infecções por HIV , Neoplasias Encefálicas/epidemiologia , Neoplasias Encefálicas/terapia , Glioblastoma/epidemiologia , Glioblastoma/terapia , HIV , Infecções por HIV/complicações , Infecções por HIV/tratamento farmacológico , Infecções por HIV/epidemiologia , Humanos , Estimativa de Kaplan-Meier , Resultado do Tratamento
17.
Brain Sci ; 12(6)2022 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-35741672

RESUMO

The mainstays of glioblastoma treatment, maximal safe resection, radiotherapy preserving neurological function, and temozolomide (TMZ) chemotherapy have not changed for the past 17 years despite significant advances in the understanding of the genetics and molecular biology of glioblastoma. This review highlights the neurosurgical foundation for glioblastoma therapy. Here, we review the neurosurgeon's role in several new and clinically-approved treatments for glioblastoma. We describe delivery techniques such as blood-brain barrier disruption and convection-enhanced delivery (CED) that may be used to deliver therapeutic agents to tumor tissue in higher concentrations than oral or intravenous delivery. We mention pivotal clinical trials of immunotherapy for glioblastoma and explain their outcomes. Finally, we take a glimpse at ongoing clinical trials and promising translational studies to predict ways that new therapies may improve the prognosis of patients with glioblastoma.

18.
Cancers (Basel) ; 14(9)2022 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-35565414

RESUMO

Pediatric medulloblastoma (MB) is the most common pediatric brain tumor with varying prognoses depending on the distinct molecular subtype. The four consensus subgroups are WNT, Sonic hedgehog (SHH), Group 3, and Group 4, which underpin the current 2021 WHO classification of MB. While the field of knowledge for treating this disease has significantly advanced over the past decade, a deeper understanding is still required to improve the clinical outcomes for pediatric patients, who are often vulnerable in ways that adult patients are not. Here, we discuss how recent insights into the pathogenesis of pediatric medulloblastoma have directed current and future research. This review highlights new developments in understanding the four molecular subtypes' pathophysiology, epigenetics, and therapeutic targeting. In addition, we provide a focused discussion of recent developments in imaging, and in the surgery, chemotherapy, and radiotherapy of pediatric medulloblastoma. The article includes a brief explanation of healthcare costs associated with medulloblastoma treatment.

19.
Sci Rep ; 12(1): 6902, 2022 04 27.
Artigo em Inglês | MEDLINE | ID: mdl-35477752

RESUMO

Comprising approximately 8% of our genome, Human Endogenous RetroViruses (HERVs) represent a class of germline retroviral infections that are regulated through epigenetic modifications. In cancer cells, which often have epigenetic dysregulation, HERVs have been implicated as potential oncogenic drivers. However, their role in gliomas is not known. Given the link between HERV expression in cancer cell lines and the distinct epigenetic dysregulation in gliomas, we utilized a tailored bioinformatic pipeline to characterize and validate the glioma retrotranscriptome and correlate HERV expression with locus-specific epigenetic modifications. We identified robust overexpression of multiple HERVs in our cell lines, including a retroviral transcript, HML-6, at 19q13.43b in glioblastoma cells. HERV expression inversely correlated with loci-specific DNA methylation. HML-6 contains an intact open reading frame encoding a small envelope protein, ERVK3-1. Increased expression of ERVK3-1 in GBM patients is associated with a poor prognosis independent of IDH-mutational status. Our results suggest that not only is HML-6 uniquely overexpressed in highly invasive cell lines and tissue samples, but also its gene product, ERVK3-1, may be associated with reduced survival in GBM patients. These results may have implications for both the tumor biology of GBM and the role of ERVK3-1 as a potential therapeutic target.


Assuntos
Retrovirus Endógenos , Glioblastoma , Biologia Computacional , Metilação de DNA , Retrovirus Endógenos/genética , Glioblastoma/genética , Humanos , Fases de Leitura Aberta
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA