Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Am J Physiol Renal Physiol ; 306(9): F1047-58, 2014 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-24573390

RESUMO

Cystogenesis and tubulogenesis are basic building blocks for many epithelial organs, including the kidney. Most researchers have used two-dimensional (2D) cell culture to investigate signaling pathways downstream of hepatocyte growth factor (HGF). We hypothesize that three-dimensional (3D) collagen-grown Madin-Darby canine kidney (MDCK) cells, which form cysts and then tubulate in response to HGF, are a much more in vivo-like system for the identification of novel tubulogenes. With the use of a canine microarray containing over 20,000 genes, 2,417 genes were identified as potential tubulogenes that were differentially regulated, exclusively in 3D-grown MDCK cells. Among these, 840 were dependent on MAPK signaling. Importantly, this work shows that many putative tubulogenes, previously identified via microarray analysis of 2D cultures, including by us, do not change in 3D culture and vice versa. The use of a 3D-culture system allowed for the identification of novel MAPK-dependent and -independent genes that regulate early renal tubulogenesis in vitro, e.g., matrix metalloproteinase 1 (MMP1). Knockdown of MMP1 led to defects in cystogenesis and tubulogenesis in 3D-grown MDCK cells, most likely due to problems establishing normal polarity. We suggest that data obtained from 2D cultures, even those using MDCK cells treated with HGF, should not be automatically extrapolated to factors important for cystogenesis and tubulogenesis. Instead, 3D culture, which more closely replicates the biological environment and is therefore a more accurate model for identifying tubulogenes, is preferred. Results from the present analysis will be used to build a more accurate model of the signaling pathways that control cystogenesis and tubulogenesis.


Assuntos
Perfilação da Expressão Gênica/métodos , Túbulos Renais/enzimologia , Sistema de Sinalização das MAP Quinases/genética , Proteínas Quinases Ativadas por Mitógeno/genética , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Análise de Sequência com Séries de Oligonucleotídeos , Técnicas de Cultura de Tecidos , Animais , Polaridade Celular , Cães , Regulação da Expressão Gênica no Desenvolvimento , Regulação Enzimológica da Expressão Gênica , Técnicas de Silenciamento de Genes , Redes Reguladoras de Genes , Fator de Crescimento de Hepatócito/metabolismo , Túbulos Renais/crescimento & desenvolvimento , Túbulos Renais/patologia , Células Madin Darby de Rim Canino , Metaloproteinase 1 da Matriz/genética , Metaloproteinase 1 da Matriz/metabolismo , Organogênese , Interferência de RNA , RNA Mensageiro/metabolismo , Reação em Cadeia da Polimerase em Tempo Real , Reprodutibilidade dos Testes
2.
Am J Hum Genet ; 93(4): 672-86, 2013 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-24094744

RESUMO

Primary ciliary dyskinesia (PCD) is caused when defects of motile cilia lead to chronic airway infections, male infertility, and situs abnormalities. Multiple causative PCD mutations account for only 65% of cases, suggesting that many genes essential for cilia function remain to be discovered. By using zebrafish morpholino knockdown of PCD candidate genes as an in vivo screening platform, we identified c21orf59, ccdc65, and c15orf26 as critical for cilia motility. c21orf59 and c15orf26 knockdown in zebrafish and planaria blocked outer dynein arm assembly, and ccdc65 knockdown altered cilia beat pattern. Biochemical analysis in Chlamydomonas revealed that the C21orf59 ortholog FBB18 is a flagellar matrix protein that accumulates specifically when cilia motility is impaired. The Chlamydomonas ida6 mutant identifies CCDC65/FAP250 as an essential component of the nexin-dynein regulatory complex. Analysis of 295 individuals with PCD identified recessive truncating mutations of C21orf59 in four families and CCDC65 in two families. Similar to findings in zebrafish and planaria, mutations in C21orf59 caused loss of both outer and inner dynein arm components. Our results characterize two genes associated with PCD-causing mutations and elucidate two distinct mechanisms critical for motile cilia function: dynein arm assembly for C21orf59 and assembly of the nexin-dynein regulatory complex for CCDC65.


Assuntos
Transtornos da Motilidade Ciliar/genética , Glicoproteínas/genética , Síndrome de Kartagener/genética , Peixe-Zebra/genética , Animais , Chlamydomonas/genética , Cílios/genética , Análise Mutacional de DNA/métodos , Dineínas/genética , Feminino , Humanos , Masculino , Mutação , Fases de Leitura Aberta , Planárias/genética , Proteoma/genética
3.
PLoS One ; 7(7): e39992, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22815719

RESUMO

Organ development leads to the emergence of organ function, which in turn can impact developmental processes. Here we show that fluid flow-induced collective epithelial migration during kidney nephron morphogenesis induces cell stretch that in turn signals epithelial proliferation. Increased cell proliferation was dependent on PI3K signaling. Inhibiting epithelial proliferation by blocking PI3K or CDK4/Cyclin D1 activity arrested cell migration prematurely and caused a marked overstretching of the distal nephron tubule. Computational modeling of the involved cell processes predicted major morphological and kinetic outcomes observed experimentally under a variety of conditions. Overall, our findings suggest that kidney development is a recursive process where emerging organ function "feeds back" to the developmental program to influence fundamental cellular events such as cell migration and proliferation, thus defining final organ morphology.


Assuntos
Células Epiteliais/citologia , Túbulos Renais/citologia , Fenômenos Mecânicos , Morfogênese , Fosfatidilinositol 3-Quinases/metabolismo , Pronefro/embriologia , Peixe-Zebra/embriologia , Animais , Fenômenos Biomecânicos , Movimento Celular , Proliferação de Células , Túbulos Renais/embriologia , Modelos Biológicos , Pronefro/citologia , Transdução de Sinais
4.
Nat Genet ; 44(6): 714-9, 2012 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-22581229

RESUMO

Cilia are essential for fertilization, respiratory clearance, cerebrospinal fluid circulation and establishing laterality. Cilia motility defects cause primary ciliary dyskinesia (PCD, MIM244400), a disorder affecting 1:15,000-30,000 births. Cilia motility requires the assembly of multisubunit dynein arms that drive ciliary bending. Despite progress in understanding the genetic basis of PCD, mutations remain to be identified for several PCD-linked loci. Here we show that the zebrafish cilia paralysis mutant schmalhans (smh(tn222)) encodes the coiled-coil domain containing 103 protein (Ccdc103), a foxj1a-regulated gene product. Screening 146 unrelated PCD families identified individuals in six families with reduced outer dynein arms who carried mutations in CCDC103. Dynein arm assembly in smh mutant zebrafish was rescued by wild-type but not mutant human CCDC103. Chlamydomonas Ccdc103/Pr46b functions as a tightly bound, axoneme-associated protein. These results identify Ccdc103 as a dynein arm attachment factor that causes primary ciliary dyskinesia when mutated.


Assuntos
Dineínas/metabolismo , Síndrome de Kartagener/genética , Animais , Cílios/metabolismo , Feminino , Humanos , Masculino , Mutação , Linhagem , Peixe-Zebra
5.
Proc Natl Acad Sci U S A ; 107(43): 18499-504, 2010 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-20937855

RESUMO

Cilia are essential for normal organ function and developmental patterning, but their role in injury and regeneration responses is unknown. To probe the role of cilia in injury, we analyzed the function of foxj1, a transcriptional regulator of cilia genes, in response to tissue damage and renal cyst formation. Zebrafish foxj1a, but not foxj1b, was rapidly induced in response to epithelial distension and stretch, kidney cyst formation, acute kidney injury by gentamicin, and crush injury in spinal cord cells. Obstruction-induced up-regulation of foxj1a was not inhibited by cycloheximide, identifying foxj1a as a primary response gene to epithelial injury. Foxj1 was also dramatically up-regulated in murine cystic kidney disease epithelia [jck/jck (nek8) and Ift88Tg737Rpw(-/-)] as well as in response to kidney ischemia-reperfusion injury. Obstruction of the zebrafish pronephric tubule caused a rapid increase in cilia beat rate that correlated tightly with expanded tubule diameter and epithelial stretch. Zebrafish foxj1a was specifically required for cilia motility. Enhanced foxj1a expression in obstructed tubules induced cilia motility target genes efhc1, tektin-1, and dnahc9. foxj1a-deficient embryos failed to up-regulate efhc1, tektin-1, and dnahc9 and could not maintain enhanced cilia beat rates after obstruction, identifying an essential role for foxj1 in modulating cilia function after injury. These studies reveal that activation of a Foxj1 transcriptional network of ciliogenic genes is an evolutionarily conserved response to multiple forms of tissue damage and highlight enhanced cilia function as a previously uncharacterized component of organ homeostasis.


Assuntos
Cílios/fisiologia , Fatores de Transcrição Forkhead/fisiologia , Ferimentos e Lesões/fisiopatologia , Proteínas de Peixe-Zebra/fisiologia , Animais , Sequência de Bases , Primers do DNA/genética , Epitélio/lesões , Epitélio/fisiopatologia , Fatores de Transcrição Forkhead/genética , Expressão Gênica , Rim/embriologia , Rim/lesões , Rim/fisiopatologia , Camundongos , Traumatismos da Medula Espinal/genética , Traumatismos da Medula Espinal/fisiopatologia , Estresse Mecânico , Peixe-Zebra/genética , Peixe-Zebra/fisiologia , Proteínas de Peixe-Zebra/genética
6.
Hum Mol Genet ; 18(24): 4711-23, 2009 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-19755384

RESUMO

Nephronophthisis (NPH) is an autosomal recessive disorder characterized by renal fibrosis, tubular basement membrane disruption and corticomedullary cyst formation leading to end-stage renal failure. The disease is caused by mutations in NPHP1-9 genes, which encode the nephrocystins, proteins localized to cell-cell junctions and centrosome/primary cilia. Here, we show that nephrocystin mRNA expression is dramatically increased during cell polarization, and shRNA-mediated knockdown of either NPHP1 or NPHP4 in MDCK cells resulted in delayed tight junction (TJ) formation, abnormal cilia formation and disorganized multi-lumen structures when grown in a three-dimensional collagen matrix. Some of these phenotypes are similar to those reported for cells depleted of the TJ proteins PALS1 or Par3, and interestingly, we demonstrate a physical interaction between these nephrocystins and PALS1 as well as their partners PATJ and Par6 and show their partial co-localization in human renal tubules. Taken together, these results demonstrate that the nephrocystins play an essential role in epithelial cell organization, suggesting a plausible mechanism by which the in vivo histopathologic features of NPH might develop.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Células Epiteliais/fisiologia , Proteínas de Membrana/metabolismo , Morfogênese , Núcleosídeo-Fosfato Quinase/metabolismo , Domínios de Homologia de src , Proteínas Adaptadoras de Transdução de Sinal/genética , Animais , Linhagem Celular , Cães , Células Epiteliais/metabolismo , Humanos , Proteínas de Membrana/genética
7.
J Biol Chem ; 283(7): 4272-82, 2008 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-18039671

RESUMO

A classic model of tubulogenesis utilizes Madin-Darby canine kidney (MDCK) cells. MDCK cells form monoclonal cysts in three-dimensional collagen and tubulate in response to hepatocyte growth factor, which activates multiple signaling pathways, including the mitogen-activated protein kinase (MAPK) pathway. It was shown previously that MAPK activation is necessary and sufficient to induce the first stage of tubulogenesis, the partial epithelial to mesenchymal transition (p-EMT), whereas matrix metalloproteinases (MMPs) are necessary for the second redifferentiation stage. To identify specific MMP genes, their regulators, tissue inhibitors of matrix metalloproteinases (TIMPs), and the molecular pathways by which they are activated, we used two distinct MAPK inhibitors and a technique we have termed subtraction pathway microarray analysis. Of the 19 MMPs and 3 TIMPs present on the Canine Genome 2.0 Array, MMP13 and TIMP1 were up-regulated 198- and 169-fold, respectively, via the MAPK pathway. This was confirmed by two-dimensional and three-dimensional real time PCR, as well as in MDCK cells inducible for the MAPK gene Raf. Knockdown of MMP13 using short hairpin RNA prevented progression past the initial phase of p-EMT. Knockdown of TIMP1 prevented normal cystogenesis, although the initial phase of p-EMT did occasionally occur. The MMP13 knockdown phenotype is likely because of decreased collagenase activity, whereas the TIMP1 knockdown phenotype appears due to increased apoptosis. These data suggest a model, which may also be important for development of other branched organs, whereby the MAPK pathway controls both MDCK p-EMT and redifferentiation, in part by activating MMP13 and TIMP1.


Assuntos
Túbulos Renais/crescimento & desenvolvimento , Sistema de Sinalização das MAP Quinases , Metaloproteinase 13 da Matriz/metabolismo , Inibidor Tecidual de Metaloproteinase-1/metabolismo , Animais , Sequência de Bases , Linhagem Celular , Primers do DNA , Cães , Fator de Crescimento de Hepatócito/fisiologia , Análise de Sequência com Séries de Oligonucleotídeos , Reação em Cadeia da Polimerase
8.
Biochem Biophys Res Commun ; 353(3): 793-8, 2007 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-17196167

RESUMO

A classic in vitro model of branching morphogenesis utilizes the Madin-Darby canine kidney (MDCK) cell line. MDCK Strain II cells form hollow monoclonal cysts in a three-dimensional collagen matrix over the course of 10 days and tubulate in response to hepatocyte growth factor (HGF). We and our colleagues previously showed that activation of the extracellular-signal regulated kinase (ERK, aka MAPK) pathway is necessary and sufficient to induce tubulogenesis in MDCK cells. We also showed in a microarray study that one of the genes upregulated by HGF was the known tubulogene fibronectin. Given that HGF activates a multitude of signaling pathways, including ERK/MAPK, to test the intracellular regulatory pathway, we used two distinct inhibitors of ERK activation (U0126 and PD098059). Following induction of MDCK Type II cells with HGF, tubulogenic fibronectin mRNA was upregulated fourfold by real-time PCR, and minimal or no change in fibronectin expression was seen when HGF was added with either U0126 or PD098059. We confirmed these results using an MDCK cell line inducible for Raf, which is upstream of ERK. Following activation of Raf, fibronectin mRNA and protein expression were increased to a similar degree as was seen following HGF induction. Furthermore, MDCK Strain I cells, which originate from collecting ducts and have constitutively active ERK, spontaneously initiate tubulogenesis. We show here that MDCK Strain I cells have high levels of fibronectin mRNA and protein compared to MDCK Strain II cells. When U0126 and PD098059 were added to MDCK Strain I cells, fibronectin mRNA, and protein levels were decreased to levels seen in MDCK Strain II cells. These data allow us to complete what we believe is the first description of a tubulogenic pathway from receptor/ligand (HGF/CMET), through an intracellular signaling pathway (ERK/MAPK), to transcription and, finally, secretion of a critical tubuloprotein (fibronectin).


Assuntos
Fibronectinas/biossíntese , Túbulos Renais/crescimento & desenvolvimento , Sistema de Sinalização das MAP Quinases/fisiologia , Animais , Butadienos/farmacologia , Linhagem Celular , Cães , Fibronectinas/genética , Flavonoides/farmacologia , Fator de Crescimento de Hepatócito/farmacologia , Nitrilas/farmacologia , Reação em Cadeia da Polimerase , Proteínas Proto-Oncogênicas c-met/fisiologia , Regulação para Cima , Quinases raf/fisiologia
9.
Am J Physiol Renal Physiol ; 289(4): F777-85, 2005 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-15900019

RESUMO

A classic in vitro model of renal cyst and tubule formation utilizes the Madin-Darby canine kidney (MDCK) cell line, of which two strains exist. Most cyst and tubule formation studies that utilized MDCK cells have been performed with MDCK strain II cells. MDCK strain II cells form hollow cysts in a three-dimensional collagen matrix over 10 days and tubulate in response to hepatocyte growth factor, which increases levels of active (phosphorylated) ERK1/2. In this study, we demonstrate that MDCK strain I cells also form cysts when grown in a collagen matrix; however, MDCK strain I cell cysts spontaneously initiate the primary steps in tubulogenesis. Analysis of time-lapse microscopy of both MDCK strain I and strain II cell cysts during the initial stages of tubulogenesis demonstrates a highly dynamic process with cellular extensions and retractions occurring rapidly and continuously. MDCK strain I cell cysts can spontaneously initiate tubulogenesis mainly because of relatively higher levels of active ERK in MDCK strain I, compared with strain II, cells. The presence of either of two distinct inhibitors of ERK activation (UO126 and PD09059) prevents tubulogenesis from occurring spontaneously in MDCK strain I cell cysts and, in response to hepatocyte growth factor, in strain II cell cysts. The difference between MDCK strain I and strain II cell lines is likely explained by differing embryological origins, with strain I cells being of collecting duct, and hence ureteric bud, origin. Ureteric bud cells also have high levels of active ERK and spontaneously tubulate in our in vitro collagen gel system, with tubulogenesis inhibited by UO126 and PD09059. These results suggest that a seminal event in kidney development may be the activation of ERK in the mesonephric duct/ureteric bud cells destined to form the collecting tubules.


Assuntos
MAP Quinases Reguladas por Sinal Extracelular/fisiologia , Túbulos Renais/crescimento & desenvolvimento , Animais , Butadienos/farmacologia , Linhagem Celular , Cistos/patologia , Cães , MAP Quinases Reguladas por Sinal Extracelular/antagonistas & inibidores , Fator de Crescimento de Hepatócito/fisiologia , Túbulos Renais/fisiologia , Nitrilas/farmacologia , Fixação de Tecidos , Ureter/citologia , Ureter/crescimento & desenvolvimento , Ureter/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA