Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
1.
Front Med (Lausanne) ; 11: 1412891, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39021821

RESUMO

Introduction: Patients with cirrhosis undergoing liver transplantation frequently exhibit systemic inflammation, coagulation derangements, and edema, indicating endothelial dysfunction. This syndrome may worsen after ischemia-reperfusion injury of the liver graft, coincident with organ dysfunction that worsens patient outcomes. Little is known about changes in endothelial permeability during liver transplantation. We hypothesized that sera from these patients would increase permeability in cultured human endothelial cells ex vivo. Methods: Adults with cirrhosis presenting for liver transplantation provided consent for blood collection during surgery. Sera were prepared at five time points spanning the entire operation. The barrier function of human pulmonary microvascular endothelial cells in culture was assessed by transendothelial resistance measured using the ECIS ZΘ system. Confluent cells from two different endothelial cell donors were stimulated with human serum from liver transplant patients. Pooled serum from healthy men and purified inflammatory agonists served as controls. The permeability response to serum was quantified as the area under the normalized resistance curve. Responses were compared between time points and analyzed for associations with clinical characteristics of liver transplant patients and their grafts. Results: Liver transplant sera from all time points during surgery-induced permeability in both endothelial cell lines. The magnitude of permeability change was heterogeneous between patients, and there were differences in the effects of sera on the two endothelial cell lines. In one of the cell lines, the severity of liver disease was associated with greater permeability at the start of surgery. In the same cell line, serum collected 15 min after liver reperfusion induced significantly more permeability as compared to that collected at the start of surgery. Early postreperfusion sera from patients undergoing living donor transplants induced more permeability than sera from deceased donor transplants. Sera from two exemplary cases of patients on preoperative dialysis, and one patient with an unexpectedly long warm ischemia time of the liver graft, induced exaggerated and prolonged endothelial permeability. Discussion: Serum from patients with cirrhosis undergoing liver transplantation induces permeability of cultured human pulmonary microvascular endothelial cells. Increased endothelial permeability during liver transplantation may contribute to organ injury and present a target for future therapeutics.

2.
J Am Geriatr Soc ; 71(1): 227-234, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36125032

RESUMO

BACKGROUND: Postoperative delirium is a common postsurgical complication in older patients and is associated with high morbidity and mortality. The objective of this study was to determine whether a digital cognitive assessment and patient characteristics could identify those at-risk. METHODS: Patients 65 years and older undergoing spine surgeries ≥3 h were evaluated as part of a single-center prospective observational cohort study at an academic medical center, from January 1, 2019, to December 31, 2020. Of 220 eligible patients, 161 were enrolled and 152 completed the study. The primary outcome of postoperative delirium was measured by the Confusion Assessment Method for the Intensive Care Unit or the Nursing Delirium Screening Scale, administered by trained nursing staff independent from the study protocol. Baseline cognitive impairment was identified using the tablet-based TabCAT Brain Health Assessment. RESULTS: Of the 152 patients included in this study, 46% were women. The mean [SD] age was 72 [5.4] years. Baseline cognitive impairment was identified in 38% of participants, and 26% had postoperative delirium. In multivariable analysis, impaired Brain Health Assessment Cognitive Score (OR 2.45; 95% CI, 1.05-5.67; p = 0.037), depression (OR 4.54; 95% CI, 1.73-11.89; p = 0.002), and higher surgical complexity Tier 4 (OR 5.88; 95% CI, 1.55-22.26; p = 0.009) were associated with postoperative delirium. The multivariate model was 72% accurate for predicting postoperative delirium, compared to 45% for the electronic medical record-based risk stratification model currently in use. CONCLUSION: In this prospective cohort study of spine surgery patients, age, cognitive impairment, depression, and surgical complexity identified patients at high risk for postoperative delirium. Integration of scalable digital assessments into preoperative workflows could identify high-risk patients, automate decision support for timely interventions that can improve patient outcomes and lower hospital costs, and provide a baseline cognitive assessment to monitor for postoperative cognitive change.


Assuntos
Disfunção Cognitiva , Delírio , Delírio do Despertar , Humanos , Feminino , Idoso , Masculino , Estudos Prospectivos , Delírio do Despertar/complicações , Delírio/diagnóstico , Delírio/etiologia , Delírio/psicologia , Fatores de Risco , Disfunção Cognitiva/psicologia , Complicações Pós-Operatórias/diagnóstico , Complicações Pós-Operatórias/etiologia , Complicações Pós-Operatórias/psicologia
3.
Arterioscler Thromb Vasc Biol ; 42(11): 1333-1350, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36288290

RESUMO

BACKGROUND: The harmful vascular effects of smoking are well established, but the effects of chronic use of electronic cigarettes (e-cigarettes) on endothelial function are less understood. We hypothesized that e-cigarette use causes changes in blood milieu that impair endothelial function. METHODS: Endothelial function was measured in chronic e-cigarette users, chronic cigarette smokers, and nonusers. We measured effects of participants' sera, or e-cigarette aerosol condensate, on NO and H2O2 release and cell permeability in cultured endothelial cells (ECs). RESULTS: E-cigarette users and smokers had lower flow-mediated dilation (FMD) than nonusers. Sera from e-cigarette users and smokers reduced VEGF (vascular endothelial growth factor)-induced NO secretion by ECs relative to nonuser sera, without significant reduction in endothelial NO synthase mRNA or protein levels. E-cigarette user sera caused increased endothelial release of H2O2, and more permeability than nonuser sera. E-cigarette users and smokers exhibited changes in circulating biomarkers of inflammation, thrombosis, and cell adhesion relative to nonusers, but with distinct profiles. E-cigarette user sera had higher concentrations of the receptor for advanced glycation end products (RAGE) ligands S100A8 and HMGB1 (high mobility group box 1) than smoker and nonuser sera, and receptor for advanced glycation end product inhibition reduced permeability induced by e-cigarette user sera but did not affect NO production. CONCLUSIONS: Chronic vaping and smoking both impair FMD and cause changes in the blood that inhibit endothelial NO release. Vaping, but not smoking, causes changes in the blood that increase microvascular endothelial permeability and may have a vaping-specific effect on intracellular oxidative state. Our results suggest a role for RAGE in e-cigarette-induced changes in endothelial function.


Assuntos
Sistemas Eletrônicos de Liberação de Nicotina , Proteína HMGB1 , Vaping , Humanos , Vaping/efeitos adversos , Fator A de Crescimento do Endotélio Vascular , Receptor para Produtos Finais de Glicação Avançada , Fumar/efeitos adversos , Células Endoteliais , Peróxido de Hidrogênio , Aerossóis , Biomarcadores , RNA Mensageiro , Óxido Nítrico Sintase
4.
J Vis Exp ; (187)2022 09 09.
Artigo em Inglês | MEDLINE | ID: mdl-36155626

RESUMO

Ischemia reperfusion (IR) injury frequently results from processes that involve a transient period of interrupted blood flow. In the lung, isolated IR permits the experimental study of this specific process with continued alveolar ventilation, thereby avoiding the compounding injurious processes of hypoxia and atelectasis. In the clinical context, lung ischemia reperfusion injury (also known as lung IRI or LIRI) is caused by numerous processes, including but not limited to pulmonary embolism, resuscitated hemorrhagic trauma, and lung transplantation. There are currently limited effective treatment options for LIRI. Here, we present a reversible surgical model of lung IR involving first orotracheal intubation followed by unilateral left lung ischemia and reperfusion with preserved alveolar ventilation or gas exchange. Mice undergo a left thoracotomy, through which the left pulmonary artery is exposed, visualized, isolated, and compressed using a reversible slipknot. The surgical incision is then closed during the ischemic period, and the animal is awakened and extubated. With the mouse spontaneously breathing, reperfusion is established by releasing the slipknot around the pulmonary artery. This clinically relevant survival model permits the evaluation of lung IR injury, the resolution phase, downstream effects on lung function, as well as two-hit models involving experimental pneumonia. While technically challenging, this model can be mastered over the course of a few weeks to months with an eventual survival or success rate of 80%-90%.


Assuntos
Pneumopatias , Traumatismo por Reperfusão , Animais , Modelos Animais de Doenças , Intubação Intratraqueal/efeitos adversos , Isquemia , Pulmão/irrigação sanguínea , Camundongos , Reperfusão/efeitos adversos
5.
Am J Respir Crit Care Med ; 206(8): 961-972, 2022 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-35649173

RESUMO

Rationale: Autopsy and biomarker studies suggest that endotheliopathy contributes to coronavirus disease (COVID-19)-associated acute respiratory distress syndrome. However, the effects of COVID-19 on the lung endothelium are not well defined. We hypothesized that the lung endotheliopathy of COVID-19 is caused by circulating host factors and direct endothelial infection by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Objectives: We aimed to determine the effects of SARS-CoV-2 or sera from patients with COVID-19 on the permeability and inflammatory activation of lung microvascular endothelial cells. Methods: Human lung microvascular endothelial cells were treated with live SARS-CoV-2; inactivated viral particles; or sera from patients with COVID-19, patients without COVID-19, and healthy volunteers. Permeability was determined by measuring transendothelial resistance to electrical current flow, where decreased resistance signifies increased permeability. Inflammatory mediators were quantified in culture supernatants. Endothelial biomarkers were quantified in patient sera. Measurements and Main Results: Viral PCR confirmed that SARS-CoV-2 enters and replicates in endothelial cells. Live SARS-CoV-2, but not dead virus or spike protein, induces endothelial permeability and secretion of plasminogen activator inhibitor 1 and vascular endothelial growth factor. There was substantial variability in the effects of SARS-CoV-2 on endothelial cells from different donors. Sera from patients with COVID-19 induced endothelial permeability, which correlated with disease severity. Serum levels of endothelial activation and injury biomarkers were increased in patients with COVID-19 and correlated with severity of illness. Conclusions: SARS-CoV-2 infects and dysregulates endothelial cell functions. Circulating factors in patients with COVID-19 also induce endothelial cell dysfunction. Our data point to roles for both systemic factors acting on lung endothelial cells and viral infection of endothelial cells in COVID-19-associated endotheliopathy.


Assuntos
COVID-19 , Doenças Vasculares , Biomarcadores/metabolismo , Células Endoteliais/metabolismo , Humanos , Mediadores da Inflamação/metabolismo , Pulmão , Inibidor 1 de Ativador de Plasminogênio/metabolismo , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus/metabolismo , Doenças Vasculares/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo
6.
J Neuroinflammation ; 19(1): 118, 2022 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-35610647

RESUMO

BACKGROUND: The transient receptor potential vanilloid 1 (TRPV1) participates in thermosensation and inflammatory pain, but its immunomodulatory mechanisms remain enigmatic. N-Oleoyl dopamine (OLDA), an endovanilloid and endocannabinoid, is a TRPV1 agonist that is produced in the central nervous system and the peripheral nervous system. We studied the anti-inflammatory effects and TRPV1-dependent mechanisms of OLDA in models of inflammation and sepsis. METHODS: Mice were challenged intratracheally or intravenously with LPS, or intratracheally with S. aureus to induce pneumonia and sepsis, and then were treated intravenously with OLDA. Endpoints included plasma cytokines, leukocyte activation marker expression, mouse sepsis scores, lung histopathology, and bacterial counts. The role of TRPV1 in the effects of OLDA was determined using Trpv1-/- mice, and mice with TRPV1 knockdown pan-neuronally, in peripheral nervous system neurons, or in myeloid cells. Circulating monocytes/macrophages were depleted using clodronate to determine their role in the anti-inflammatory effects of OLDA in endotoxemic mice. Levels of exogenous OLDA, and of endovanilloids and endocannabinoids, at baseline and in endotoxemic mice, were determined by LC-MS/MS. RESULTS: OLDA administration caused an early anti-inflammatory response in endotoxemic and septic mice with high serum levels of IL-10 and decreased levels of pro-inflammatory cytokines. OLDA also reduced lung injury and improved mouse sepsis scores. Blood and lung bacterial counts were comparable between OLDA- and carrier-treated mice with S. aureus pneumonia. OLDA's effects were reversed in mice with pan-neuronal TRPV1 knockdown, but not with TRPV1 knockdown in peripheral nervous system neurons or myeloid cells. Depletion of monocytes/macrophages reversed the IL-10 upregulation by OLDA in endotoxemic mice. Brain and blood levels of endovanilloids and endocannabinoids were increased in endotoxemic mice. CONCLUSIONS: OLDA has strong anti-inflammatory actions in mice with endotoxemia or S. aureus pneumonia. Prior studies focused on the role of peripheral nervous system TRPV1 in modulating inflammation and pneumonia. Our results suggest that TRPV1-expressing central nervous system neurons also regulate inflammatory responses to endotoxemia and infection. Our study reveals a neuro-immune reflex that during acute inflammation is engaged proximally by OLDA acting on neuronal TRPV1, and through a multicellular network that requires circulating monocytes/macrophages, leads to the systemic production of IL-10.


Assuntos
Endotoxemia , Sepse , Animais , Sistema Nervoso Central/metabolismo , Cromatografia Líquida , Citocinas/metabolismo , Dopamina/metabolismo , Endocanabinoides , Endotoxemia/induzido quimicamente , Endotoxemia/tratamento farmacológico , Inflamação/metabolismo , Interleucina-10/metabolismo , Lipopolissacarídeos/toxicidade , Camundongos , Sepse/tratamento farmacológico , Staphylococcus aureus , Canais de Cátion TRPV/metabolismo , Espectrometria de Massas em Tandem
7.
Bone ; 153: 116129, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34311122

RESUMO

Macrophages play crucial roles in many human disease processes. However, obtaining large numbers of primary cells for study is often difficult. We describe 2D and 3D methods for directing human induced pluripotent stem cells (hiPSCs) into macrophages (iMACs). iMACs generated in 2D culture showed functional similarities to human primary monocyte-derived M2-like macrophages, and could be successfully polarized into a M1-like phenotype. Both M1- and M2-like iMACs showed phagocytic activity and reactivity to endogenous or exogenous stimuli. In contrast, iMACs generated by a 3D culture system showed mixed M1- and M2-like functional characteristics. 2D-iMACs from patients with fibrodysplasia ossificans progressiva (FOP), an inherited disease with progressive heterotopic ossification driven by inflammation, showed prolonged inflammatory cytokine production and higher Activin A production after M1-like polarization, resulting in dampened responses to additional LPS stimulation. These results demonstrate a simple and robust way of creating hiPSC-derived M1- and M2-like macrophage lineages, while identifying macrophages as a source of Activin A that may drive heterotopic ossification in FOP.


Assuntos
Células-Tronco Pluripotentes Induzidas , Miosite Ossificante , Ossificação Heterotópica , Receptores de Ativinas Tipo I/genética , Receptores de Ativinas Tipo I/metabolismo , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Macrófagos/metabolismo , Transdução de Sinais
8.
Crit Care Med ; 49(3): e315-e326, 2021 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-33481407

RESUMO

OBJECTIVES: Catecholaminergic vasopressors are the cornerstone of circulatory shock management. Nevertheless, catecholamines have problematic side effects, arousing a growing interest in noncatecholaminergic agents such as vasopressin or angiotensin-II. However, their respective effects on sepsis-associated microvascular endothelial dysfunction such as permeability or inflammation remain elusive. We investigated the role of catecholamines and other vasopressors on Toll-like receptor agonists-induced microvascular endothelial permeability and inflammation. SETTING: University research laboratory/cell research. SUBJECTS: Human pulmonary microvascular endothelial cells from multiple donors. INTERVENTION: Confluent monolayers of human pulmonary microvascular endothelial cells were treated with Toll-like receptor agonists (lipopolysaccharide, Poly[I:C], or tripalmitoyl-S-glyceryl cysteine) in the presence or absence of epinephrine, norepinephrine, vasopressin, and angiotensin-II. Permeability was inferred from transendothelial resistance, measured using electrical cell impedance sensing, where decreased transendothelial resistance is consistent with increased permeability. Cell-cell junction molecule expression was assessed via immunofluorescence microscopy and flow cytometry. We quantified cytokines in supernatants of Toll-like receptor agonist-treated human pulmonary microvascular endothelial cells. MEASUREMENTS AND MAIN RESULTS: Epinephrine and norepinephrine both ameliorate lipopolysaccharide, polyinosinic:polycytidylic acid, or tripalmitoyl-S-glyceryl cysteine-induced reductions in transendothelial resistance, a surrogate for endothelial permeability. In contrast, the noncatecholaminergic agents, vasopressin, and angiotensin-II did not affect Toll-like receptor agonists-induced reductions in transendothelial resistance. ß1- and ß2-adrenergic receptor antagonists reduced the effects of the catecholamines on transendothelial resistance, whereas α-adrenergic receptor antagonists did not. We observed that epinephrine and norepinephrine induced actin cytoskeletal rearrangement and normalized the membrane expression of proteins involved with adherens-junctions (vascular endothelial-cadherin) and tight-junctions (zona occludens-1). Despite having a substantial effect on endothelial permeability, epinephrine and norepinephrine did not affect human pulmonary microvascular endothelial cell survival or production of interleukin-8, interleukin-6, or monocyte chemoattractant protein-1 (CCL-2) induced by Toll-like receptor agonists, suggesting that these functions are regulated separately from permeability. CONCLUSIONS: Our findings demonstrate that treatment with epinephrine or norepinephrine strongly reduces endothelial permeability induced by agonists of multiple Toll-like receptors (Toll-like receptor-2, Toll-like receptor-3, Toll-like receptor-4) in vitro. Our studies suggest that both ß1- and ß2-adrenergic receptors mediate the stabilizing effects of epinephrine and norepinephrine on the endothelial barrier.


Assuntos
Permeabilidade Capilar/efeitos dos fármacos , Células Endoteliais/metabolismo , Epinefrina/farmacologia , Norepinefrina/farmacologia , Receptores Toll-Like/agonistas , Vasoconstritores/farmacologia , Movimento Celular/efeitos dos fármacos , Células Cultivadas , Células Endoteliais/efeitos dos fármacos , Endotélio Vascular/efeitos dos fármacos , Humanos
9.
Shock ; 51(1): 4-9, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-29877959

RESUMO

Sepsis morbidity and mortality exacts a toll on patients and contributes significantly to healthcare costs. Preclinical models of sepsis have been used to study disease pathogenesis and test new therapies, but divergent outcomes have been observed with the same treatment even when using the same sepsis model. Other disorders such as diabetes, cancer, malaria, obesity, and cardiovascular diseases have used standardized, preclinical models that allow laboratories to compare results. Standardized models accelerate the pace of research and such models have been used to test new therapies or changes in treatment guidelines. The National Institutes of Health mandated that investigators increase data reproducibility and the rigor of scientific experiments and has also issued research funding announcements about the development and refinement of standardized models. Our premise is that refinement and standardization of preclinical sepsis models may accelerate the development and testing of potential therapeutics for human sepsis, as has been the case with preclinical models for other disorders. As a first step toward creating standardized models, we suggest standardizing the technical standards of the widely used cecal ligation and puncture model and creating a list of appropriate organ injury and immune dysfunction parameters. Standardized sepsis models could enhance reproducibility and allow comparison of results between laboratories and may accelerate our understanding of the pathogenesis of sepsis.


Assuntos
Modelos Animais de Doenças , Sepse , Animais , Humanos
10.
JCI Insight ; 3(22)2018 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-30429363

RESUMO

BACKGROUND: Inflammation helps regulate normal growth and tissue repair. Although bone morphogenetic proteins (BMPs) and inflammation are known contributors to abnormal bone formation, how these pathways interact in ossification remains unclear. METHODS: We examined this potential link in patients with fibrodysplasia ossificans progressiva (FOP), a genetic condition of progressive heterotopic ossification caused by activating mutations in the Activin A type I receptor (ACVR1/ALK2). FOP patients show exquisite sensitivity to trauma, suggesting that BMP pathway activation may alter immune responses. We studied primary blood, monocyte, and macrophage samples from control and FOP subjects using multiplex cytokine, gene expression, and protein analyses; examined CD14+ primary monocyte and macrophage responses to TLR ligands; and assayed BMP, TGF-ß activated kinase 1 (TAK1), and NF-κB pathways. RESULTS: FOP subjects at baseline without clinically evident heterotopic ossification showed increased serum IL-3, IL-7, IL-8, and IL-10. CD14+ primary monocytes treated with the TLR4 activator LPS showed increased CCL5, CCR7, and CXCL10; abnormal cytokine/chemokine secretion; and prolonged activation of the NF-κB pathway. FOP macrophages derived from primary monocytes also showed abnormal cytokine/chemokine secretion, increased TGF-ß production, and p38MAPK activation. Surprisingly, SMAD phosphorylation was not significantly changed in the FOP monocytes/macrophages. CONCLUSIONS: Abnormal ACVR1 activity causes a proinflammatory state via increased NF-κB and p38MAPK activity. Similar changes may contribute to other types of heterotopic ossification, such as in scleroderma and dermatomyositis; after trauma; or with recombinant BMP-induced bone fusion. Our findings suggest that chronic antiinflammatory treatment may be useful for heterotopic ossification.


Assuntos
Receptores de Ativinas Tipo I/sangue , Inflamação/complicações , Miosite Ossificante/complicações , NF-kappa B/sangue , Ossificação Heterotópica/etiologia , Quimiocinas/sangue , Citocinas/sangue , Humanos , Inflamação/sangue , Macrófagos/metabolismo , Monócitos/metabolismo , Miosite Ossificante/sangue , Miosite Ossificante/imunologia , Ossificação Heterotópica/sangue , Ossificação Heterotópica/imunologia , Transdução de Sinais , Fator de Crescimento Transformador beta/sangue , Proteínas Quinases p38 Ativadas por Mitógeno/sangue
11.
Transl Res ; 180: 53-67.e4, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-27567430

RESUMO

Repeated challenge of lipopolysaccharide (LPS) alters the response to subsequent LPS exposures via modulation of toll-like receptor 4 (TLR4). Whether activation of other TLRs can modulate TLR4 responses, and vice versa, remains unclear. Specifically with regards to endothelial cells, a key component of innate immunity, the impact of TLR cross-modulation is unknown. We postulated that TLR2 priming (via Pam3Csk4) would inhibit TLR4-mediated responses while TLR3 priming (via Poly I:C) would enhance subsequent TLR4-inflammatory signaling. We studied human umbilical vein endothelial cells (HUVECs) and neonatal human dermal microvascular endothelial cells (HMVECs). Cells were primed with a combination of Poly I:C (10 µg/ml), Pam3Csk4 (10 µg/ml), or LPS (100 ng/ml), then washed and allowed to rest. They were then rechallenged with either Poly I:C, Pam3Csk4 or LPS. Endothelial cells showed significant tolerance to repeated LPS challenge. Priming with Pam3Csk4 also reduced the response to secondary LPS challenge in both cell types, despite a reduced proinflammatory response to Pam3Csk4 in HMVECs compared to HUVECs. Poly I:C priming enhanced inflammatory and interferon producing signals upon Poly I:C or LPS rechallenge, respectively. Poly I:C priming induced interferon regulatory factor 7, leading to enhancement of interferon production. Finally, both Poly I:C and LPS priming induced significant changes in receptor-interacting serine/threonine-protein kinase 1 activity. Pharmacological inhibition of receptor-interacting serine/threonine-protein kinase 1 or interferon regulatory factor 7 reduced the potentiated phenotype of TLR3 priming on TLR4 rechallenge. These results demonstrate that in human endothelial cells, prior activation of TLRs can have a significant impact on subsequent exposures and may contribute to the severity of the host response.


Assuntos
Células Endoteliais/metabolismo , Tolerância Imunológica , Receptores Toll-Like/metabolismo , Células Endoteliais/efeitos dos fármacos , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Células Endoteliais da Veia Umbilical Humana/efeitos dos fármacos , Células Endoteliais da Veia Umbilical Humana/metabolismo , Humanos , Tolerância Imunológica/efeitos dos fármacos , Fator Regulador 7 de Interferon/metabolismo , Interferons/metabolismo , Interleucina-6/biossíntese , Lipopeptídeos/farmacologia , Lipopolissacarídeos/farmacologia , Complexo de Proteínas Formadoras de Poros Nucleares/metabolismo , Fosforilação/efeitos dos fármacos , Poli I-C/farmacologia , Proteínas de Ligação a RNA/metabolismo , Regulação para Cima/efeitos dos fármacos
12.
F1000Res ; 52016.
Artigo em Inglês | MEDLINE | ID: mdl-27781082

RESUMO

Tissue injury, whether by trauma, surgical intervention, metabolic dysfunction, ischemia, or infection, evokes a complex cellular response (inflammation) that is associated with painful hyperalgesic states. Although in the acute stages it is necessary for protective reflexes and wound healing, inflammation may persist well beyond the need for tissue repair or survival. Prolonged inflammation may well represent the greatest challenge mammalian organisms face, as it can lead to chronic painful conditions, organ dysfunction, morbidity, and death. The complexity of the inflammatory response reflects not only the inciting event (infection, trauma, surgery, cancer, or autoimmune) but also the involvement of heterogeneous cell types including neuronal (primary afferents, sensory ganglion, and spinal cord), non-neuronal (endothelial, keratinocytes, epithelial, and fibroblasts), and immune cells. In this commentary, we will examine 1.) the expression and regulation of two members of the transient receptor potential family in primary afferent nociceptors and their activation/regulation by products of inflammation, 2.) the role of innate immune pathways that drive inflammation, and 3.) the central nervous system's response to injury with a focus on the activation of spinal microglia driving painful hyperalgesic states.

13.
Sci Signal ; 8(391): ra86, 2015 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-26307013

RESUMO

Inflammatory critical illness is a syndrome that is characterized by acute inflammation and organ injury, and it is triggered by infections and noninfectious tissue injury, both of which activate innate immune receptors and pathways. Although reports suggest an anti-inflammatory role for the mitogen-activated protein kinase (MAPK) extracellular signal-regulated kinase 5 (ERK5), we previously found that ERK5 mediates proinflammatory responses in primary human cells in response to stimulation of Toll-like receptor 2 (TLR2). We inhibited the kinase activities and reduced the abundances of ERK5 and MEK5, a MAPK kinase directly upstream of ERK5, in primary human vascular endothelial cells and monocytes, and found that ERK5 promoted inflammation induced by a broad range of microbial TLR agonists and by the proinflammatory cytokines interleukin-1ß (IL-1ß) and tumor necrosis factor-α (TNF-α). Furthermore, we found that inhibitors of MEK5 or ERK5 reduced the plasma concentrations of proinflammatory cytokines in mice challenged with TLR ligands or heat-killed Staphylococcus aureus, as well as in mice that underwent sterile lung ischemia-reperfusion injury. Finally, we found that inhibition of ERK5 protected endotoxemic mice from death. Together, our studies support a proinflammatory role for ERK5 in primary human endothelial cells and monocytes, and suggest that ERK5 is a potential therapeutic target in diverse disorders that cause inflammatory critical illness.


Assuntos
Células Endoteliais da Veia Umbilical Humana/imunologia , Proteína Quinase 7 Ativada por Mitógeno/imunologia , Monócitos/imunologia , Síndrome de Resposta Inflamatória Sistêmica/imunologia , Animais , Células Endoteliais da Veia Umbilical Humana/patologia , Humanos , Interleucina-1beta/imunologia , Masculino , Camundongos , Monócitos/patologia , Síndrome de Resposta Inflamatória Sistêmica/patologia , Síndrome de Resposta Inflamatória Sistêmica/terapia , Receptor 2 Toll-Like/agonistas , Receptor 2 Toll-Like/imunologia , Fator de Necrose Tumoral alfa/imunologia
14.
PLoS One ; 10(5): e0126906, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25978669

RESUMO

Rats with Metabolic Syndrome (MetaS) have a dysregulated immune response to the aseptic trauma of surgery. We hypothesized that rats with MetaS would have dysregulated inflammation, increased lung injury, and less effective antibacterial defenses during Staphylococcus (S.) aureus sepsis as compared to rats without MetaS. Low capacity runner (LCR; a model of MetaS) and high capacity runner (HCR) rats were challenged intravenously with S. aureus bacteria. After 48 h, inflammatory mediators and bacteria were quantified in the blood, bronchoalveolar lavage fluid (BALF), and lung homogenates. Lungs were analyzed histologically. BALF protein and lung wet-dry ratios were quantified to assess for vascular leak. Endpoints were compared in infected LCR vs HCR rats. LCR rats had higher blood and lung S. aureus counts, as well as higher levels of IL-6 in plasma, lungs and BALF, MIP-2 in plasma and lung, and IL-17A in lungs. Conversely, LCR rats had lower levels of IL-10 in plasma and lungs. Although lactate levels, and liver and renal function tests were similar between groups, LCR rats had higher BALF protein and lung wet-dry ratios, and more pronounced acute lung injury histologically. During S. aureus bacteremia, as compared with HCR rats, LCR (MetaS) rats have heightened pro-inflammatory responses, accompanied by increased acute lung injury and vascular leak. Notably, despite an augmented pro-inflammatory phenotype, LCR rats have higher bacterial levels in their blood and lungs. The MetaS state may exacerbate lung injury and vascular leak by attenuating the inflammation-resolving response, and by weakening antimicrobial defenses.


Assuntos
Lesão Pulmonar Aguda/etiologia , Síndrome Metabólica/complicações , Infecções Estafilocócicas/complicações , Lesão Pulmonar Aguda/imunologia , Animais , Líquido da Lavagem Broncoalveolar/imunologia , Líquido da Lavagem Broncoalveolar/microbiologia , Quimiocina CXCL2/análise , Quimiocina CXCL2/sangue , Feminino , Interleucina-10/análise , Interleucina-10/sangue , Interleucina-17/sangue , Interleucina-6/análise , Interleucina-6/sangue , Pulmão/química , Pulmão/imunologia , Síndrome Metabólica/imunologia , Ratos , Ratos Sprague-Dawley , Infecções Estafilocócicas/imunologia
15.
J Immunol ; 189(4): 2017-22, 2012 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-22772444

RESUMO

Hemoglobin is released from lysed RBCs in numerous clinical settings. High mobility group box 1 (HMGB1) is a nuclear and cytosolic DNA-binding protein released from injured cells that has been shown to play an important role in inducing inflammation. Because both of these endogenous molecules are frequently present in sites of necrosis and inflammation, we studied their interaction on the activation of macrophages. We report in this article that hemoglobin and HMGB1 synergize to activate mouse macrophages to release significantly increased proinflammatory cytokines. Addition of microbial ligands that activate through TLR2 or TLR4 resulted in further significant increases, in a "three-way" synergy between endogenous and microbial ligands. The synergy was strongly suppressed by hemopexin (Hx), an endogenous heme-binding plasma protein. The findings suggest that hemoglobin may play an important role in sterile and infectious inflammation, and that endogenous Hx can modulate this response. Administration of Hx may be beneficial in clinical settings characterized by elevated extracellular hemoglobin and HMGB1.


Assuntos
Proteína HMGB1/imunologia , Hemoglobinas/imunologia , Hemopexina/imunologia , Inflamação/imunologia , Ativação de Macrófagos/imunologia , Animais , Citocinas/biossíntese , Proteína HMGB1/metabolismo , Hemoglobinas/metabolismo , Hemopexina/metabolismo , Humanos , Infecções/imunologia , Infecções/metabolismo , Macrófagos/imunologia , Macrófagos/metabolismo , Camundongos , Camundongos Endogâmicos C57BL
16.
Innate Immun ; 18(4): 602-16, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22186927

RESUMO

The vascular endothelium is integrally involved in the host response to infection and in organ failure during acute inflammatory disorders such as sepsis. Gram-negative and Gram-positive bacterial lipoproteins circulate in sepsis and can directly activate the endothelium by binding to endothelial cell (EC) TLR2. In this report, we perform the most comprehensive analysis to date of the immune-related genes regulated after activation of endothelial TLR2 by bacterial di- and triacylated lipopeptides. We found that TLR2 activation specifically induces the expression of the genes IL-6, IL-8, CSF2, CSF3, ICAM1 and SELE by human umbilical vein ECs and human lung microvascular ECs. These proteins participate in neutrophil recruitment, adherence and activation at sites of inflammation. Significantly, our studies demonstrate that TLR2-mediated EC responses are specifically geared towards recruitment, activation, and survival of neutrophils and not mononuclear leukocytes, that ECs do not require priming by other inflammatory stimuli to respond to bacterial lipopeptides and, unlike mononuclear leukocytes, TLR2 agonists do not induce ECs to secrete TNF-α. This study suggests that endothelial TLR2 may be an important regulator of neutrophil trafficking to sites of infection in general, and that direct activation of lung endothelial TLR2 may contribute to acute lung injury during sepsis.


Assuntos
Endotélio Vascular/imunologia , Ativação de Neutrófilo , Neutrófilos/imunologia , Sepse/imunologia , Receptor 2 Toll-Like/metabolismo , Proteínas de Bactérias/farmacologia , Linhagem Celular , Movimento Celular/efeitos dos fármacos , Citocinas/genética , Citocinas/metabolismo , Selectina E/genética , Selectina E/metabolismo , Endotélio Vascular/efeitos dos fármacos , Fator Estimulador de Colônias de Granulócitos/genética , Fator Estimulador de Colônias de Granulócitos/metabolismo , Fator Estimulador de Colônias de Granulócitos e Macrófagos/genética , Fator Estimulador de Colônias de Granulócitos e Macrófagos/metabolismo , Humanos , Molécula 1 de Adesão Intercelular/genética , Molécula 1 de Adesão Intercelular/metabolismo , Lipoproteínas/farmacologia , Ativação de Neutrófilo/efeitos dos fármacos , RNA Interferente Pequeno/genética , Receptor 2 Toll-Like/genética , Receptor 2 Toll-Like/imunologia , Regulação para Cima
17.
J Infect Dis ; 201(2): 223-32, 2010 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-20001600

RESUMO

Vertebrates vary in resistance and resilience to infectious diseases, and the mechanisms that regulate the trade-off between these often opposing protective processes are not well understood. Variability in the sensitivity of species to the induction of damaging inflammation in response to equivalent pathogen loads (resilience) complicates the use of animal models that reflect human disease. We found that induction of proinflammatory cytokines from macrophages in response to inflammatory stimuli in vitro is regulated by proteins in the sera of species in inverse proportion to their in vivo resilience to lethal doses of bacterial lipopolysaccharide over a range of 10,000-fold. This finding suggests that proteins in serum rather than intrinsic cellular differences may play a role in regulating variations in resilience to microbe-associated molecular patterns between species. The involvement of circulating proteins as key molecules raises hope that the process might be manipulated to create better animal models and potentially new drug targets.


Assuntos
Proteínas da Membrana Bacteriana Externa/imunologia , Cardenolídeos/imunologia , Proteínas de Escherichia coli/imunologia , Imunidade Inata/imunologia , Lipoproteínas/imunologia , Macrófagos/imunologia , Peptidoglicano/imunologia , Saponinas/imunologia , Animais , Bacteriemia/imunologia , Células Cultivadas , Modelos Animais de Doenças , Humanos , Ativação de Macrófagos/imunologia , Camundongos , Especificidade da Espécie
18.
Am J Physiol Lung Cell Mol Physiol ; 294(2): L300-8, 2008 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-18055842

RESUMO

Toll-like receptors (TLRs) mediate inflammation in sepsis, but their role in sepsis-induced respiratory failure is unknown. Hypoxic pulmonary vasoconstriction (HPV) is a unique vasoconstrictor response that diverts blood flow away from poorly ventilated lung regions. HPV is impaired in sepsis and after challenge with the TLR4 agonist lipopolysaccharide (LPS). Unlike TLR4 agonists, which are present only in Gram-negative bacteria, TLR2 agonists are ubiquitously expressed in all of the major classes of microorganisms that cause sepsis, including both Gram-positive and Gram-negative bacteria and fungi. We tested the hypothesis that (S)-[2,3-bis(palmitoyloxy)-(2RS)-propyl]-N-palmitoyl-(R)-Cys-(S)-Ser(S)-Lys(4)-OH, trihydrochloride (Pam3Cys), a TLR2 agonist, impairs HPV and compared selected pulmonary and systemic effects of Pam3Cys vs. LPS. HPV was assessed 22 h after challenge with saline, Pam3Cys, or LPS by measuring the increase in the pulmonary vascular resistance of the left lung before and during left lung alveolar hypoxia produced by left mainstem bronchus occlusion (LMBO). Additional endpoints included arterial blood gases during LMBO, hemodynamic parameters, weight loss, temperature, physical appearance, and several markers of lung inflammation. Compared with saline, challenge with Pam3Cys caused profound impairment of HPV, reduced systemic arterial oxygenation during LMBO, weight loss, leukopenia, and lung inflammation. In addition to these effects, LPS-challenged mice had lower rectal temperatures, metabolic acidosis, and were more ill appearing than Pam3Cys-challenged mice. These data indicate that TLR2 activation impairs HPV and induces deleterious systemic effects in mice and suggest that TLR2 pathways may be important in sepsis-induced respiratory failure.


Assuntos
Hipóxia/fisiopatologia , Circulação Pulmonar/fisiologia , Receptor 2 Toll-Like/metabolismo , Vasoconstrição/fisiologia , Animais , Gasometria , Dipeptídeos/farmacologia , Hemodinâmica/efeitos dos fármacos , Leucócitos/citologia , Lipopolissacarídeos/farmacologia , Lipoproteínas/farmacologia , Pulmão/efeitos dos fármacos , Pulmão/enzimologia , Pulmão/metabolismo , Pulmão/fisiopatologia , Camundongos , Camundongos Endogâmicos C57BL , Infiltração de Neutrófilos/efeitos dos fármacos , Óxido Nítrico Sintase Tipo II/genética , Óxido Nítrico Sintase Tipo II/metabolismo , Tamanho do Órgão/efeitos dos fármacos , Oxigênio/metabolismo , Peroxidase/metabolismo , Artéria Pulmonar/efeitos dos fármacos , Artéria Pulmonar/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Fator de Necrose Tumoral alfa/genética , Fator de Necrose Tumoral alfa/metabolismo , Regulação para Cima/efeitos dos fármacos , Redução de Peso/efeitos dos fármacos
19.
J Virol ; 81(15): 8180-91, 2007 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-17507480

RESUMO

Immune activation is a major characteristic of human immunodeficiency virus type 1 (HIV-1) infection and a strong prognostic factor for HIV-1 disease progression. The underlying mechanisms leading to immune activation in viremic HIV-1 infection, however, are not fully understood. Here we show that, following the initiation of highly active antiretroviral therapy, the immediate decline of immune activation is closely associated with the reduction of HIV-1 viremia, which suggests a direct contribution of HIV-1 itself to immune activation. To propose a mechanism, we demonstrate that the single-stranded RNA of HIV-1 encodes multiple uridine-rich Toll-like receptor 7/8 (TLR7/8) ligands that induce strong MyD88-dependent plasmacytoid dendritic cell and monocyte activation, as well as accessory cell-dependent T-cell activation. HIV-1-encoded TLR ligands may, therefore, directly contribute to the immune activation observed during viremic HIV-1 infection. These data provide an initial rationale for inhibiting the TLR pathway to directly reduce the chronic immune activation induced by HIV-1 and the associated immune pathogenesis.


Assuntos
HIV-1/imunologia , Sistema Imunitário/fisiologia , Fator 88 de Diferenciação Mieloide/metabolismo , Receptores Toll-Like/imunologia , Animais , Antígenos CD/imunologia , Terapia Antirretroviral de Alta Atividade , Biomarcadores/metabolismo , Linfócitos T CD8-Positivos/citologia , Linfócitos T CD8-Positivos/imunologia , Células Cultivadas , Infecções por HIV/imunologia , Infecções por HIV/terapia , HIV-1/genética , Humanos , Interleucina-6/imunologia , Ligantes , Macrófagos/citologia , Macrófagos/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fator 88 de Diferenciação Mieloide/genética , Oligonucleotídeos/genética , Oligonucleotídeos/imunologia , RNA Viral/metabolismo , Receptores Toll-Like/genética , Fator de Necrose Tumoral alfa/imunologia , Uridina/metabolismo , Viremia
20.
J Immunol ; 178(2): 1164-71, 2007 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-17202381

RESUMO

TLRs sense components of microorganisms and are critical host mediators of inflammation during infection. Different TLR agonists can profoundly alter inflammatory effects of one another, and studies suggest that the sequence of exposure to TLR agonists may importantly impact on responses during infection. We tested the hypothesis that synergy, priming, and tolerance between TLR agonists follow a pattern that can be predicted based on differential engagement of the MyD88-dependent (D) and the MyD88-independent (I) intracellular signaling pathways. Inflammatory effects of combinations of D and I pathway agonists were quantified in vivo and in vitro. Experiments used several D-specific agonists, an I-specific agonist (poly(I:C)), and LPS, which acts through both the D and I pathways. D-specific agonists included: peptidoglycan-associated lipoprotein, Pam3Cys, flagellin, and CpG DNA, which act through TLR2 (peptidoglycan-associated lipoprotein and Pam3Cys), TLR5, and TLR9, respectively. D and I agonists were markedly synergistic in inducing cytokine production in vivo in mice. All of the D-specific agonists were synergistic with poly(I:C) in vitro in inducing TNF and IL-6 production by mouse bone marrow-derived macrophages. Pretreatment of bone marrow-derived macrophages with poly(I:C) led to a primed response to subsequent D-specific agonists and vice versa, as indicated by increased cytokine production, and increased NF-kappaB translocation. Pretreatment with a D-specific agonist augmented LPS-induced IFN-beta production. All D-specific agonists induced tolerance to one another. Thus, under the conditions studied here, simultaneous and sequential activation of both the D and I pathways causes synergy and priming, respectively, and tolerance is induced by agonists that act through the same pathway.


Assuntos
Tolerância Imunológica/imunologia , Fator 88 de Diferenciação Mieloide/metabolismo , Transdução de Sinais , Receptores Toll-Like/agonistas , Animais , Ativação Enzimática/efeitos dos fármacos , Quinase I-kappa B/metabolismo , Tolerância Imunológica/efeitos dos fármacos , Interferon beta/biossíntese , Interferon beta/farmacologia , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Camundongos , Camundongos Knockout , Fator 88 de Diferenciação Mieloide/deficiência , Fator 88 de Diferenciação Mieloide/genética , NF-kappa B/metabolismo , Transporte Proteico , Receptores Toll-Like/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA