Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Med Chem ; 67(4): 3039-3065, 2024 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-38306405

RESUMO

Evasion of apoptosis is critical for the development and growth of tumors. The pro-survival protein myeloid cell leukemia 1 (Mcl-1) is an antiapoptotic member of the Bcl-2 family, associated with tumor aggressiveness, poor survival, and drug resistance. Development of Mcl-1 inhibitors implies blocking of protein-protein interactions, generally requiring a lengthy optimization process of large, complex molecules. Herein, we describe the use of DNA-encoded chemical library synthesis and screening to directly generate complex, yet conformationally privileged macrocyclic hits that serve as Mcl-1 inhibitors. By applying a conceptual combination of conformational analysis and structure-based design in combination with a robust synthetic platform allowing rapid analoging, we optimized in vitro potency of a lead series into the low nanomolar regime. Additionally, we demonstrate fine-tuning of the physicochemical properties of the macrocyclic compounds, resulting in the identification of lead candidates 57/59 with a balanced profile, which are suitable for future development toward therapeutic use.


Assuntos
Antineoplásicos , Neoplasias , Humanos , Proteína de Sequência 1 de Leucemia de Células Mieloides/metabolismo , Apoptose , Conformação Molecular , DNA , Linhagem Celular Tumoral , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Antineoplásicos/farmacologia , Antineoplásicos/química
2.
J Med Chem ; 62(23): 10757-10782, 2019 12 12.
Artigo em Inglês | MEDLINE | ID: mdl-31702918

RESUMO

p38 mitogen-activated protein kinases are key mediators of environmental stress response and are promising targets for treatment of inflammatory diseases and cancer. Numerous efforts have led to the discovery of several potent inhibitors; however, so far no highly selective type-II inhibitors have been reported. We previously identified VPC-00628 as a potent and selective type-II inhibitor of p38α/ß with few off-targets. Here we analyzed the chemical building blocks of VPC-00628 that played a key role in achieving potency and selectivity through targeting an inactive state of the kinases induced by a unique folded P-loop conformation. Using a rapid, systematic combinatorial synthetic approach, we identified compound 93 (SR-318) with excellent potency and selectivity for p38α/ß, which potently inhibited the TNF-α release in whole blood. SR-318 therefore presents a potent and selective type-II inhibitor of p38α/ß that can be used as a chemical probe for targeting this particular inactive state of these two p38 isoforms.


Assuntos
Compostos Orgânicos/farmacologia , Pirazóis/farmacologia , Proteínas Quinases p38 Ativadas por Mitógeno/antagonistas & inibidores , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Humanos , Modelos Moleculares , Estrutura Molecular , Compostos Orgânicos/química , Ligação Proteica , Conformação Proteica , Isoformas de Proteínas , Inibidores de Proteínas Quinases/farmacologia , Pirazóis/química , Proteínas Quinases p38 Ativadas por Mitógeno/genética
3.
Comput Struct Biotechnol J ; 17: 160-176, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30788082

RESUMO

Targeting the "undruggable" proteome remains one of the big challenges in drug discovery. Recent innovations in the field of targeted protein degradation and manipulation of the ubiquitin-proteasome system open up new therapeutic approaches for disorders that cannot be targeted with conventional inhibitor paradigms. Proteolysis targeting chimeras (PROTACs) are bivalent ligands in which a compound that binds to the protein target of interest is connected to a second molecule that binds an E3 ligase via a linker. The E3 protein is usually either Cereblon or Von Hippel-Lindau. Several examples of selective PROTAC molecules with potent effect in cells and in vivo models have been reported. The degradation of specific proteins via these bivalent molecules is already allowing for the study of biochemical pathways and cell biology with more specificity than was possible with inhibitor compounds. In this review, we provide a comprehensive overview of recent developments in the field of small molecule mediated protein degradation, including transcription factors, kinases and nuclear receptors. We discuss the potential benefits of protein degradation over inhibition as well as the challenges that need to be overcome.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA