Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Stroke ; 55(6): 1650-1659, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38738428

RESUMO

BACKGROUND: Beyond neuronal injury, cell death pathways may also contribute to vascular injury after stroke. We examined protein networks linked to major cell death pathways and identified SLC22A17 (solute carrier family 22 member 17) as a novel mediator that regulates endothelial tight junctions after ischemia and inflammatory stress. METHODS: Protein-protein interactions and brain enrichment analyses were performed using STRING, Cytoscape, and a human tissue-specific expression RNA-seq database. In vivo experiments were performed using mouse models of transient focal cerebral ischemia. Human stroke brain tissues were used to detect SLC22A17 by immunostaining. In vitro experiments were performed using human brain endothelial cultures subjected to inflammatory stress. Immunostaining and Western blot were used to assess responses in SLC22A17 and endothelial tight junctional proteins. Water content, dextran permeability, and electrical resistance assays were used to assess edema and blood-brain barrier (BBB) integrity. Gain and loss-of-function studies were performed using lentiviral overexpression of SLC22A17 or short interfering RNA against SLC22A17, respectively. RESULTS: Protein-protein interaction analysis showed that core proteins from apoptosis, necroptosis, ferroptosis, and autophagy cell death pathways were closely linked. Among the 20 proteins identified in the network, the iron-handling solute carrier SLC22A17 emerged as the mediator enriched in the brain. After cerebral ischemia in vivo, endothelial expression of SLC22A17 increases in both human and mouse brains along with BBB leakage. In human brain endothelial cultures, short interfering RNA against SLC22A17 prevents TNF-α (tumor necrosis factor alpha)-induced ferroptosis and downregulation in tight junction proteins and disruption in transcellular permeability. Notably, SLC22A17 could repress the transcription of tight junctional genes. Finally, short interfering RNA against SLC22A17 ameliorates BBB leakage in a mouse model of focal cerebral ischemia. CONCLUSIONS: Using a combination of cell culture, human stroke samples, and mouse models, our data suggest that SLC22A17 may play a role in the control of BBB function after cerebral ischemia. These findings may offer a novel mechanism and target for ameliorating BBB injury and edema after stroke.


Assuntos
Barreira Hematoencefálica , Isquemia Encefálica , Junções Íntimas , Idoso , Animais , Feminino , Humanos , Masculino , Camundongos , Barreira Hematoencefálica/metabolismo , Barreira Hematoencefálica/patologia , Isquemia Encefálica/metabolismo , Isquemia Encefálica/patologia , Isquemia Encefálica/genética , Morte Celular , Células Endoteliais/metabolismo , Camundongos Endogâmicos C57BL , Proteínas de Transporte de Cátions Orgânicos/metabolismo , Proteínas de Transporte de Cátions Orgânicos/genética , Junções Íntimas/metabolismo
2.
J Biol Chem ; 299(12): 105471, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37979918

RESUMO

Recently, we demonstrated that agonist-stimulated Ca2+ signaling involving IP3 receptors modulates ER export rates through activation of the penta-EF Hand proteins apoptosis-linked gene-2 (ALG-2) and peflin. It is unknown, however, whether IP3Rs and penta-EF proteins regulate ER export rates at steady state. Here we tested this idea in normal rat kidney epithelial cells by manipulation of IP3R isoform expression. Under standard growth conditions, spontaneous cytosolic Ca2+ oscillations occurred simultaneously in successive groups of contiguous cells, generating intercellular Ca2+ waves that moved across the monolayer periodically. Depletion of IP3R-3, typically the least promiscuous IP3R isoform, caused increased cell participation in intercellular Ca2+ waves in unstimulated cells. The increased spontaneous signaling was sufficient to cause increased ALG-2 and COPII coat subunit Sec31A and decreased peflin localization at ER exit sites, resulting in increased ER-to-Golgi transport of the COPII client cargo VSV-G. The elevated ER-to-Golgi transport caused greater concentration of VSV-G at ER exit sites and had reciprocal effects on transport of VSV-G and a bulk-flow cargo, though both cargos equally required Sec31A. Inactivation of client cargo sorting using 4-phenylbutyrate had opposing reciprocal effects on client and bulk-flow cargo and neutralized any effect of ALG-2 activation on transport. This work extends our knowledge of ALG-2 mechanisms and indicates that in normal rat kidney cells, IP3R isoforms regulate homeostatic Ca2+ signaling that helps determine the basal secretion rate and stringency of COPII-dependent cargo sorting.


Assuntos
Vesículas Revestidas pelo Complexo de Proteína do Envoltório , Cálcio , Motivos EF Hand , Receptores de Inositol 1,4,5-Trifosfato , Animais , Ratos , Cálcio/metabolismo , Sinalização do Cálcio , Proteínas de Ligação ao Cálcio/metabolismo , Vesículas Revestidas pelo Complexo de Proteína do Envoltório/metabolismo , Retículo Endoplasmático/metabolismo , Células Epiteliais/metabolismo , Complexo de Golgi/metabolismo , Receptores de Inositol 1,4,5-Trifosfato/metabolismo , Rim/citologia , Isoformas de Proteínas/metabolismo , Transporte Proteico
3.
Neuron ; 111(8): 1222-1240.e9, 2023 04 19.
Artigo em Inglês | MEDLINE | ID: mdl-36917977

RESUMO

Mitochondrial dysfunction and axon loss are hallmarks of neurologic diseases. Gasdermin (GSDM) proteins are executioner pore-forming molecules that mediate cell death, yet their roles in the central nervous system (CNS) are not well understood. Here, we find that one GSDM family member, GSDME, is expressed by both mouse and human neurons. GSDME plays a role in mitochondrial damage and axon loss. Mitochondrial neurotoxins induced caspase-dependent GSDME cleavage and rapid localization to mitochondria in axons, where GSDME promoted mitochondrial depolarization, trafficking defects, and neurite retraction. Frontotemporal dementia (FTD)/amyotrophic lateral sclerosis (ALS)-associated proteins TDP-43 and PR-50 induced GSDME-mediated damage to mitochondria and neurite loss. GSDME knockdown protected against neurite loss in ALS patient iPSC-derived motor neurons. Knockout of GSDME in SOD1G93A ALS mice prolonged survival, ameliorated motor dysfunction, rescued motor neuron loss, and reduced neuroinflammation. We identify GSDME as an executioner of neuronal mitochondrial dysfunction that may contribute to neurodegeneration.


Assuntos
Esclerose Lateral Amiotrófica , Camundongos , Animais , Humanos , Esclerose Lateral Amiotrófica/metabolismo , Gasderminas , Camundongos Knockout , Neurônios Motores/metabolismo , Axônios/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA