Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Biochim Biophys Acta Mol Cell Res ; 1870(7): 119489, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37271223

RESUMO

The cytokine interleukin-6 (IL-6) has considerable pro-inflammatory properties and is a driver of many physiological and pathophysiological processes. Cellular responses to IL-6 are mediated by membrane-bound or soluble forms of the IL-6 receptor (IL-6R) complexed with the signal-transducing subunit gp130. While expression of the membrane-bound IL-6R is restricted to selected cell types, soluble IL-6R (sIL-6R) enables gp130 engagement on all cells, a process termed IL-6 trans-signalling and considered to be pro-inflammatory. sIL-6R is predominantly generated through proteolytic processing by the metalloproteinase ADAM17. ADAM17 also liberates ligands of the epidermal growth factor receptor (EGFR), which is a prerequisite for EGFR activation and results in stimulation of proliferative signals. Hyperactivation of EGFR mostly due to activating mutations drives cancer development. Here, we reveal an important link between overshooting EGFR signalling and the IL-6 trans-signalling pathway. In epithelial cells, EGFR activity induces not only IL-6 expression but also the proteolytic release of sIL-6R from the cell membrane by increasing ADAM17 surface activity. We find that this derives from the transcriptional upregulation of iRhom2, a crucial regulator of ADAM17 trafficking and activation, upon EGFR engagement, which results in increased surface localization of ADAM17. Also, phosphorylation of the EGFR-downstream mediator ERK mediates ADAM17 activity via interaction with iRhom2. In sum, our study reveals an unforeseen interplay between EGFR activation and IL-6 trans-signalling, which has been shown to be fundamental in inflammation and cancer.


Assuntos
Proteína ADAM17 , Interleucina-6 , Transdução de Sinais , Receptor gp130 de Citocina/genética , Células Epiteliais/metabolismo , Receptores ErbB/genética , Receptores ErbB/metabolismo , Interleucina-6/genética , Interleucina-6/metabolismo , Transdução de Sinais/genética , Humanos
2.
Cell Mol Gastroenterol Hepatol ; 15(6): 1391-1419, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36868311

RESUMO

BACKGROUND & AIMS: Patient-derived organoid cancer models are generated from epithelial tumor cells and reflect tumor characteristics. However, they lack the complexity of the tumor microenvironment, which is a key driver of tumorigenesis and therapy response. Here, we developed a colorectal cancer organoid model that incorporates matched epithelial cells and stromal fibroblasts. METHODS: Primary fibroblasts and tumor cells were isolated from colorectal cancer specimens. Fibroblasts were characterized for their proteome, secretome, and gene expression signatures. Fibroblast/organoid co-cultures were analyzed by immunohistochemistry and compared with their tissue of origin, as well as on gene expression levels compared with standard organoid models. Bioinformatics deconvolution was used to calculate cellular proportions of cell subsets in organoids based on single-cell RNA sequencing data. RESULTS: Normal primary fibroblasts, isolated from tumor adjacent tissue, and cancer associated fibroblasts retained their molecular characteristics in vitro, including higher motility of cancer associated compared with normal fibroblasts. Importantly, both cancer-associated fibroblasts and normal fibroblasts supported cancer cell proliferation in 3D co-cultures, without the addition of classical niche factors. Organoids grown together with fibroblasts displayed a larger cellular heterogeneity of tumor cells compared with mono-cultures and closely resembled the in vivo tumor morphology. Additionally, we observed a mutual crosstalk between tumor cells and fibroblasts in the co-cultures. This was manifested by considerably deregulated pathways such as cell-cell communication and extracellular matrix remodeling in the organoids. Thrombospondin-1 was identified as a critical factor for fibroblast invasiveness. CONCLUSION: We developed a physiological tumor/stroma model, which will be vital as a personalized tumor model to study disease mechanisms and therapy response in colorectal cancer.


Assuntos
Fibroblastos Associados a Câncer , Neoplasias Colorretais , Humanos , Fibroblastos/metabolismo , Técnicas de Cocultura , Organoides/metabolismo , Fibroblastos Associados a Câncer/metabolismo , Neoplasias Colorretais/patologia , Microambiente Tumoral
3.
Mol Oncol ; 17(1): 82-97, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36334078

RESUMO

TP53 gene abnormalities represent the most important biomarker in chronic lymphocytic leukemia (CLL). Altered protein modifications could also influence p53 function, even in the wild-type protein. We assessed the impact of p53 protein phosphorylations on p53 functions as an alternative inactivation mechanism. We studied p53 phospho-profiles induced by DNA-damaging agents (fludarabine, doxorubicin) in 71 TP53-intact primary CLL samples. Doxorubicin induced two distinct phospho-profiles: profile I (heavily phosphorylated) and profile II (hypophosphorylated). Profile II samples were less capable of activating p53 target genes upon doxorubicin exposure, resembling TP53-mutant samples at the transcriptomic level, whereas standard p53 signaling was triggered in profile I. ATM locus defects were more common in profile II. The samples also differed in the basal activity of the hypoxia pathway: the highest level was detected in TP53-mutant samples, followed by profile II and profile I. Our study suggests that wild-type TP53 CLL cells with less phosphorylated p53 show TP53-mutant-like behavior after DNA damage. p53 hypophosphorylation and the related lower ability to respond to DNA damage are linked to ATM locus defects and the higher basal activity of the hypoxia pathway.


Assuntos
Leucemia Linfocítica Crônica de Células B , Proteína Supressora de Tumor p53 , Humanos , Proteína Supressora de Tumor p53/metabolismo , Genes p53 , Leucemia Linfocítica Crônica de Células B/genética , Fosforilação , Proteínas Mutadas de Ataxia Telangiectasia/genética , Proteínas Mutadas de Ataxia Telangiectasia/metabolismo , Dano ao DNA , Doxorrubicina/farmacologia , Hipóxia/genética
4.
Am J Pathol ; 192(9): 1321-1335, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35750257

RESUMO

Toll-like receptor 3 (TLR3) is an endosomal receptor expressed in several immune and epithelial cells. Recent studies have highlighted its expression also in solid tumors, including prostate cancer (PCa), and have described its role primarily in the proinflammatory response and induction of apoptosis. It is up-regulated in some castration-resistant prostate cancers. However, the role of TLR3 in prostate cancer progression remains largely unknown. The current study experimentally demonstrated that exogenous TLR3 activation in PCa cell lines leads to a significant induction of secretion of the cytokines IL-6, IL-8, and interferon-ß, depending on the model and chemoresistance status. Transcriptomic analysis of TLR3-overexpressing cells revealed a functional program that is enriched for genes involved in the regulation of cell motility, migration, and tumor invasiveness. Increased motility, migration, and invasion in TLR3-overexpressing cell line were confirmed by several in vitro assays and using an orthotopic prostate xenograft model in vivo. Furthermore, TLR3-ligand induced apoptosis via cleavage of caspase-3/7 and poly (ADP-ribose) polymerase, predominantly in TLR3-overexpressing cells. These results indicate that TLR3 may be involved in prostate cancer progression and metastasis; however, it might also represent an Achilles heel of PCa, which can be exploited for targeted therapy.


Assuntos
Neoplasias da Próstata , Receptor 3 Toll-Like , Animais , Apoptose , Linhagem Celular Tumoral , Humanos , Masculino , Poli I-C/farmacologia , Próstata/patologia , Neoplasias da Próstata/patologia , Receptor 3 Toll-Like/genética , Receptor 3 Toll-Like/metabolismo
5.
Cell Death Dis ; 11(9): 754, 2020 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-32934219

RESUMO

The identification of the essential role of cyclin-dependent kinases (CDKs) in the control of cell division has prompted the development of small-molecule CDK inhibitors as anticancer drugs. For many of these compounds, the precise mechanism of action in individual tumor types remains unclear as they simultaneously target different classes of CDKs - enzymes controlling the cell cycle progression as well as CDKs involved in the regulation of transcription. CDK inhibitors are also capable of activating p53 tumor suppressor in tumor cells retaining wild-type p53 gene by modulating MDM2 levels and activity. In the current study, we link, for the first time, CDK activity to the overexpression of the MDM4 (MDMX) oncogene in cancer cells. Small-molecule drugs targeting the CDK9 kinase, dinaciclib, flavopiridol, roscovitine, AT-7519, SNS-032, and DRB, diminished MDM4 levels and activated p53 in A375 melanoma and MCF7 breast carcinoma cells with only a limited effect on MDM2. These results suggest that MDM4, rather than MDM2, could be the primary transcriptional target of pharmacological CDK inhibitors in the p53 pathway. CDK9 inhibitor atuveciclib downregulated MDM4 and enhanced p53 activity induced by nutlin-3a, an inhibitor of p53-MDM2 interaction, and synergized with nutlin-3a in killing A375 melanoma cells. Furthermore, we found that human pluripotent stem cell lines express significant levels of MDM4, which are also maintained by CDK9 activity. In summary, we show that CDK9 activity is essential for the maintenance of high levels of MDM4 in human cells, and drugs targeting CDK9 might restore p53 tumor suppressor function in malignancies overexpressing MDM4.


Assuntos
Neoplasias da Mama/metabolismo , Proteínas de Ciclo Celular/metabolismo , Quinase 9 Dependente de Ciclina/metabolismo , Melanoma/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Animais , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Proteínas de Ciclo Celular/biossíntese , Proteínas de Ciclo Celular/genética , Linhagem Celular Tumoral , Quinase 9 Dependente de Ciclina/antagonistas & inibidores , Sinergismo Farmacológico , Humanos , Imidazóis/farmacologia , Células MCF-7 , Melanoma/genética , Melanoma/patologia , Camundongos , Piperazinas/farmacologia , Células-Tronco Pluripotentes/metabolismo , Inibidores de Proteínas Quinases/farmacologia , Proteínas Proto-Oncogênicas/biossíntese , Proteínas Proto-Oncogênicas/genética , Proteínas Proto-Oncogênicas c-mdm2/biossíntese , Proteínas Proto-Oncogênicas c-mdm2/genética , Proteínas Proto-Oncogênicas c-mdm2/metabolismo , Roscovitina/farmacologia , Sulfonamidas/farmacologia , Transcrição Gênica , Transfecção , Triazinas/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA