Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Traffic ; 25(9): e12953, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39301720

RESUMO

Adenoviral pVII proteins are multifunctional, highly basic, histone-like proteins that can bind to and transport the viral genome into the host cell nucleus. Despite the identification of several nuclear localization signals (NLSs) in the pVII protein of human adenovirus (HAdV)2, the mechanistic details of nuclear transport are largely unknown. Here we provide a full characterization of the nuclear import of precursor (Pre-) pVII protein from an ancient siadenovirus, frog siadenovirus 1 (FrAdV1), using a combination of structural, functional, and biochemical approaches. Two strong NLSs (termed NLSa and NLSd) interact with importin (IMP)ß1 and IMPα, respectively, and are the main drivers of nuclear import. A weaker NLS (termed NLSb) also contributes, together with an additional signal (NLSc) which we found to be important for nucleolar targeting and intranuclear binding. Expression of wild-type and NLS defective derivatives Pre-pVII in the presence of selective inhibitors of different nuclear import pathways revealed that, unlike its human counterpart, FrAdV1 Pre-pVII nuclear import is dependent on IMPα/ß1 and IMPß1, but not on transportin-1 (IMPß2). Clearly, AdVs evolved to maximize the nuclear import pathways for the pVII proteins, whose subcellular localization is the result of a complex process. Therefore, our results pave the way for an evolutionary comparison of the interaction of different AdVs with the host cell nuclear transport machinery.


Assuntos
Transporte Ativo do Núcleo Celular , Sinais de Localização Nuclear , Sinais de Localização Nuclear/metabolismo , Humanos , Núcleo Celular/metabolismo , beta Carioferinas/metabolismo , Animais , alfa Carioferinas/metabolismo , alfa Carioferinas/genética , Proteínas Virais/metabolismo , Proteínas Virais/genética , Adenoviridae/metabolismo , Adenoviridae/genética , Sequência de Aminoácidos
2.
J Virol Methods ; 326: 114907, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38432358

RESUMO

Adenovirus protein VII (pVII) is a highly basic core protein, bearing resemblance to mammalian histones. Despite its diverse functions, a comprehensive understanding of its structural intricacies and the mechanisms underlying its functions remain elusive, primarily due to the complexity of producing a good amount of soluble pVII. This study aimed to optimise the expression and purification of recombinant pVII from four different adenoviruses with a simple vector construct. This study successfully determined the optimal conditions for efficiently purifying pVII across four adenovirus species, revealing the differential preference for bacterial expression systems. The One Shot BL21 Star (DE3) proved favourable over Rosetta 2 (DE3) pLysS with consistent levels of expression between IPTG-induced and auto-induction. We demonstrated that combining chemical and mechanical cell lysis is possible and highly effective. Other noteworthy benefits were observed in using RNase during sample processing. The addition of RNase has significantly improved the quality and quantity of the purified protein as confirmed by chromatographic and western blot analyses. These findings established a solid groundwork for pVII purification methodologies and carry the significant potential to assist in unveiling the core structure of pVII, its arrangement within the core, DNA condensation intricacies, and potential pathways for nuclear transport.


Assuntos
Infecções por Adenoviridae , Proteínas do Core Viral , Animais , Proteínas do Core Viral/genética , Adenoviridae/genética , Proteínas Virais/genética , Proteínas Virais/metabolismo , Ribonucleases/metabolismo , Mamíferos/metabolismo
3.
J Gen Virol ; 105(1)2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-38261399

RESUMO

Adenovirus protein VII (pVII) plays a crucial role in the nuclear localization of genomic DNA following viral infection and contains nuclear localization signal (NLS) sequences for the importin (IMP)-mediated nuclear import pathway. However, functional analysis of pVII in adenoviruses to date has failed to fully determine the underlying mechanisms responsible for nuclear import of pVII. Therefore, in the present study, we extended our analysis by examining the nuclear trafficking of adenovirus pVII from a non-human species, psittacine siadenovirus F (PsSiAdV). We identified a putative classical (c)NLS at pVII residues 120-128 (120PGGFKRRRL128). Fluorescence polarization and electrophoretic mobility shift assays demonstrated direct, high-affinity interaction with both IMPα2 and IMPα3 but not IMPß. Structural analysis of the pVII-NLS/IMPα2 complex confirmed a classical interaction, with the major binding site of IMPα occupied by K124 of pVII-NLS. Quantitative confocal laser scanning microscopy showed that PsSiAdV pVII-NLS can confer IMPα/ß-dependent nuclear localization to GFP. PsSiAdV pVII also localized in the nucleus when expressed in the absence of other viral proteins. Importantly, in contrast to what has been reported for HAdV pVII, PsSiAdV pVII does not localize to the nucleolus. In addition, our study demonstrated that inhibition of the IMPα/ß nuclear import pathway did not prevent PsSiAdV pVII nuclear targeting, indicating the existence of alternative pathways for nuclear localization, similar to what has been previously shown for human adenovirus pVII. Further examination of other potential NLS signals, characterization of alternative nuclear import pathways, and investigation of pVII nuclear targeting across different adenovirus species is recommended to fully elucidate the role of varying nuclear import pathways in the nuclear localization of pVII.


Assuntos
Siadenovirus , Transporte Ativo do Núcleo Celular , Transporte Proteico , Sinais de Localização Nuclear/genética , Carioferinas
4.
Viruses ; 14(8)2022 08 13.
Artigo em Inglês | MEDLINE | ID: mdl-36016389

RESUMO

While adenoviruses cause infections in a wide range of vertebrates, members of the genus Atadenovirus, Siadenovirus, and Aviadenovirus predominantly infect avian hosts. Several recent studies on avian adenoviruses have encouraged us to re-visit previously proposed adenovirus evolutionary concepts. Complete genomes and partial DNA polymerase sequences of avian adenoviruses were extracted from NCBI and analysed using various software. Genomic analyses and constructed phylogenetic trees identified the atadenovirus origin from an Australian native passerine bird in contrast to the previously established reptilian origin. In addition, we demonstrated that the theories on higher AT content in atadenoviruses are no longer accurate and cannot be considered as a species demarcation criterion for the genus Atadenovirus. Phylogenetic reconstruction further emphasised the need to reconsider siadenovirus origin, and we recommend extended studies on avian adenoviruses in wild birds to provide finer evolutionary resolution.


Assuntos
Infecções por Adenoviridae , Adenoviridae , Atadenovirus , Aviadenovirus , Siadenovirus , Adenoviridae/genética , Infecções por Adenoviridae/veterinária , Animais , Austrália , Aviadenovirus/genética , Filogenia
5.
Viruses ; 13(12)2021 12 02.
Artigo em Inglês | MEDLINE | ID: mdl-34960681

RESUMO

The use of high-throughput sequencing has facilitated virus discovery in wild animals and helped determine their potential threat to humans and other animals. We report the complete genome sequence of a novel picornavirus identified by next-generation sequencing in faeces from Australian fallow deer. Genomic analysis revealed that this virus possesses a typical picornavirus-like genomic organisation of 7554 nt with a single open reading frame (ORF) encoding a polyprotein of 2225 amino acids. Based on the amino acid identity comparison and phylogenetic analysis of the P1, 2C, 3CD, and VP1 regions, this novel picornavirus was closely related to but distinct from known bopiviruses detected to date. This finding suggests that deer/bopivirus could belong to a novel species within the genus Bopivirus, tentatively designated as "Bopivirus C". Epidemiological investigation of 91 deer (71 fallow, 14 sambar and 6 red deer) and 23 cattle faecal samples showed that six fallow deer and one red deer (overall prevalence 7.7%, 95% confidence interval [CI] 3.8-15.0%) tested positive, but deer/bopivirus was undetectable in sambar deer and cattle. In addition, phylogenetic and sequence analyses indicate that the same genotype is circulating in south-eastern Australia. To our knowledge, this study reports for the first time a deer-origin bopivirus and the presence of a member of genus Bopivirus in Australia. Further epidemiological and molecular studies are needed to investigate the geographic distribution and pathogenic potential of this novel Bopivirus species in other domestic and wild animal species.


Assuntos
Animais Selvagens/virologia , Cervos/virologia , Infecções por Picornaviridae/veterinária , Picornaviridae/classificação , Picornaviridae/genética , Animais , Austrália/epidemiologia , Bovinos , Doenças dos Bovinos/epidemiologia , Doenças dos Bovinos/virologia , Fezes/virologia , Genoma Viral , Sequenciamento de Nucleotídeos em Larga Escala , Filogenia , Picornaviridae/isolamento & purificação , Infecções por Picornaviridae/epidemiologia , Infecções por Picornaviridae/virologia , Prevalência , RNA Viral/genética
6.
Viruses ; 13(9)2021 08 28.
Artigo em Inglês | MEDLINE | ID: mdl-34578295

RESUMO

Siadenoviruses have been detected in wild and captive birds worldwide. Only nine siadenoviruses have been fully sequenced; however, partial sequences for 30 others, many of these from wild Australian birds, are also described. Some siadenoviruses, e.g., the turkey siadenovirus A, can cause disease; however, most cause subclinical infections. An example of a siadenovirus causing predominately subclinical infections is psittacine siadenovirus 2, proposed name psittacine siadenovirus F (PsSiAdV-F), which is enzootic in the captive breeding population of the critically endangered orange-bellied parrot (OBP, Neophema chrysogaster). Here, we have fully characterised PsSiAdV-F from an OBP. The PsSiAdV-F genome is 25,392 bp in length and contained 25 putative genes. The genome architecture of PsSiAdV-F exhibited characteristics similar to members within the genus Siadenovirus; however, the novel PsSiAdV-F genome was highly divergent, showing highest and lowest sequence similarity to skua siadenovirus A (57.1%) and psittacine siadenovirus D (31.1%), respectively. Subsequent phylogenetic analyses of the novel PsSiAdV-F genome positioned the virus into a phylogenetically distinct sub-clade with all other siadenoviruses and did not show any obvious close evolutionary relationship. Importantly, the resulted tress continually demonstrated that novel PsSiAdV-F evolved prior to all known members except the frog siadenovirus A in the evolution and possibly the ancestor of the avian siadenoviruses. To date, PsSiAdV-F has not been detected in wild parrots, so further studies screening PsSiAdV-F in wild Australian parrots and generating whole genome sequences of siadenoviruses of Australian native passerine species is recommended to fill the siadenovirus evolutionary gaps.


Assuntos
Infecções por Adenoviridae/veterinária , Espécies em Perigo de Extinção , Genoma Viral , Genômica/métodos , Papagaios/virologia , Filogenia , Siadenovirus/genética , Animais , Animais Selvagens/virologia , Austrália , Doenças das Aves/virologia , Siadenovirus/classificação , Siadenovirus/isolamento & purificação
7.
Life Sci Alliance ; 4(7)2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34108265

RESUMO

Peroxisomes are recognized as significant platforms for the activation of antiviral innate immunity where stimulation of the key adapter molecule mitochondrial antiviral signaling protein (MAVS) within the RIG-I like receptor (RLR) pathway culminates in the up-regulation of hundreds of ISGs, some of which drive augmentation of multiple innate sensing pathways. However, whether ISGs can augment peroxisome-driven RLR signaling is currently unknown. Using a proteomics-based screening approach, we identified Pex19 as a binding partner of the ISG viperin. Viperin colocalized with numerous peroxisomal proteins and its interaction with Pex19 was in close association with lipid droplets, another emerging innate signaling platform. Augmentation of the RLR pathway by viperin was lost when Pex19 expression was reduced. Expression of organelle-specific MAVS demonstrated that viperin requires both mitochondria and peroxisome MAVS for optimal induction of IFN-ß. These results suggest that viperin is required to enhance the antiviral cellular response with a possible role to position the peroxisome at the mitochondrial/MAM MAVS signaling synapse, furthering our understanding of the importance of multiple organelles driving the innate immune response against viral infection.


Assuntos
Proteínas de Membrana/metabolismo , Oxirredutases atuantes sobre Doadores de Grupo CH-CH/metabolismo , Peroxissomos/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Antivirais/metabolismo , Linhagem Celular , Linhagem Celular Tumoral , Expressão Gênica/genética , Regulação da Expressão Gênica/genética , Humanos , Imunidade Inata/imunologia , Imunidade Inata/fisiologia , Fatores Reguladores de Interferon/genética , Fatores Reguladores de Interferon/metabolismo , Proteínas de Membrana/genética , Mitocôndrias/metabolismo , Membranas Mitocondriais/metabolismo , Oxirredutases atuantes sobre Doadores de Grupo CH-CH/genética , Oxirredutases atuantes sobre Doadores de Grupo CH-CH/fisiologia , Transdução de Sinais/genética
8.
J Virol ; 91(20)2017 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-28768867

RESUMO

Viruses manipulate the complex interferon and interferon-stimulated gene (ISG) system in different ways. We have previously shown that HIV inhibits type I and III interferons in its key target cells but directly stimulates a subset of >20 ISGs in macrophages and dendritic cells, many of which are antiviral. Here, we examine the mechanism of induction of ISGs and show this occurs in two phases. The first phase was transient (0 to 24 h postinfection [hpi]), induced mainly by extracellular vesicles and one of its component proteins, HSP90α, contained within the HIV inoculum. The second, dominant, and persistent phase (>48 hpi) was induced via newly transcribed HIV RNA and sensed via RIGI, as shown by the reduction in ISG expression after the knockdown of the RIGI adaptor, MAVS, by small interfering RNA (siRNA) and the inhibition of both the initiation and elongation of HIV transcription by short hairpin RNA (shRNA) transcriptional silencing. We further define the induction pathway, showing sequential HIV RNA stimulation via Tat, RIGI, MAVS, IRF1, and IRF7, also identified by siRNA knockdown. IRF1 also plays a key role in the first phase. We also show that the ISGs IFIT1 to -3 inhibit HIV production, measured as extracellular infectious virus. All induced antiviral ISGs probably lead to restriction of HIV replication in macrophages, contributing to a persistent, noncytopathic infection, while the inhibition of interferon facilitates spread to adjacent cells. Both may influence the size of macrophage HIV reservoirs in vivo Elucidating the mechanisms of ISG induction may help in devising immunotherapeutic strategies to limit the size of these reservoirs.IMPORTANCE HIV, like other viruses, manipulates the antiviral interferon and interferon-stimulated gene (ISG) system to facilitate its initial infection and establishment of viral reservoirs. HIV specifically inhibits all type I and III interferons in its target cells, including macrophages, dendritic cells, and T cells. It also induces a subset of over 20 ISGs of differing compositions in each cell target. This occurs in two temporal phases in macrophages. Extracellular vesicles contained within the inoculum induce the first, transient phase of ISGs. Newly transcribed HIV RNA induce the second, dominant ISG phase, and here, the full induction pathway is defined. Therefore, HIV nucleic acids, which are potent inducers of interferon and ISGs, are initially concealed, and antiviral ISGs are not fully induced until replication is well established. These antiviral ISGs may contribute to persistent infection in macrophages and to the establishment of viral reservoirs in vivo.


Assuntos
Regulação da Expressão Gênica , HIV-1/fisiologia , Interferons/metabolismo , Macrófagos/virologia , RNA Viral/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Células Dendríticas/virologia , Proteínas de Choque Térmico HSP90/metabolismo , Humanos , Fator Regulador 1 de Interferon/genética , Fator Regulador 1 de Interferon/metabolismo , Fator Regulador 7 de Interferon/genética , Fator Regulador 7 de Interferon/metabolismo , RNA Interferente Pequeno , Proteínas de Ligação a RNA , Receptores do Ácido Retinoico/genética , Receptores do Ácido Retinoico/metabolismo , Transdução de Sinais
9.
Sci Rep ; 7(1): 4475, 2017 06 30.
Artigo em Inglês | MEDLINE | ID: mdl-28667332

RESUMO

Zika virus (ZIKV) infection has emerged as a global health threat and infection of pregnant women causes intrauterine growth restriction, spontaneous abortion and microcephaly in newborns. Here we show using biologically relevant cells of neural and placental origin that following ZIKV infection, there is attenuation of the cellular innate response characterised by reduced expression of IFN-ß and associated interferon stimulated genes (ISGs). One such ISG is viperin that has well documented antiviral activity against a wide range of viruses. Expression of viperin in cultured cells resulted in significant impairment of ZIKV replication, while MEFs derived from CRISPR/Cas9 derived viperin-/- mice replicated ZIKV to higher titers compared to their WT counterparts. These results suggest that ZIKV can attenuate ISG expression to avoid the cellular antiviral innate response, thus allowing the virus to replicate unchecked. Moreover, we have identified that the ISG viperin has significant anti-ZIKV activity. Further understanding of how ZIKV perturbs the ISG response and the molecular mechanisms utilised by viperin to suppress ZIKV replication will aid in our understanding of ZIKV biology, pathogenesis and possible design of novel antiviral strategies.


Assuntos
Interações Hospedeiro-Patógeno , Proteínas/metabolismo , Infecção por Zika virus/metabolismo , Infecção por Zika virus/virologia , Zika virus/fisiologia , Animais , Sistemas CRISPR-Cas , Linhagem Celular , Modelos Animais de Doenças , Feminino , Edição de Genes , Interações Hospedeiro-Patógeno/genética , Interações Hospedeiro-Patógeno/imunologia , Humanos , Imunidade Inata , Macrófagos/imunologia , Macrófagos/metabolismo , Macrófagos/virologia , Camundongos , Camundongos Knockout , Monócitos/imunologia , Monócitos/metabolismo , Monócitos/virologia , Células-Tronco Neurais/metabolismo , Células-Tronco Neurais/virologia , Oxirredutases atuantes sobre Doadores de Grupo CH-CH , Placenta/metabolismo , Placenta/virologia , Gravidez , Proteínas/genética , Replicação Viral , Infecção por Zika virus/genética , Infecção por Zika virus/imunologia
10.
J Biol Chem ; 290(43): 25946-59, 2015 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-26354436

RESUMO

The interferon-induced transmembrane (IFITM) family of proteins have recently been identified as important host effector molecules of the type I interferon response against viruses. IFITM1 has been identified as a potent antiviral effector against hepatitis C virus (HCV), whereas the related family members IFITM2 and IFITM3 have been described to have antiviral effects against a broad range of RNA viruses. Here, we demonstrate that IFITM2 and IFITM3 play an integral role in the interferon response against HCV and act at the level of late entry stages of HCV infection. We have established that in hepatocytes, IFITM2 and IFITM3 localize to the late and early endosomes, respectively, as well as the lysosome. Furthermore, we have demonstrated that S-palmitoylation of all three IFITM proteins is essential for anti-HCV activity, whereas the conserved tyrosine residue in the N-terminal domain of IFITM2 and IFITM3 plays a significant role in protein localization. However, this tyrosine was found to be dispensable for anti-HCV activity, with mutation of the tyrosine resulting in an IFITM1-like phenotype with the retention of anti-HCV activity and co-localization of IFITM2 and IFITM3 with CD81. In conclusion, we propose that the IFITM proteins act in a coordinated manner to restrict HCV infection by targeting the endocytosed HCV virion for lysosomal degradation and demonstrate that the actions of the IFITM proteins are indeed virus and cell-type specific.


Assuntos
Antígenos de Diferenciação/fisiologia , Hepacivirus/fisiologia , Fusão de Membrana/fisiologia , Proteínas de Membrana/fisiologia , Proteínas de Ligação a RNA/fisiologia , Antígenos de Diferenciação/metabolismo , Linhagem Celular Tumoral , Endossomos/metabolismo , Hepatite C/fisiopatologia , Hepatócitos/metabolismo , Humanos , Lipoilação , Lisossomos/metabolismo , Proteínas de Membrana/metabolismo , Proteínas de Ligação a RNA/metabolismo
11.
J Virol ; 88(7): 3636-52, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24429364

RESUMO

UNLABELLED: Hepatitis C virus (HCV) NS5A is essential for viral genome replication within cytoplasmic replication complexes and virus assembly at the lipid droplet (LD) surface, although its definitive functions are poorly understood. We developed approaches to investigate NS5A dynamics during a productive infection. We report here that NS5A motility and efficient HCV RNA replication require the microtubule network and the cytoplasmic motor dynein and demonstrate that both motile and relatively static NS5A-positive foci are enriched with host factors VAP-A and Rab5A. Pulse-chase imaging revealed that newly synthesized NS5A foci are small and distinct from aged foci, while further studies using a unique dual fluorescently tagged infectious HCV chimera showed a relatively stable association of NS5A foci with core-capped LDs. These results reveal new details about the dynamics and maturation of NS5A and the nature of potential sites of convergence of HCV replication and assembly pathways. IMPORTANCE: Hepatitis C virus (HCV) is a major cause of serious liver disease worldwide. An improved understanding of the HCV replication cycle will enable development of novel and improved antiviral strategies. Here we have developed complementary fluorescent labeling and imaging approaches to investigate the localization, traffic and interactions of the HCV NS5A protein in living, virus-producing cells. These studies reveal new details as to the traffic, composition and biogenesis of NS5A foci and the nature of their association with putative sites of virus assembly.


Assuntos
Hepacivirus/imunologia , Proteínas não Estruturais Virais/análise , Montagem de Vírus , Replicação Viral , Linhagem Celular , Dineínas/metabolismo , Hepatócitos/química , Hepatócitos/virologia , Humanos , Microtúbulos/metabolismo , Proteínas de Transporte Vesicular/análise , Proteínas rab5 de Ligação ao GTP/análise
12.
PLoS Negl Trop Dis ; 7(4): e2178, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23638199

RESUMO

The host protein viperin is an interferon stimulated gene (ISG) that is up-regulated during a number of viral infections. In this study we have shown that dengue virus type-2 (DENV-2) infection significantly induced viperin, co-incident with production of viral RNA and via a mechanism requiring retinoic acid-inducible gene I (RIG-I). Viperin did not inhibit DENV-2 entry but DENV-2 RNA and infectious virus release was inhibited in viperin expressing cells. Conversely, DENV-2 replicated to higher tires earlier in viperin shRNA expressing cells. The anti-DENV effect of viperin was mediated by residues within the C-terminal 17 amino acids of viperin and did not require the N-terminal residues, including the helix domain, leucine zipper and S-adenosylmethionine (SAM) motifs known to be involved in viperin intracellular membrane association. Viperin showed co-localisation with lipid droplet markers, and was co-localised and interacted with DENV-2 capsid (CA), NS3 and viral RNA. The ability of viperin to interact with DENV-2 NS3 was associated with its anti-viral activity, while co-localisation of viperin with lipid droplets was not. Thus, DENV-2 infection induces viperin which has anti-viral properties residing in the C-terminal region of the protein that act to restrict early DENV-2 RNA production/accumulation, potentially via interaction of viperin with DENV-2 NS3 and replication complexes. These anti-DENV-2 actions of viperin show both contrasts and similarities with other described anti-viral mechanisms of viperin action and highlight the diverse nature of this unique anti-viral host protein.


Assuntos
Vírus da Dengue/patogenicidade , Dengue/metabolismo , Proteínas/metabolismo , Animais , Western Blotting , Linhagem Celular Tumoral , Chlorocebus aethiops , Dengue/genética , Dengue/virologia , Humanos , Oxirredutases atuantes sobre Doadores de Grupo CH-CH , Proteínas/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Células Vero
13.
Hepatology ; 58(5): 1558-68, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23703790

RESUMO

UNLABELLED: Host factors play an important role in all facets of the hepatitis C virus (HCV) life cycle and one such host factor is signal transducer and activator of transcription 3 (STAT3). The HCV core protein has been shown to directly interact with and activate STAT3, while oxidative stress generated during HCV replication in a replicon-based model also induced STAT3 activation. However, despite these findings the precise role of STAT3 in the HCV life cycle remains unknown. We have established that STAT3 is actively phosphorylated in the presence of replicating HCV. Furthermore, expression of a constitutively active form of STAT3 leads to marked increases in HCV replication, whereas, conversely, chemical inhibition and small interfering RNA (siRNA) knockdown of STAT3 leads to significant decreases in HCV RNA levels. This strongly implicates STAT3 as a proviral host factor. As STAT3 is a transcription factor, up-regulation of a distinct set of STAT3-dependent genes may create an environment that is favorable for HCV replication. However, STAT3 has recently been demonstrated to positively regulate microtubule (MT) dynamics, by way of a direct sequestration of the MT depolymerizing protein Stathmin 1 (STMN1), and we provide evidence that STAT3 may exert its effect on the HCV life cycle by way of positive regulation of MT dynamics. CONCLUSION: We have demonstrated that STAT3 plays a role in the life cycle of HCV and have clarified the role of STAT3 as a proviral host factor.


Assuntos
Hepacivirus/fisiologia , Fator de Transcrição STAT3/fisiologia , Carcinoma Hepatocelular/etiologia , Linhagem Celular Tumoral , Humanos , Neoplasias Hepáticas/etiologia , Microtúbulos/fisiologia , RNA Interferente Pequeno/genética , Fator de Transcrição STAT3/antagonistas & inibidores , Estatmina/fisiologia , Replicação Viral
14.
World J Gastroenterol ; 18(26): 3389-99, 2012 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-22807608

RESUMO

AIM: To investigate the role of osteopontin (OPN) and its splice variants in the proliferation of hepatocellular carcinoma (HCC). METHODS: The expression of OPN variants in HCC cell lines as well as HCC tissue samples and non-tumour tissue was studied using polymerase chain reaction. OPN variant cDNAs were cloned into a mammalian expression vector allowing both transient expression and the production of stable OPN expressing cell lines. OPN expression was studied in these cells using Western blotting, immunofluoresnce and enzyme linked immunosorbent assay. A CD44 blocking antibody and siRNA targeting of CD44 were used to examine the role of this receptor in the OPN stimulated cell growth observed in culture. Huh-7 cells stably expressing either OPN-A, -B or -C were injected subcutaneously into the flanks of nude mice to observe in vivo tumour growth. Expression of OPN mRNA and protein in these tumours was examined using reverse transcription-polymerase chain reaction and immunohistochemistry. RESULTS: OPN is expressed in HCC in 3 forms, the full length OPN-A and 2 splice variants OPN-B and -C. OPN variant expression was noted in HCC tissue as well as cognate surrounding cirrhotic liver tissue. Expression of these OPN variants in the HCC derived cell line Huh-7 resulted in secretion of OPN into the culture medium. Transfer of OPN conditioned media to naïve Huh-7 and HepG2 cells resulted in significant cell growth suggesting that all OPN variants can modulate cell proliferation in a paracrine manner. Furthermore the OPN mediated increase in cellular proliferation was dependent on CD44 as only CD44 positive cell lines responded to OPN conditioned media while siRNA knockdown of CD44 blocked the proliferative effect. OPN expression also increased the proliferation of Huh-7 cells in a subcutaneous nude mouse tumour model, with Huh-7 cells expressing OPN-A showing the greatest proliferative effect. CONCLUSION: This study demonstrates that OPN plays a significant role in the proliferation of HCC through interaction with the cell surface receptor CD44. Modulation of this interaction could represent a novel strategy for the control of HCC.


Assuntos
Carcinoma Hepatocelular/metabolismo , Regulação Neoplásica da Expressão Gênica , Receptores de Hialuronatos/biossíntese , Neoplasias Hepáticas/metabolismo , Osteopontina/biossíntese , Animais , Linhagem Celular Tumoral , Proliferação de Células , Ensaio de Imunoadsorção Enzimática/métodos , Feminino , Vetores Genéticos , Humanos , Imuno-Histoquímica/métodos , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Transplante de Neoplasias
15.
Blood ; 120(4): 778-88, 2012 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-22677126

RESUMO

Macrophages are key target cells for HIV-1. HIV-1(BaL) induced a subset of interferon-stimulated genes in monocyte-derived macrophages (MDMs), which differed from that in monocyte-derived dendritic cells and CD4 T cells, without inducing any interferons. Inhibition of type I interferon induction was mediated by HIV-1 inhibition of interferon-regulated factor (IRF3) nuclear translocation. In MDMs, viperin was the most up-regulated interferon-stimulated genes, and it significantly inhibited HIV-1 production. HIV-1 infection disrupted lipid rafts via viperin induction and redistributed viperin to CD81 compartments, the site of HIV-1 egress by budding in MDMs. Exogenous farnesol, which enhances membrane protein prenylation, reversed viperin-mediated inhibition of HIV-1 production. Mutagenesis analysis in transfected cell lines showed that the internal S-adenosyl methionine domains of viperin were essential for its antiviral activity. Thus viperin may contribute to persistent noncytopathic HIV-1 infection of macrophages and possibly to biologic differences with HIV-1-infected T cells.


Assuntos
Infecções por HIV/virologia , HIV-1/patogenicidade , Macrófagos/virologia , Monócitos/virologia , Proteínas/metabolismo , Replicação Viral , Sequência de Aminoácidos , Antivirais/metabolismo , Biomarcadores/metabolismo , Western Blotting , Células Dendríticas/citologia , Células Dendríticas/metabolismo , Células Dendríticas/virologia , Farneseno Álcool/farmacologia , Citometria de Fluxo , Perfilação da Expressão Gênica , Infecções por HIV/metabolismo , Infecções por HIV/patologia , HIV-1/genética , Humanos , Técnicas Imunoenzimáticas , Imunoprecipitação , Interferons/metabolismo , Macrófagos/citologia , Macrófagos/metabolismo , Dados de Sequência Molecular , Monócitos/citologia , Monócitos/metabolismo , Mutagênese Sítio-Dirigida , Mutação/genética , Análise de Sequência com Séries de Oligonucleotídeos , Oxirredutases atuantes sobre Doadores de Grupo CH-CH , Prenilação de Proteína , Proteínas/antagonistas & inibidores , Proteínas/genética , RNA Mensageiro/genética , RNA Interferente Pequeno/genética , Reação em Cadeia da Polimerase em Tempo Real , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Homologia de Sequência de Aminoácidos
16.
Hepatology ; 54(5): 1506-17, 2011 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22045669

RESUMO

UNLABELLED: The interferon-stimulated gene, viperin, has been shown to have antiviral activity against hepatitis C virus (HCV) in the context of the HCV replicon, although the molecular mechanisms responsible are not well understood. Here, we demonstrate that viperin plays an integral part in the ability of interferon to limit the replication of cell-culture-derived HCV (JFH-1) that accurately reflects the complete viral life cycle. Using confocal microscopy and fluorescence resonance energy transfer (FRET) analysis, we demonstrate that viperin localizes and interacts with HCV nonstructural protein 5A (NS5A) at the lipid-droplet (LD) interface. In addition, viperin also associates with NS5A and the proviral cellular factor, human vesicle-associated membrane protein-associated protein subtype A (VAP-A), at the HCV replication complex. The ability of viperin to limit HCV replication was dependent on residues within the C-terminus, as well as an N-terminal amphipathic helix. Removal of the amphipathic helix-redirected viperin from the cytosolic face of the endoplasmic reticulum and the LD to a homogenous cytoplasmic distribution, coinciding with a loss of antiviral effect. C-terminal viperin mutants still localized to the LD interface and replication complexes, but did not interact with NS5A proteins, as determined by FRET analysis. CONCLUSION: In conclusion, we propose that viperin interacts with NS5A and the host factor, VAP-A, to limit HCV replication at the replication complex. This highlights the complexity of the host control of viral replication by interferon-stimulated gene expression.


Assuntos
Hepacivirus/crescimento & desenvolvimento , Hepatite C Crônica/virologia , Proteínas/metabolismo , Proteínas não Estruturais Virais/metabolismo , Replicação Viral/fisiologia , Carcinoma Hepatocelular , Linhagem Celular Tumoral , Hepacivirus/metabolismo , Humanos , Interferon-alfa/metabolismo , Neoplasias Hepáticas , Mutagênese/fisiologia , Oxirredutases atuantes sobre Doadores de Grupo CH-CH , Proteínas/genética , RNA Interferente Pequeno/farmacologia , Proteínas de Transporte Vesicular/metabolismo
17.
J Virol ; 83(2): 836-46, 2009 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-18987152

RESUMO

To investigate chemokine expression networks in chronic hepatitis C virus (HCV) infection, we used microarray analysis to determine chemokine expression in human infection and in chimpanzees experimentally infected with HCV. The CXCR3 chemokine family was highly expressed in both human and chimpanzee infection. CXCL10 was the only CXCR3 chemokine elevated in the serum, suggesting that it may neutralize any CXCR3 chemokine gradient established between the periphery and liver by CXCL11 and CXCL9. Thus, CXCR3 chemokines may not be responsible for recruitment of T lymphocytes but may play a role in positioning these cells within the liver. The importance of the CXCR3 chemokines, in particular CXCL11, was highlighted by replicating HCV (JFH-1) to selectively upregulate its expression in response to gamma interferon (IFN-gamma) and tumor necrosis factor alpha (TNF-alpha). This selective upregulation was confirmed at the transcriptional level by using the CXCL11 promoter driving the luciferase reporter gene. This synergistic increase in expression was not a result of HCV protein expression but the nonspecific innate response to double-stranded RNA (dsRNA), as both in vitro-transcribed HCV RNA and the dsRNA analogue poly(I:C) increased CXCL11 expression and promoter activity. Furthermore, we show that CXCL11 is an IRF3 (interferon regulatory factor 3) response gene whose expression is selectively enhanced by IFN-gamma and TNF-alpha. In conclusion, the CXCR3 chemokines are the most significantly expressed chemokines in chronic hepatitis C and most likely play a role in positioning T cells in the liver. Furthermore, HCV can selectively increase CXCL11 expression in response to IFN-gamma and TNF-alpha stimulation that may play a role in the pathogenesis of HCV-related liver disease.


Assuntos
Quimiocina CXCL10/biossíntese , Quimiocina CXCL11/biossíntese , Quimiocina CXCL9/biossíntese , Hepacivirus/imunologia , Hepatite C Crônica/imunologia , Animais , Células Cultivadas , Perfilação da Expressão Gênica , Genes Reporter , Humanos , Interferon gama/imunologia , Fígado/patologia , Luciferases/metabolismo , Análise de Sequência com Séries de Oligonucleotídeos , Pan troglodytes , Fator de Necrose Tumoral alfa/imunologia
18.
Antiviral Res ; 77(3): 169-76, 2008 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-18190974

RESUMO

UNLABELLED: Viruses have evolved mechanisms to inhibit the innate immune response to infection. The aim of this study was to develop an efficient screening method to identify viral proteins and their ability to block Jak-Stat signaling using hepatitis C virus (HCV) as an example. The 2FTGH cell assay system was used in combination with transient transfection of HCV proteins in this study. Using 1000U/ml IFN and 30mM 6-TG to treat 2FTGH cells, it was established that transient protein expression in this cell system yielded 39% and 0% cell survival for the positive (HPV E7) and negative controls (GFP expression) respectively. Transient expression of HCV Core-p7 resulted in 22% cell survival, consistent with previous reports, while expression of the HCV serine protease NS3/4a resulted in 54% cell survival. NS3/4a was subsequently shown to inhibit phosphorylation of Stat-1 at the serine residue 727. CONCLUSION: the 2FTGH cell assay system can be adapted for transient screening to examine the ability of viral proteins or other potential inhibitors to block the Jak-Stat signaling pathway. We show that HCV NS3/4a is able to block this pathway at the stage of Stat-1 serine 727 phosphorylation.


Assuntos
Proteínas de Transporte/metabolismo , Hepacivirus/fisiologia , Interferons/imunologia , Fator de Transcrição STAT1/metabolismo , Proteínas não Estruturais Virais/metabolismo , Proteínas Virais/metabolismo , Virologia/métodos , Linhagem Celular Tumoral , Sobrevivência Celular , Hepacivirus/imunologia , Humanos , Peptídeos e Proteínas de Sinalização Intracelular , Fosforilação , Fator de Transcrição STAT1/antagonistas & inibidores
19.
Hepatology ; 42(3): 702-10, 2005 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-16108059

RESUMO

Interferon (IFN) alpha inhibits hepatitis C virus (HCV) replication both clinically and in vitro; however, the complete spectrum of interferon-stimulated genes (ISGs) expressed in the HCV-infected liver or the genes responsible for control of HCV replication have not been defined. To better define ISG expression in the chronically infected HCV liver, DNA microarray analysis was performed on 9 individuals with chronic hepatitis C (CHC). A total of 232 messenger RNAs were differentially regulated in CHC compared with nondiseased liver controls. A significant proportion of these were potential ISGs that were transcriptionally elevated, suggesting an ongoing response to endogenous IFN and/or double-stranded RNA. One ISG significantly elevated in all patients was viperin, an evolutionary conserved ISG that has antiviral activity against human cytomegalovirus. Stimulation of Huh-7 and HepG2 cells with IFN-alpha or -gamma revealed viperin is predominantly a type I ISG. Furthermore, viperin expression could also be induced following transfection of Huh-7 cells with either poly(I:C) or HCV RNA. Transient expression of viperin in cells harboring the HCV genomic replicon resulted in a significant decrease in HCV replication, suggesting that viperin has anti-HCV activity. In conclusion, even in the face of a persistent HCV infection, there is an active ISG antiviral cellular response, highlighting the complexity of the host viral relationship. Furthermore, ISG viperin has anti-HCV activity in vitro; we postulate that viperin, along with other ISGs, acts to limit HCV replication.


Assuntos
Antivirais/uso terapêutico , Regulação da Expressão Gênica/imunologia , Hepatite C Crônica/tratamento farmacológico , Hepatite C Crônica/genética , Interferons/genética , Proteínas/genética , Sequência de Bases , Carcinoma Hepatocelular , Linhagem Celular Tumoral , Primers do DNA , Hepacivirus/genética , Hepacivirus/fisiologia , Humanos , Neoplasias Hepáticas , Oxirredutases atuantes sobre Doadores de Grupo CH-CH , Proteínas/uso terapêutico , RNA Mensageiro/genética , Transfecção , Replicação Viral
20.
Hepatology ; 39(5): 1220-9, 2004 May.
Artigo em Inglês | MEDLINE | ID: mdl-15122750

RESUMO

The factors that regulate lymphocyte traffic in chronic hepatitis C (CHC) are not completely defined. Interferon (IFN)-inducible T cell alpha chemoattractant (I-TAC) is a relatively new member of the CXCR3 chemokine ligand family that selectively recruits activated T cells to sites of inflammation. To determine if I-TAC plays a role in CHC, we investigated I-TAC expression in hepatitis C virus (HCV)-infected liver biopsy material. I-TAC messenger RNA (mRNA) levels were significantly increased in HCV-infected liver compared with normal liver, which correlated with both portal and lobular inflammation. I-TAC expression was localized to hepatocytes throughout the liver lobule, with those in close proximity to active areas of inflammation expressing the highest concentration of I-TAC. In vitro, I-TAC mRNA and protein expression was inducible in Huh-7 cells following either IFN-alpha or -gamma stimulation and synergistically with tumor necrosis factor (TNF)-alpha. Furthermore, transfection of Huh-7 cells with either poly(I:C) or HCV RNA representing the HCV subgenomic replicon induced I-TAC mRNA expression. HCV replication was also found to modulate I-TAC expression, with stimulation of Huh-7 cells harboring either the HCV subgenomic or genomic replicon showing significantly increased synergistic effects compared with those previously seen in Huh-7 cells alone with IFN-gamma and TNF-alpha. In conclusion, these results suggest I-TAC, one of the most potent chemoattractants for activated T cells, is produced by hepatocytes in the HCV-infected liver and plays an important role in T cell recruitment and ultimately the pathogenesis of CHC.


Assuntos
Quimiocinas CXC/genética , Hepacivirus/genética , Hepatite C Crônica/fisiopatologia , Hepatócitos/fisiologia , Receptores de Quimiocinas/metabolismo , Antivirais/farmacologia , Carcinoma Hepatocelular , Linhagem Celular Tumoral , Quimiocina CXCL11 , Quimiocinas CXC/metabolismo , Expressão Gênica/efeitos dos fármacos , Hepacivirus/crescimento & desenvolvimento , Hepatite C Crônica/imunologia , Hepatócitos/citologia , Humanos , Técnicas In Vitro , Interferon-alfa/farmacologia , Interferon gama/farmacologia , Neoplasias Hepáticas , RNA de Cadeia Dupla/genética , RNA Mensageiro/metabolismo , RNA Viral/genética , Receptores CXCR3 , Replicon , Regulação para Cima
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA