Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Mol Genet Metab Rep ; 33: 100931, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36420423

RESUMO

Malate dehydrogenases (MDH) serve a critical role in maintaining equilibrium of the NAD+/NADH ratio between the mitochondria and cytosol through the catalysis of the oxidation of L-malate to oxaloacetate in a reversible, NADH-dependent manner. MDH2 encodes the mitochondrial isoform, which is integral to the tricarboxylic acid cycle and thus energy homeostasis. Recently, five patients harboring compound heterozygous MDH2 variants have been described, three with early-onset epileptic encephalopathy, one with a stroke-like episode, and one with dilated cardiomyopathy. Here, we describe an additional seven patients with biallelic variants in MDH2, the largest and most neurodevelopmentally and ethnically diverse cohort to-date, including homozygous variants, a sibling pair, non-European patients, and an adult. From these patients, we learn that MDH2 deficiency results in a biochemical signature including elevations of plasma lactate and the lactate:pyruvate ratio with urinary excretion of malate. It also results in a recognizable constellation of neuroimaging findings of anterior-predominant cerebral atrophy, subependymal cysts with ventricular septations. We also recognize MDH2 deficiency as a cause of Leigh syndrome. Taken with existing patient reports, we conclude that MDH2 deficiency is an emerging and likely under-recognized cause of infantile epileptic encephalopathy and provide a framework for medical evaluation of patients identified with biallelic MDH2 variants.

2.
Mov Disord ; 37(10): 2110-2121, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35997131

RESUMO

BACKGROUND: Multiple System Atrophy is a rare neurodegenerative disease with alpha-synuclein aggregation in glial cytoplasmic inclusions and either predominant olivopontocerebellar atrophy or striatonigral degeneration, leading to dysautonomia, parkinsonism, and cerebellar ataxia. One prior genome-wide association study in mainly clinically diagnosed patients with Multiple System Atrophy failed to identify genetic variants predisposing for the disease. OBJECTIVE: Since the clinical diagnosis of Multiple System Atrophy yields a high rate of misdiagnosis when compared to the neuropathological gold standard, we studied only autopsy-confirmed cases. METHODS: We studied common genetic variations in Multiple System Atrophy cases (N = 731) and controls (N = 2898). RESULTS: The most strongly disease-associated markers were rs16859966 on chromosome 3, rs7013955 on chromosome 8, and rs116607983 on chromosome 4 with P-values below 5 × 10-6 , all of which were supported by at least one additional genotyped and several imputed single nucleotide polymorphisms. The genes closest to the chromosome 3 locus are ZIC1 and ZIC4 encoding the zinc finger proteins of cerebellum 1 and 4 (ZIC1 and ZIC4). INTERPRETATION: Since mutations of ZIC1 and ZIC4 and paraneoplastic autoantibodies directed against ZIC4 are associated with severe cerebellar dysfunction, we conducted immunohistochemical analyses in brain tissue of the frontal cortex and the cerebellum from 24 Multiple System Atrophy patients. Strong immunohistochemical expression of ZIC4 was detected in a subset of neurons of the dentate nucleus in all healthy controls and in patients with striatonigral degeneration, whereas ZIC4-immunoreactive neurons were significantly reduced inpatients with olivopontocerebellar atrophy. These findings point to a potential ZIC4-mediated vulnerability of neurons in Multiple System Atrophy. © 2022 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.


Assuntos
Atrofia de Múltiplos Sistemas , Atrofias Olivopontocerebelares , Degeneração Estriatonigral , Autoanticorpos , Autopsia , Estudo de Associação Genômica Ampla , Humanos , Atrofia de Múltiplos Sistemas/genética , Atrofia de Múltiplos Sistemas/patologia , Proteínas do Tecido Nervoso/genética , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , alfa-Sinucleína/metabolismo
3.
J Mol Diagn ; 24(3): 274-286, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35065284

RESUMO

Clinical exome sequencing (CES) aids in the diagnosis of rare genetic disorders. Herein, we report the molecular diagnostic yield and spectrum of genetic alterations contributing to disease in 700 pediatric cases analyzed at the Children's Hospital of Philadelphia. The overall diagnostic yield was 23%, with three cases having more than one molecular diagnosis and 2.6% having secondary/additional findings. A candidate gene finding was reported in another 8.4% of cases. The clinical indications with the highest diagnostic yield were neurodevelopmental disorders (including seizures), whereas immune- and oncology-related indications were negatively associated with molecular diagnosis. The rapid expansion of knowledge regarding the genome's role in human disease necessitates reanalysis of CES samples. To capture these new discoveries, a subset of cases (n = 240) underwent reanalysis, with an increase in diagnostic yield. We describe our experience reporting CES results in a pediatric setting, including reporting of secondary findings, reporting newly discovered genetic conditions, and revisiting negative test results. Finally, we highlight the challenges associated with implementing critical updates to the CES workflow. Although these updates are necessary, they demand an investment of time and resources from the laboratory. In summary, these data demonstrate the clinical utility of exome sequencing and reanalysis, while highlighting the critical considerations for continuous improvement of a CES test in a clinical laboratory.


Assuntos
Exoma , Patologia Molecular , Criança , Exoma/genética , Humanos , Mutação , Doenças Raras/genética , Estudos Retrospectivos , Sequenciamento do Exoma/métodos
4.
Neuropediatrics ; 51(5): 368-372, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32392612

RESUMO

Patients with neurofibromatosis type 1 (NF1) have an increased risk for West syndrome (WS), but the underlying mechanisms linking NF1 and WS are unknown. In contrast to other neurocutaneous syndromes, intracerebral abnormalities explaining the course of infantile spasms (IS) are often absent and the seizure outcome is usually favorable. Several studies have investigated a potential genotype-phenotype correlation between NF1 and seizure susceptibility, but an association was not identified. Therefore, we identified three patients with NF1-related WS (NF1-WS) in a cohort of 51 NF1 patients and performed whole-exome sequencing (WES) to identify genetic modifiers. In two NF1 patients with WS and good seizure outcome, we did not identify variants in epilepsy-related genes. However, in a single patient with NF1-WS and transition to drug-resistant epilepsy, we identified a de novo variant in KCNC2 (c.G499T, p.D167Y) coding for Kv3.2 as a previously undescribed potassium channel to be correlated to epilepsy. Electrophysiological studies of the identified KCNC2 variant demonstrated both a strong loss-of-function effect for the current amplitude and a gain-of-function effect for the channel activation recommending a complex network effect. These results suggest that systematic genetic analysis for potentially secondary genetic etiologies in NF1 patients and severe epilepsy presentations should be done.


Assuntos
Neurofibromatose 1/genética , Canais de Potássio Shaw/genética , Espasmos Infantis/genética , Comorbidade , Humanos , Lactente , Sequenciamento do Exoma
5.
Am J Hum Genet ; 106(4): 467-483, 2020 04 02.
Artigo em Inglês | MEDLINE | ID: mdl-32220291

RESUMO

The RNA editing enzyme ADAR2 is essential for the recoding of brain transcripts. Impaired ADAR2 editing leads to early-onset epilepsy and premature death in a mouse model. Here, we report bi-allelic variants in ADARB1, the gene encoding ADAR2, in four unrelated individuals with microcephaly, intellectual disability, and epilepsy. In one individual, a homozygous variant in one of the double-stranded RNA-binding domains (dsRBDs) was identified. In the others, variants were situated in or around the deaminase domain. To evaluate the effects of these variants on ADAR2 enzymatic activity, we performed in vitro assays with recombinant proteins in HEK293T cells and ex vivo assays with fibroblasts derived from one of the individuals. We demonstrate that these ADAR2 variants lead to reduced editing activity on a known ADAR2 substrate. We also demonstrate that one variant leads to changes in splicing of ADARB1 transcript isoforms. These findings reinforce the importance of RNA editing in brain development and introduce ADARB1 as a genetic etiology in individuals with intellectual disability, microcephaly, and epilepsy.


Assuntos
Adenosina Desaminase/genética , Predisposição Genética para Doença/genética , Variação Genética/genética , Deficiência Intelectual/genética , Microcefalia/genética , Proteínas de Ligação a RNA/genética , Convulsões/genética , Alelos , Processamento Alternativo/genética , Criança , Pré-Escolar , Células HEK293 , Humanos , Masculino , Splicing de RNA/genética
6.
Epilepsia ; 60(6): e67-e73, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-31111464

RESUMO

Despite tremendous progress through next generation sequencing technologies, familial focal epilepsies are insufficiently understood. We sought to identify the genetic basis in multiplex Palestinian families with familial focal epilepsy with variable foci (FFEVF). Family I with 10 affected individuals and Family II with five affected individuals underwent detailed phenotyping over three generations. The phenotypic spectrum of the two families varied from nonlesional focal epilepsy including nocturnal frontal lobe epilepsy to severe structural epilepsy due to hemimegalencephaly. Whole-exome sequencing and single nucleotide polymorphism array analysis revealed pathogenic variants in NPRL3 in each family, a partial ~38-kb deletion encompassing eight exons (exons 8-15) and the 3'-untranslated region of the NPRL3 gene in Family I, and a de novo nonsense variant c.1063C>T, p.Gln355* in Family II. Furthermore, we identified a truncating variant in the PDCD10 gene in addition to the NPRL3 variant in a patient with focal epilepsy from Family I. The individual also had developmental delay and multiple cerebral cavernomas, possibly demonstrating a digenic contribution to the individual's phenotype. Our results implicate the association of NPRL3 with hemimegalencephaly, expanding the phenotypic spectrum of NPRL3 in FFEVF and underlining that partial deletions are part of the genotypic spectrum of NPRL3 variants.


Assuntos
Epilepsias Parciais/complicações , Epilepsias Parciais/genética , Proteínas Ativadoras de GTPase/genética , Megalencefalia/etiologia , Megalencefalia/genética , Adolescente , Adulto , Idade de Início , Proteínas Reguladoras de Apoptose/genética , Criança , Pré-Escolar , Deficiências do Desenvolvimento/etiologia , Deficiências do Desenvolvimento/genética , Epilepsia do Lobo Frontal/complicações , Epilepsia do Lobo Frontal/genética , Exoma/genética , Família , Feminino , Deleção de Genes , Variação Genética , Genótipo , Humanos , Lactente , Masculino , Proteínas de Membrana/genética , Linhagem , Polimorfismo de Nucleotídeo Único/genética , Proteínas Proto-Oncogênicas/genética
7.
Neuropediatrics ; 49(5): 342-346, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-29801192

RESUMO

Mutations in the ATP1A3 gene are known to cause alternating hemiplegia of childhood (AHC) and rapid-onset dystonia parkinsonism (RDP). Both conditions are childhood-onset neurological disorders with distinct symptoms and different times of onset. ATP1A3 has also been associated with CAPOS syndrome (cerebellar ataxia, areflexia, pes cavus, optic atrophy, and sensorineural hearing loss). Within the various ATP1A3-related neurological syndromes, a specific genotype-phenotype correlation is starting to emerge. Several mutations such as the relatively common p.E815K pathogenic variant have been shown to strongly correlate with AHC, while others may cause both AHC and RDP. A significant subset of patients with AHC and RDP are reported to have epileptic seizures. Even though detailed clinical descriptions of seizures in childhood are rare, seizures involving apneic events seem to be frequent in ATP1A3-related neurological disorders. Here, we describe two children with unexplained severe apnea beginning around the first year of life and pathogenic variants in ATP1A3. We hypothesize that the symptoms are early-onset autonomic seizures related to the underlying pathogenic ATP1A3 variants.


Assuntos
Apneia/genética , Deficiências do Desenvolvimento/genética , Epilepsia/genética , ATPase Trocadora de Sódio-Potássio/genética , Idade de Início , Pré-Escolar , Feminino , Humanos
8.
Am J Hum Genet ; 102(4): 557-573, 2018 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-29576218

RESUMO

Mitochondrial disorders causing neurodegeneration in childhood are genetically heterogeneous, and the underlying genetic etiology remains unknown in many affected individuals. We identified biallelic variants in PMPCB in individuals of four families including one family with two affected siblings with neurodegeneration and cerebellar atrophy. PMPCB encodes the catalytic subunit of the essential mitochondrial processing protease (MPP), which is required for maturation of the majority of mitochondrial precursor proteins. Mitochondria isolated from two fibroblast cell lines and induced pluripotent stem cells derived from one affected individual and differentiated neuroepithelial stem cells showed reduced PMPCB levels and accumulation of the processing intermediate of frataxin, a sensitive substrate for MPP dysfunction. Introduction of the identified PMPCB variants into the homologous S. cerevisiae Mas1 protein resulted in a severe growth and MPP processing defect leading to the accumulation of mitochondrial precursor proteins and early impairment of the biogenesis of iron-sulfur clusters, which are indispensable for a broad range of crucial cellular functions. Analysis of biopsy materials of an affected individual revealed changes and decreased activity in iron-sulfur cluster-containing respiratory chain complexes and dysfunction of mitochondrial and cytosolic Fe-S cluster-dependent enzymes. We conclude that biallelic mutations in PMPCB cause defects in MPP proteolytic activity leading to dysregulation of iron-sulfur cluster biogenesis and triggering a complex neurological phenotype of neurodegeneration in early childhood.


Assuntos
Domínio Catalítico/genética , Metaloendopeptidases/genética , Mutação/genética , Degeneração Neural/genética , Criança , Pré-Escolar , Derme/patologia , Transporte de Elétrons , Feminino , Fibroblastos/metabolismo , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Proteínas Ferro-Enxofre/genética , Imageamento por Ressonância Magnética , Masculino , Mitocôndrias/metabolismo , Linhagem , Proto-Oncogene Mas , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Peptidase de Processamento Mitocondrial
9.
Brain ; 139(Pt 9): 2420-30, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27435091

RESUMO

SYNJ1 encodes a polyphosphoinositide phosphatase, synaptojanin 1, which contains two consecutive phosphatase domains and plays a prominent role in synaptic vesicle dynamics. Autosomal recessive inherited variants in SYNJ1 have previously been associated with two different neurological diseases: a recurrent homozygous missense variant (p.Arg258Gln) that abolishes Sac1 phosphatase activity was identified in three independent families with early onset parkinsonism, whereas a homozygous nonsense variant (p.Arg136*) causing a severe decrease of mRNA transcript was found in a single patient with intractable epilepsy and tau pathology. We performed whole exome or genome sequencing in three independent sib pairs with early onset refractory seizures and progressive neurological decline, and identified novel segregating recessive SYNJ1 defects. A homozygous missense variant resulting in an amino acid substitution (p.Tyr888Cys) was found to impair, but not abolish, the dual phosphatase activity of SYNJ1, whereas three premature stop variants (homozygote p.Trp843* and compound heterozygote p.Gln647Argfs*6/p.Ser1122Thrfs*3) almost completely abolished mRNA transcript production. A genetic follow-up screening in a large cohort of 543 patients with a wide phenotypical range of epilepsies and intellectual disability revealed no additional pathogenic variants, showing that SYNJ1 deficiency is rare and probably linked to a specific phenotype. While variants leading to early onset parkinsonism selectively abolish Sac1 function, our results provide evidence that a critical reduction of the dual phosphatase activity of SYNJ1 underlies a severe disorder with neonatal refractory epilepsy and a neurodegenerative disease course. These findings further expand the clinical spectrum of synaptic dysregulation in patients with severe epilepsy, and emphasize the importance of this biological pathway in seizure pathophysiology.


Assuntos
Epilepsia Resistente a Medicamentos/genética , Proteínas do Tecido Nervoso/genética , Doenças Neurodegenerativas/genética , Monoéster Fosfórico Hidrolases/genética , Idade de Início , Criança , Pré-Escolar , Estudos de Coortes , Consanguinidade , Exoma , Feminino , Humanos , Masculino , Linhagem , Fenótipo
10.
J Neurol ; 263(1): 11-6, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26459092

RESUMO

We report a new family with autosomal dominant epilepsy with auditory features (ADEAF) including focal cortical dysplasia (FCD) in the proband. We aim to identify the molecular cause in this family and clarify the relationship between FCD and ADEAF. A large Iranian Jewish family including 14 individuals with epileptic seizures was phenotyped including high-resolution 3-T MRI. We performed linkage analysis and exome sequencing. LGI1, KANK1 and RELN were Sanger sequenced. Seizure semiology of 11 individuals was consistent with ADEAF. The proband underwent surgery for right mesiotemporal FCD. 3-T MRIs in four individuals were unremarkable. Linkage analysis revealed peaks on chromosome 9p24 (LOD 2.43) and 10q22-25 (LOD 2.04). A novel heterozygous LGI1 mutation was identified in all affected individuals except for the proband indicating a phenocopy. Exome sequencing did not reveal variants within the chromosome 9p24 region. Closely located variants in KANK1 and a RELN variant did not segregate with the phenotype. We provide detailed description of the phenotypic spectrum within a large ADEAF family with a novel LGI1 mutation that was conspicuously absent in the proband with FCD, demonstrating that despite identical clinical symptoms, phenocopies in ADEAF families may exist. This family illustrates that rare epilepsy syndromes within a single family can have both genetic and structural etiologies.


Assuntos
Epilepsia do Lobo Frontal , Malformações do Desenvolvimento Cortical , Proteínas/genética , Transtornos do Sono-Vigília , Adulto , Idoso , Idoso de 80 Anos ou mais , Criança , Eletroencefalografia , Epilepsia do Lobo Frontal/genética , Epilepsia do Lobo Frontal/patologia , Epilepsia do Lobo Frontal/fisiopatologia , Éxons , Feminino , Ligação Genética , Humanos , Peptídeos e Proteínas de Sinalização Intracelular , Irã (Geográfico) , Israel , Judeus/genética , Imageamento por Ressonância Magnética , Masculino , Malformações do Desenvolvimento Cortical/genética , Malformações do Desenvolvimento Cortical/patologia , Malformações do Desenvolvimento Cortical/fisiopatologia , Pessoa de Meia-Idade , Mutação , Linhagem , Fenótipo , Proteína Reelina , Análise de Sequência de DNA , Transtornos do Sono-Vigília/genética , Transtornos do Sono-Vigília/patologia , Transtornos do Sono-Vigília/fisiopatologia , Adulto Jovem
11.
Epilepsia ; 54(5): e74-80, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23409955

RESUMO

Mutations in STXBP1 have been identified in a subset of patients with early onset epileptic encephalopathy (EE), but the full phenotypic spectrum remains to be delineated. Therefore, we screened a cohort of 160 patients with an unexplained EE, including patients with early myoclonic encephalopathy (EME), Ohtahara syndrome, West syndrome, nonsyndromic EE with onset in the first year, and Lennox-Gastaut syndrome (LGS). We found six de novo mutations in six patients presenting as Ohtahara syndrome (2/6, 33%), West syndrome (1/65, 2%), and nonsyndromic early onset EE (3/64, 5%). No mutations were found in LGS or EME. Only two of four mutation carriers with neonatal seizures had Ohtahara syndrome. Epileptic spasms were present in five of six patients. One patient with normal magnetic resonance imaging (MRI) but focal seizures underwent epilepsy surgery and seizure frequency dropped drastically. Neuropathology showed a focal cortical dysplasia type 1a. There is a need for additional neuropathologic studies to explore whether STXBP1 mutations can lead to structural brain abnormalities.


Assuntos
Predisposição Genética para Doença/genética , Proteínas Munc18/genética , Mutação/genética , Convulsões/genética , Convulsões/cirurgia , Espasmos Infantis/genética , Encéfalo/metabolismo , Encéfalo/patologia , Criança , Pré-Escolar , Eletroencefalografia , Feminino , Humanos , Lactente , Masculino , Fosfopiruvato Hidratase/metabolismo , Convulsões/etiologia , Convulsões/patologia , Espasmos Infantis/complicações , Adulto Jovem
12.
Curr Opin Neurol ; 26(2): 179-85, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23429546

RESUMO

PURPOSE OF REVIEW: We aim to review the most recent advances in the field of epilepsy genetics with particular focus on the progress in gene discovery in monogenic epilepsies, identification of risk genes in complex genetic epilepsies and recent findings in the field of epilepsy pharmacogenomics. RECENT FINDINGS: During the last 12 months, the use of massive parallel sequencing technologies has allowed for the discovery of several genes for monogenic epilepsies. Most importantly, PRRT2 was identified as the long-sought gene for benign familial infantile seizures. Mutations in KCNT1 were found in two seemingly unrelated monogenic epilepsies including malignant migrating partial seizures of infancy and severe autosomal dominant nocturnal frontal lobe epilepsy. A genome-wide association study in idiopathic generalized epilepsy revealed the first common risk variants for human seizure disorders including variants in VRK2, PNPO and SCN1A. Furthermore, a landmark study provided evidence that screening for the HLA-B1502 variant may prevent carbamazepine CBZ-induced side effects in the Taiwanese population. Also, HLA-A3101 variants were identified as a risk factor for carbamazepine side effects in Europeans. SUMMARY: Novel technologies and an unprecedented level of international collaboration have resulted in identification of novel genes for monogenic and complex genetic epilepsies as well as risk factors for side effects of antiepileptic drugs. This review provides an overview of the most relevant studies in the last year and highlights the future direction of the field.


Assuntos
Epilepsia/genética , Epilepsia/diagnóstico , Humanos , Risco
13.
Epilepsia ; 51(12): 2453-6, 2010 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-21204805

RESUMO

Early onset absence epilepsy (EOAE) starting before the age of 4 years constitutes a rare subgroup of the idiopathic generalized epilepsies (IGEs). A strong genetic component in IGE has been suggested by twin and family studies. We describe a boy with absence seizures starting at the age of 9 months whose parents both had childhood absence epilepsy. A 192-kb duplication in 1q21.3 was identified in the proband and his father, encompassing the gene CHRNB2 coding for the ß-2 subunit of the nicotinic acetylcholine receptor and the gene ADAR coding for adenosine deaminase, an enzyme responsible for RNA editing. Both are candidate genes for seizure disorders. The duplication was not identified in 191 independent IGE patients (93 EOAE; 98 classical IGE) or in 1,157 population controls.


Assuntos
Cromossomos Humanos Par 1/genética , Epilepsia Tipo Ausência/genética , Duplicação Gênica/genética , Adenosina Desaminase/genética , Adolescente , Epilepsia Tipo Ausência/diagnóstico , Epilepsia Generalizada/genética , Família , Feminino , Humanos , Masculino , Linhagem , Proteínas de Ligação a RNA , Receptores Nicotínicos/genética
14.
Eur J Pediatr ; 169(4): 495-500, 2010 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-19707786

RESUMO

The skin and the central nervous system are tissues of common ectodermal origin and share a close ontogenetic relationship. Genetic diseases primarily affecting both organ systems are regularly encountered in both dermatological and neurological settings. Here, we report on a boy with epileptic encephalopathy, severe intellectual disability, optic atrophy, and progressive cerebellar and supratentorial atrophy, reminiscent of progressive encephalopathy with edema and hypsarrythmia (PEHO) syndrome displaying a previously undescribed dyschromatosis in the form of progressive reticulate and mottled hyper- and hypopigmentation of the neck and the inguinal and axillary regions. We hypothesised that this combination of neurological and cutaneous findings has a common aetiology and represents a novel recognisable entity. Because of the unusual dermatological findings, we suggest the term dyschromatosis ptychotropica. Recognition of further cases may help elucidate the aetiology of this condition and give insight into the pathophysiology of both pigmentation disorders and epileptic encephalopathies.


Assuntos
Cerebelo/patologia , Epilepsia/complicações , Síndromes Neurocutâneas/complicações , Síndromes Neurocutâneas/diagnóstico , Atrofia Óptica/patologia , Transtornos da Pigmentação/complicações , Atrofia/complicações , Atrofia/patologia , Diagnóstico Diferencial , Humanos , Lactente , Masculino , Atrofia Óptica/complicações
15.
Epilepsia ; 49(9): 1546-54, 2008 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-18435749

RESUMO

PURPOSE: To identify genes involved in idiopathic absence epilepsies by analyzing gene expression using a monozygotic (MZ) twin design. METHODS: Genome-wide gene expression in lymphoblastoid cell lines (LCLs) was determined using microarrays derived from five discordant and four concordant MZ twin pairs with idiopathic absence epilepsies and five unaffected MZ twin pairs. Gene expression was analyzed using three strategies: discordant MZ twins were compared as matched pairs, MZ twins concordant for epilepsy were compared to control MZ twins, and a singleton design of affected versus unaffected MZ twin individuals was used irrespective of twin pairing. An overlapping gene list was generated from these analyses. Dysregulation of genes recognized from the microarray experiment was validated using quantitative real time PCR (qRT-PCR) in the twin sample and in an independent sample of 18 sporadic absence cases and 24 healthy controls. RESULTS: Sixty-five probe sets were identified from the three combined microarray analysis strategies. Sixteen genes were chosen for validation and nine of these genes confirmed by qRT-PCR in the twin sample. Differential expression for EGR1 (an immediate early gene) and RCN2 (coding for the calcium-binding protein Reticulocalbin 2) were reconfirmed by qRT-PCR in the independent sample. DISCUSSION: Using a unique sample of discordant MZ twins, our study identified genes with altered expression, which suggests novel mechanisms in idiopathic absence epilepsy. Dysregulation of EGR1 and RCN2 is implicated in idiopathic absence epilepsy.


Assuntos
Proteínas de Ligação ao Cálcio/genética , Proteína 1 de Resposta de Crescimento Precoce/genética , Epilepsia Tipo Ausência/diagnóstico , Epilepsia Tipo Ausência/genética , Expressão Gênica/genética , Gêmeos Monozigóticos/genética , Adulto , Anticonvulsivantes/uso terapêutico , Linhagem Celular Tumoral/patologia , Epilepsia Tipo Ausência/tratamento farmacológico , Feminino , Humanos , Masculino , Análise de Sequência com Séries de Oligonucleotídeos/métodos , Leucemia-Linfoma Linfoblástico de Células Precursoras/patologia , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Ácido Valproico/uso terapêutico
16.
Am J Med Genet A ; 140(15): 1658-62, 2006 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-16838305

RESUMO

Partial trisomies are chromosome abnormalities resulting in a broad range of malformations depending on the size and location of the chromosomal rearrangement. Whereas diagnosis of these syndromes is usually made in early childhood, few descriptions exist about the clinical picture in adulthood. We report on a patient diagnosed at the age of 43 years with a 47,XY,+der(22)t(8;22)(q24.13;q11.21) karyotype and predominant clinical features of trisomy 8q. To our knowledge, this is the oldest patient described with a partial trisomy 8. The patient presented with moderate intellectual disability, a past history of epilepsy and facial anomalies. In addition, a large cell non-Hodgkin lymphoma was diagnosed in adulthood. Detailed breakpoint mapping by single nucleotide polymorphism (SNP) arrays showed that the derivative chromosome contains a full-length copy of the C-MYC oncogene. Given that trisomy 8q is the most frequent secondary chromosomal abnormality in hematological diseases, the possibility of a genetic predisposition for these disorders in patients with 8q duplication is raised.


Assuntos
Cromossomos Humanos Par 22 , Cromossomos Humanos Par 8 , Epilepsia/complicações , Epilepsia/genética , Deficiência Intelectual/complicações , Deficiência Intelectual/genética , Linfoma Difuso de Grandes Células B/complicações , Linfoma Difuso de Grandes Células B/genética , Linfoma não Hodgkin/complicações , Linfoma não Hodgkin/genética , Trissomia , Adulto , Aberrações Cromossômicas , Genótipo , Humanos , Hibridização in Situ Fluorescente , Masculino , Fenótipo , Polimorfismo de Nucleotídeo Único
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA