Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Physiol ; 598(22): 5149-5164, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32964469

RESUMO

KEY POINTS: The risk of cardiovascular disease and associated skeletal muscle microvascular rarefaction is enhanced in women after menopause, yet knowledge about the angiogenic potential in ageing women is generally sparse. Aged healthy and sedentary women were found to present a markedly impaired capacity for proliferation of skeletal muscle derived microvascular endothelial cells compared to young women. Vascular endothelial growth factor (VEGF) levels in skeletal muscle myocytes and release of VEGF from myocytes tended to be lower in aged compared to young women. The aged women did not show a detectable increase in skeletal muscle capillarization with 8 weeks of intense aerobic cycle training. Combined, the findings indicate that aged women have a reduced potential for capillary growth in skeletal muscle which, with ageing, may lead to age-induced microvascular rarefaction. ABSTRACT: Skeletal muscle angiogenic potential was examined in cell cultures derived from aged and young women, and the effect of 8 weeks of intense cycle training on muscle capillary growth was determined in the group of aged women. Basal muscle samples were obtained from healthy sedentary aged (n = 12; 64 ± 4.2 years) and young women (n = 5; 24 ± 3.2 years) for endothelial cell and skeletal muscle myocyte isolation and experiments. In addition, the aged women completed an 8-week training intervention. Peak oxygen uptake and muscle samples for histology and protein determination were obtained before and after the training period. Before training, muscle microdialysate was collected from the aged women at rest and during exercise. In Part 1 of the experiments, growth-supplement stimulated proliferation of endothelial cells was ∼75% lower in cells from aged compared to young women (P < 0.001). There was a tendency for a lower vascular endothelial growth factor (VEGF) concentration in muscle conditioned media (P = 0.0696) and for a lower VEGF content in the myocytes (P = 0.0705) from aged compared to young women. Endothelial proliferation was found to be highly dependent on mitochondrial function. Acute exercise resulted in a modest (1.3-fold; P = 0.0073) increase in muscle interstitial VEGF protein in the aged women. In Part 2, 8 weeks of intense training did not change muscle capillarization (P ≥ 0.1502) in the aged women, but led to an increased amount of muscle VEGF (P = 0.0339). In conclusion, aged women have impaired angiogenic potential, which is associated with a compromised response both at the skeletal muscle myocyte and microvascular endothelial cell level.


Assuntos
Células Endoteliais , Fator A de Crescimento do Endotélio Vascular , Idoso , Capilares , Exercício Físico , Feminino , Humanos , Lactente , Pessoa de Meia-Idade , Músculo Esquelético , Neovascularização Fisiológica
2.
J Physiol ; 597(19): 4915-4925, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31077368

RESUMO

As women enter menopause at mid-life, oestrogen production ceases and its many beneficial effects on cardiovascular health are lost whereby the age-related risk of cardiovascular disease is accelerated. Oestrogen acts via oestrogen receptors and can activate the oestrogen response element leading to upregulation of a number of proteins of importance for vascular health, including the vasodilator and anti-atherogenic enzyme endothelial nitric oxide synthase and angiogenic factors. Hormone replacement therapy can to some extent counteract the loss of oestrogen although studies have shown that such treatment may only be effective if initiated soon after menopause, the so-called timing hypothesis. An attractive alternative to hormone therapy is regular physical activity, as it is known that exercise induces many of the same cardiovascular health protective effects as oestrogen. Nevertheless, results from studies on the effect of physical activity on vascular function and cardiovascular health are inconsistent, with some studies showing a lack of effect of a physical activity programme and others showing a beneficial effect. The reason for this divergence is unclear but here we explore whether there may be a timing aspect also for exercise training, the exercise timing hypothesis, in which initiation of exercise interventions soon after menopause may be more effective than initiation many years after. The possibility that oestrogen-related receptor-α and oxidative stress may play a role in such a timing effect is discussed.


Assuntos
Fenômenos Fisiológicos Cardiovasculares/efeitos dos fármacos , Estradiol/farmacologia , Exercício Físico/fisiologia , Pós-Menopausa , Idoso , Envelhecimento/fisiologia , Feminino , Humanos , Pessoa de Meia-Idade , Óxido Nítrico Sintase Tipo III/efeitos dos fármacos
3.
Scand J Med Sci Sports ; 28(11): 2339-2348, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-29802649

RESUMO

Limb muscle dysfunction in patients with COPD may be associated with local muscle and/or systemic inflammation, and therefore we investigated whether exercise training altered markers of inflammation and oxidative stress. We obtained vastus lateralis muscle biopsies and venous blood samples from patients with COPD (n = 30) before and after 8 weeks of resistance training (RT) (n = 15) or endurance training (ET) (n = 15). Healthy age-matched subjects were included as baseline controls (n = 8). Inflammatory markers in muscle and systemically were determined by interleukins (IL), tumour necrosis factor alfa (TNF-α), leukocyte concentration together with immunohistochemical staining for macrophages. Muscle oxidative stress and antioxidant capacity were determined by NADPH oxidase (NOX) and superoxide dismutase 2 (SOD2), respectively. Before exercise training, COPD patients had a higher muscular NOX protein content and circulating IL-8, IL-18, CRP, and leukocyte levels but a similar number of muscle-infiltrating macrophages compared with controls. Eight weeks of ET or RT increased muscle SOD2 content with no difference between groups. Plasma TNF-α, increased (P < .05) after ET and tended to (P = .06) increase after RT, but had no effect on muscular NOX protein content, number of muscle-infiltrating macrophages, or systemic levels of other pro-inflammatory cytokines or leukocytes. In patients with COPD, we found no evidence for muscular inflammation and no effect of exercise training. However, systemic inflammation was elevated in COPD and both training modalities induced an upregulation of muscle antioxidant capacity.


Assuntos
Inflamação/fisiopatologia , Estresse Oxidativo , Resistência Física , Doença Pulmonar Obstrutiva Crônica/fisiopatologia , Músculo Quadríceps/fisiologia , Treinamento Resistido , Idoso , Antioxidantes/metabolismo , Estudos de Casos e Controles , Citocinas/sangue , Citocinas/metabolismo , Teste de Esforço , Tolerância ao Exercício , Feminino , Humanos , Macrófagos/citologia , Masculino , Pessoa de Meia-Idade , NADPH Oxidases/metabolismo , Consumo de Oxigênio , Superóxido Dismutase/metabolismo
4.
Scand J Med Sci Sports ; 28(5): 1552-1558, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-29377406

RESUMO

The mechanisms that regulate bone blood flow (BBF) in humans are largely unknown. Animal studies suggest that nitric oxide (NO) could be involved, and in this study, we investigated the effects of inhibition of nitric oxide synthase (NOS) alone and in combination with inhibition of cyclooxygenase (COX) enzyme, thus prostaglandin (PG) synthesis on femoral bone marrow blood flow by positron emission tomography in healthy young men at rest and during one-leg dynamic exercise. In an additional group of healthy men, the role of adenosine (ADO) in the regulation of BBF during exercise was investigated by use of an adenosine receptor blocker (aminophylline). Inhibitors were directly infused into the femoral artery. Resting BBF was 1.1 ± 0.4 mL 100 g-1 min-1 and increased to almost sixfold in response to exercise (6.3 ± 1.5 mL 100 g-1  min-1 ). Inhibition of NOS reduced BBF at rest to 0.7 ± 0.3 mL 100 g-1  min-1 (P = .036), but did not affect BBF significantly during exercise (5.5 ± 1.4 mL 100 g-1  min-1 , P = .25). On the other hand, while combined NOS and COX inhibition did not cause any further reduction of blood flow at rest (0.6 ± 0.2 mL 100 g-1 min-1 ), the combined blockade reduced BBF during exercise by ~21%, to 5.0 ± 1.8 mL 100 g-1  min-1 (P = .014). Finally, the ADO inhibition during exercise reduced BBF from 5.5 ± 1.9 mL 100 g-1  min-1 to 4.6 ± 1.2 mL 100 g-1  min-1 (P = .045). In conclusion, our results support the view that NO is involved in controlling bone marrow blood flow at rest, and NO, PG, and ADO play important roles in controlling human BBF during exercise.


Assuntos
Adenosina/fisiologia , Osso e Ossos/irrigação sanguínea , Óxido Nítrico/fisiologia , Prostaglandinas/fisiologia , Fluxo Sanguíneo Regional , Adulto , Aminofilina/farmacologia , Inibidores de Ciclo-Oxigenase , Exercício Físico , Humanos , Masculino , Óxido Nítrico Sintase/antagonistas & inibidores , Antagonistas de Receptores Purinérgicos P1 , Descanso , Adulto Jovem
5.
Acta Physiol (Oxf) ; 214(2): 210-20, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25846822

RESUMO

AIM: The aim was to elucidate whether essential hypertension is associated with altered capillary morphology and density and to what extent exercise training can normalize these parameters. METHODS: To investigate angiogenesis and capillary morphology in essential hypertension, muscle biopsies were obtained from m. vastus lateralis in subjects with essential hypertension (n = 10) and normotensive controls (n = 11) before and after 8 weeks of aerobic exercise training. Morphometry was performed after transmission electron microscopy, and protein levels of several angioregulatory factors were determined. RESULTS: At baseline, capillary density and capillary-to-fibre ratio were not different between the two groups. However, the hypertensive subjects had 9% lower capillary area (12.7 ± 0.4 vs. 13.9 ± 0.2 µm(2)) and tended to have thicker capillary basement membranes (399 ± 16 vs. 358 ± 13 nm; P = 0.094) than controls. Protein expression of vascular endothelial growth factor (VEGF), VEGF receptor-2 and thrombospondin-1 were similar in normotensive and hypertensive subjects, but tissue inhibitor of matrix metalloproteinase was 69% lower in the hypertensive group. After training, angiogenesis was evident by 15% increased capillary-to-fibre ratio in the hypertensive subjects only. Capillary area and capillary lumen area were increased by 7 and 15% in the hypertensive patients, whereas capillary basement membrane thickness was decreased by 17% (P < 0.05). VEGF expression after training was increased in both groups, whereas VEGF receptor-2 was decreased by 25% in the hypertensive patients(P < 0.05). CONCLUSION: Essential hypertension is associated with decreased lumen area and a tendency for increased basement membrane thickening in capillaries of skeletal muscle. Exercise training may improve the diffusion conditions in essential hypertension by altering capillary structure and capillary number.


Assuntos
Pressão Sanguínea/fisiologia , Capilares , Hipertensão/metabolismo , Músculo Esquelético/metabolismo , Capilares/ultraestrutura , Hipertensão Essencial , Humanos , Neovascularização Fisiológica/fisiologia , Receptores de Fatores de Crescimento do Endotélio Vascular/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo
6.
Acta Physiol (Oxf) ; 211(4): 574-84, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24920313

RESUMO

AIMS: To determine the role played by adenosine, ATP and chemoreflex activation on the regulation of vascular conductance in chronic hypoxia. METHODS: The vascular conductance response to low and high doses of adenosine and ATP was assessed in ten healthy men. Vasodilators were infused into the femoral artery at sea level and then after 8-12 days of residence at 4559 m above sea level. At sea level, the infusions were carried out while the subjects breathed room air, acute hypoxia (FI O2 = 0.11) and hyperoxia (FI O2 = 1); and at altitude (FI O2 = 0.21 and 1). Skeletal muscle P2Y2 receptor protein expression was determined in muscle biopsies after 4 weeks at 3454 m by Western blot. RESULTS: At altitude, mean arterial blood pressure was 13% higher (91 ± 2 vs. 102 ± 3 mmHg, P < 0.05) than at sea level and was unaltered by hyperoxic breathing. Baseline leg vascular conductance was 25% lower at altitude than at sea level (P < 0.05). At altitude, the high doses of adenosine and ATP reduced mean arterial blood pressure by 9-12%, independently of FI O2 . The change in vascular conductance in response to ATP was lower at altitude than at sea level by 24 and 38%, during the low and high ATP doses respectively (P < 0.05), and by 22% during the infusion with high adenosine doses. Hyperoxic breathing did not modify the response to vasodilators at sea level or at altitude. P2Y2 receptor expression remained unchanged with altitude residence. CONCLUSIONS: Short-term residence at altitude increases arterial blood pressure and reduces the vasodilatory responses to adenosine and ATP.


Assuntos
Pressão Arterial/fisiologia , Hipóxia/fisiopatologia , Músculo Esquelético/fisiopatologia , Vasodilatação/fisiologia , Adenosina/metabolismo , Trifosfato de Adenosina/metabolismo , Adulto , Altitude , Western Blotting , Humanos , Masculino , Músculo Esquelético/metabolismo , Receptores Purinérgicos P2Y2/análise , Receptores Purinérgicos P2Y2/biossíntese , Fluxo Sanguíneo Regional/fisiologia
7.
Eur J Appl Physiol ; 114(10): 2147-55, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-24962002

RESUMO

PURPOSE: ATP could play an important role in skeletal muscle blood flow regulation by inducing vasodilation via purinergic P2 receptors. This study investigated the role of P2 receptors in exercise hyperemia in miniature swine. METHODS: We measured regional blood flow with radiolabeled-microsphere technique and systemic hemodynamics before and after arterial infusion of the P2 receptor antagonist reactive blue 2 during treadmill exercise (5.2 km/h, ~60 % VO2max) and arterial ATP infusion in female Yucatan miniature swine (~29 kg). RESULTS: Mean blood flow during exercise from the 16 sampled skeletal muscle tissues was 138 ± 18 mL/min/100 g (mean ± SEM), and it was reduced in 11 (~25 %) of the 16 sampled skeletal muscles after RB2 was infused. RB2 also lowered diaphragm blood flow and kidney blood flow, whereas lung tissue blood flow was increased (all P < 0.05). Infusion of RB2 increased arterial lactate concentration during exercise from 1.6 ± 0.5 to 3.4 ± 0.6 mmol/L and heart rate from 216 ± 12 to 230 ± 9 beats/min, whereas blood pressure was unaltered. Arterial ATP infusion caused a ~twofold increase in blood flow in 15 of the 16 sampled muscle tissues and this effect was abolished after RB2 infusion. CONCLUSIONS: These results indicate that P2 receptors play a role in regulating skeletal muscle blood flow during exercise in miniature swine.


Assuntos
Hiperemia/metabolismo , Músculo Esquelético/fisiologia , Esforço Físico , Antagonistas do Receptor Purinérgico P2Y/farmacologia , Triazinas/farmacologia , Animais , Feminino , Hiperemia/etiologia , Músculo Esquelético/irrigação sanguínea , Fluxo Sanguíneo Regional/efeitos dos fármacos , Suínos , Porco Miniatura
8.
J Appl Physiol (1985) ; 115(12): 1777-87, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24157526

RESUMO

Peripheral arterial disease (PAD) is caused by atherosclerosis and is associated with microcirculatory impairments in skeletal muscle. The present study evaluated the angiogenic response to exercise and passive movement in skeletal muscle of PAD patients compared with healthy control subjects. Twenty-one PAD patients and 17 aged control subjects were randomly assigned to either a passive movement or an active exercise study. Interstitial fluid microdialysate and tissue samples were obtained from the thigh skeletal muscle. Muscle dialysate vascular endothelial growth factor (VEGF) levels were modestly increased in response to either passive movement or active exercise in both subject groups. The basal muscle dialysate level of the angiostatic factor thrombospondin-1 protein was markedly higher (P < 0.05) in PAD patients compared with the control subjects, whereas soluble VEGF receptor-1 dialysate levels were similar in the two groups. The basal VEGF protein content in the muscle tissue samples was ∼27% lower (P < 0.05) in the PAD patients compared with the control subjects. Analysis of mRNA expression for a range of angiogenic and angiostatic factors revealed a modest change with active exercise and passive movement in both groups, except for an increase (P < 0.05) in the ratio of angiopoietin-2 to angiopoietin-1 mRNA in the PAD group with both interventions. PAD patients and aged individuals showed a similar limited angiogenic response to active exercise and passive movement. The limited increase in muscle extracellular VEGF combined with an elevated basal level of thrombospondin-1 in muscle extracellular fluid of PAD patients may restrict capillary growth in these patients.


Assuntos
Exercício Físico/fisiologia , Neovascularização Fisiológica/fisiologia , Doença Arterial Periférica/fisiopatologia , Idoso , Angiopoietina-2/genética , Angiopoietina-2/metabolismo , Estudos de Casos e Controles , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Músculo Esquelético/metabolismo , Músculo Esquelético/fisiologia , Doença Arterial Periférica/genética , Doença Arterial Periférica/metabolismo , Doença Arterial Periférica/terapia , RNA Mensageiro/genética , Trombospondina 1/genética , Trombospondina 1/metabolismo , Fator A de Crescimento do Endotélio Vascular/genética , Fator A de Crescimento do Endotélio Vascular/metabolismo , Receptor 1 de Fatores de Crescimento do Endotélio Vascular/genética , Receptor 1 de Fatores de Crescimento do Endotélio Vascular/metabolismo
9.
Exp Physiol ; 98(2): 585-97, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22962287

RESUMO

The effect of acute intense intermittent exercise compared with moderate-intensity exercise on angiogenic factors and the effect of 4 weeks of intense intermittent training on capillary growth were examined in nine healthy young men, preconditioned by moderate-intensity endurance training. The intense training consisted of 24 bouts of 1 min cycling at an initial work rate of 316 ± 19 W (~117% of pretraining maximal oxygen uptake), performed three times per week. Skeletal muscle biopsies and muscle microdialysates were obtained from the vastus lateralis before, during and after acute exercise performed at either moderate or high intensity. Comparison of the response in angiogenic factors to acute moderate- versus high-intensity exercise, performed prior to the intense training intervention, revealed that intense exercise resulted in a markedly lower (~60%; P < 0.05) increase in interstitial vascular endothelial growth factor than did moderate-intensity exercise. Muscle interstitial fluid obtained during moderate-intensity exercise increased endothelial cell proliferation in vitro more than interstitial fluid obtained during intense exercise (sixfold versus 2.5-fold, respectively; P < 0.05). The 4 weeks of high-intensity training did not lead to an increased capillarization in the muscle but abolished the exercise-induced increase in mRNA for several angiogenic factors, increased the protein levels of endothelial nitric oxide synthase, lowered the protein levels of thrombospondin-1 in muscle but increased the interstitial protein levels of thrombospondin-1. We conclude that intense intermittent exercise provides a weak stimulus for vascular endothelial growth factor secretion and endothelial cell proliferation and that intense intermittent training does not induce a sufficient angiogenic stimulus to induce capillary growth in muscle previously conditioned by moderate-intensity exercise.


Assuntos
Capilares/metabolismo , Exercício Físico , Contração Muscular , Neovascularização Fisiológica , Músculo Quadríceps/irrigação sanguínea , Músculo Quadríceps/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo , Adulto , Análise de Variância , Ciclismo , Biópsia , Proliferação de Células , Dinamarca , Células Endoteliais/metabolismo , Humanos , Masculino , Microdiálise , Óxido Nítrico Sintase Tipo III/metabolismo , Consumo de Oxigênio , RNA Mensageiro/metabolismo , Transdução de Sinais , Trombospondina 1/metabolismo , Fatores de Tempo , Fator A de Crescimento do Endotélio Vascular/genética , Receptor 1 de Fatores de Crescimento do Endotélio Vascular/metabolismo
10.
J Physiol ; 590(24): 6297-305, 2012 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-22988140

RESUMO

During exercise, oxygen delivery to skeletal muscle is elevated to meet the increased oxygen demand. The increase in blood flow to skeletal muscle is achieved by vasodilators formed locally in the muscle tissue, either on the intraluminal or on the extraluminal side of the blood vessels. A number of vasodilators have been shown to bring about this increase in blood flow and, importantly, interactions between these compounds seem to be essential for the precise regulation of blood flow. Two compounds stand out as central in these vasodilator interactions: nitric oxide (NO) and prostacyclin. These two vasodilators are both stimulated by several compounds, e.g. adenosine, ATP, acetylcholine and bradykinin, and are affected by mechanically induced signals, such as shear stress. NO and prostacyclin have also been shown to interact in a redundant manner where one system can take over when formation of the other is compromised. Although numerous studies have examined the role of single and multiple pharmacological inhibition of different vasodilator systems, and important vasodilators and interactions have been identified, a large part of the exercise hyperaemic response remains unexplained. It is plausible that this remaining hyperaemia may be explained by cAMP- and cGMP-independent smooth muscle relaxation, such as effects of endothelial derived hyperpolarization factors (EDHFs) or through metabolic modulation of sympathetic effects. The nature and role of EDHF as well as potential novel mechanisms in muscle blood flow regulation remain to be further explored to fully elucidate the regulation of exercise hyperaemia.


Assuntos
Exercício Físico , Contração Muscular , Músculo Esquelético/irrigação sanguínea , Vasodilatação , Adenosina/metabolismo , Trifosfato de Adenosina/metabolismo , Animais , Fatores Biológicos/metabolismo , AMP Cíclico/metabolismo , GMP Cíclico/metabolismo , Endotélio Vascular/metabolismo , Endotélio Vascular/fisiopatologia , Epoprostenol/metabolismo , Homeostase , Humanos , Hiperemia/metabolismo , Hiperemia/fisiopatologia , Músculo Esquelético/metabolismo , Músculo Liso Vascular/metabolismo , Músculo Liso Vascular/fisiopatologia , Óxido Nítrico/metabolismo , Consumo de Oxigênio , Fluxo Sanguíneo Regional , Transdução de Sinais
11.
J Physiol ; 590(20): 5015-23, 2012 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-22733661

RESUMO

The regulation of blood flow to skeletal muscle involves a complex interaction between several locally formed vasodilators that are produced both in the skeletal muscle interstitium and intravascularly. The gas nitric oxide (NO) and the purines ATP and adenosine, are potent vasodilators that are formed by multiple cell types and released into the skeletal muscle interstitium and in plasma in response to muscle contraction. Cellular sources of ATP and NO in plasma are erythrocytes and endothelial cells, whereas interstitial sources are skeletal muscle cells and endothelial cells. Adenosine originates primarily from extracellular degradation of ATP. During exercise the concentrations of ATP and adenosine increase markedly in the interstitium with smaller increases occurring in plasma, and thus the interstitial concentration during exercise is severalfold higher than in plasma. The concentration of NO metabolites (NOx) in interstitium and plasma does not change during exercise and is similar in the two compartments. Adenosine and NO have been shown to contribute to exercise hyperaemia whereas the role of ATP remains unclear due to lack of specific purinergic receptor blockers. The relative role of intravascular versus interstitial vasodilators is not known but evidence suggests that both compartments are important. In cardiovascular disease, a reduced capacity to form adenosine in the muscle interstitium may be a contributing factor in increased peripheral vascular resistance.


Assuntos
Trifosfato de Adenosina/fisiologia , Adenosina/fisiologia , Exercício Físico/fisiologia , Hiperemia/fisiopatologia , Óxido Nítrico/fisiologia , Humanos , Hipertensão/fisiopatologia , Músculo Esquelético/irrigação sanguínea , Músculo Esquelético/fisiologia
12.
Am J Physiol Heart Circ Physiol ; 302(10): H2074-82, 2012 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-22408019

RESUMO

During exercise, contracting muscles can override sympathetic vasoconstrictor activity (functional sympatholysis). ATP and adenosine have been proposed to play a role in skeletal muscle blood flow regulation. However, little is known about the role of muscle training status on functional sympatholysis and ATP- and adenosine-induced vasodilation. Eight male subjects (22 ± 2 yr, Vo(2max): 49 ± 2 ml O(2)·min(-1)·kg(-1)) were studied before and after 5 wk of one-legged knee-extensor training (3-4 times/wk) and 2 wk of immobilization of the other leg. Leg hemodynamics were measured at rest, during exercise (24 ± 4 watts), and during arterial ATP (0.94 ± 0.03 µmol/min) and adenosine (5.61 ± 0.03 µmol/min) infusion with and without coinfusion of tyramine (11.11 µmol/min). During exercise, leg blood flow (LBF) was lower in the trained leg (2.5 ± 0.1 l/min) compared with the control leg (2.6 ± 0.2 l/min; P < 0.05), and it was higher in the immobilized leg (2.9 ± 0.2 l/min; P < 0.05). Tyramine infusion lowers LBF similarly at rest, but, when tyramine was infused during exercise, LBF was blunted in the immobilized leg (2.5 ± 0.2 l/min; P < 0.05), whereas it was unchanged in the control and trained leg. Mean arterial pressure was lower during exercise with the trained leg compared with the immobilized leg (P < 0.05), and leg vascular conductance was similar. During ATP infusion, the LBF response was higher after immobilization (3.9 ± 0.3 and 4.5 ± 0.6 l/min in the control and immobilized leg, respectively; P < 0.05), whereas it did not change after training. When tyramine was coinfused with ATP, LBF was reduced in the immobilized leg (P < 0.05) but remained similar in the control and trained leg. Training increased skeletal muscle P2Y2 receptor content (P < 0.05), whereas it did not change with immobilization. These results suggest that muscle inactivity impairs functional sympatholysis and that the magnitude of hyperemia and blood pressure response to exercise is dependent on the training status of the muscle. Immobilization also increases the vasodilatory response to infused ATP.


Assuntos
Trifosfato de Adenosina/farmacologia , Exercício Físico/fisiologia , Hiperemia/fisiopatologia , Músculo Esquelético/fisiopatologia , Restrição Física/fisiologia , Sistema Nervoso Simpático/fisiologia , Vasoconstrição/fisiologia , Vasodilatação/efeitos dos fármacos , Adenosina/administração & dosagem , Adenosina/farmacologia , Trifosfato de Adenosina/administração & dosagem , Humanos , Infusões Intra-Arteriais , Perna (Membro)/irrigação sanguínea , Masculino , Músculo Esquelético/metabolismo , Receptores Purinérgicos P2Y2/metabolismo , Fluxo Sanguíneo Regional/efeitos dos fármacos , Simpatomiméticos/administração & dosagem , Simpatomiméticos/farmacologia , Tiramina/administração & dosagem , Tiramina/farmacologia , Vasoconstrição/efeitos dos fármacos , Vasodilatação/fisiologia , Adulto Jovem
13.
J Physiol ; 590(3): 595-606, 2012 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-22155930

RESUMO

This study examined the effect of acute exercise and 4 weeks of aerobic training on skeletal muscle gene and protein expression of pro- and anti-angiogenic factors in 14 young male subjects. Training consisted of 60 min of cycling (∼60% of ), 3 times/week. Biopsies were obtained from vastus lateralis muscle before and after training. Muscle interstitial fluid was collected during cycling at weeks 0 and 4. Training increased (P < 0.05) the capillary: fibre ratio and capillary density by 23% and 12%, respectively. The concentration of interstitial vascular endothelial growth factor (VEGF) in response to acute exercise increased similarly (>6-fold; P < 0.05) before and after training. Resting protein levels of soluble VEGF receptor-1 in interstitial fluid, and of VEGF, thrombospondin-1 (TSP-1) and tissue inhibitor of matrix metalloproteinase-1 (TIMP1) in muscle were unaffected by training, whereas endothelial nitric oxide synthase protein levels in muscle increased by 50% (P < 0.05). Before and after training, acute exercise induced a similar increase (P < 0.05) in the mRNA level of angiopoietin 2, matrix metalloproteinase 9 and TSP-1. After training, TIMP1 mRNA content increased with exercise (P < 0.05). In conclusion, acute exercise induced a similar increase in the gene-expression of both pro- and anti-angiogenic factors in untrained and trained muscle. We propose that the increase in anti-angiogenic factors with exercise is important for modulation of angiogenesis. The lack of effect of training on basal muscle VEGF protein levels and VEGF secretion during exercise suggests that increased VEGF levels are not a prerequisite for exercise-induced capillary growth in healthy muscle.


Assuntos
Exercício Físico/fisiologia , Músculo Esquelético/fisiologia , Neovascularização Fisiológica/fisiologia , Adulto , Indutores da Angiogênese/metabolismo , Inibidores da Angiogênese/metabolismo , Angiopoietina-1/genética , Angiopoietina-2/genética , Proliferação de Células , Células Endoteliais da Veia Umbilical Humana/citologia , Humanos , Masculino , Metaloproteinase 9 da Matriz/genética , RNA Mensageiro/metabolismo , Receptor TIE-2/genética , Receptores de Fatores de Crescimento do Endotélio Vascular/metabolismo , Trombospondina 1/genética , Trombospondina 1/metabolismo , Inibidor Tecidual de Metaloproteinase-1/genética , Inibidor Tecidual de Metaloproteinase-1/metabolismo , Fator A de Crescimento do Endotélio Vascular/genética , Fator A de Crescimento do Endotélio Vascular/metabolismo , Adulto Jovem
14.
Acta Physiol (Oxf) ; 198(4): 487-98, 2010 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-19895607

RESUMO

AIM: To investigate if exercise intensity and Ca(2+) signalling regulate Na(+),K(+) pump mRNA expression in skeletal muscle. METHODS: The importance of exercise intensity was evaluated by having trained and untrained humans perform intense intermittent and prolonged exercise. The importance of Ca(2+) signalling was investigated by electrical stimulation of rat soleus and extensor digitorum longus (EDL) muscles in combination with studies of cell cultures. RESULTS: Intermittent cycling exercise at approximately 85% of VO(2peak) increased (P < 0.05) alpha1 and beta1 mRNA expression approximately 2-fold in untrained and trained subjects. In trained subjects, intermittent exercise at approximately 70% of VO(2peak) resulted in a less (P < 0.05) pronounced increase ( approximately 1.4-fold; P < 0.05) for alpha1 and no change in beta1 mRNA. Prolonged low intensity exercise increased (P < 0.05) mRNA expression of alpha1 approximately 3.0-fold and alpha2 approximately 1.8-fold in untrained but not in trained subjects. Electrical stimulation of rat soleus, but not EDL, muscle increased (P < 0.05) alpha1 mRNA expression, but not when combined with KN62 and cyclosporin A incubation. Ionomycin incubation of cultured primary rat skeletal muscle cells increased (P < 0.05) alpha1 and reduced (P < 0.001) alpha2 mRNA expression and these responses were abolished (P < 0.05) by co-incubation with cyclosporin A or KN62. CONCLUSION: (1) Exercise-induced increases in Na(+),K(+) pump alpha1 and beta1 mRNA expression in trained subjects are more pronounced after high- than after moderate- and low-intensity exercise. (2) Both prolonged low and short-duration high-intensity exercise increase alpha1 mRNA expression in untrained subjects. (3) Ca(2+)(i) regulates alpha1 mRNA expression in oxidative muscles via Ca(2+)/calmodulin-dependent protein kinase (CaMK) and calcineurin signalling pathways.


Assuntos
Exercício Físico/fisiologia , Contração Muscular/fisiologia , Músculo Esquelético/fisiologia , RNA Mensageiro/metabolismo , Transdução de Sinais/fisiologia , ATPase Trocadora de Sódio-Potássio/fisiologia , Adulto , Animais , Regulação Enzimológica da Expressão Gênica , Humanos , Resistência Física , Ratos , Ratos Wistar , ATPase Trocadora de Sódio-Potássio/genética , ATPase Trocadora de Sódio-Potássio/metabolismo
15.
Am J Physiol Cell Physiol ; 296(1): C215-20, 2009 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-19020053

RESUMO

The aim of the present study was to investigate the activation of estrogen response elements (EREs) by estrogen and muscle contractions in rat myotubes in culture and to assess whether the activation is dependent on the estrogen receptors (ERs). In addition, the effect of estrogen and contraction on the mRNA levels of ERalpha and ERbeta was studied to determine the functional consequence of the transactivation. Myoblasts were isolated from rat skeletal muscle and transfected with a vector consisting of sequences of EREs coupled to the gene for luciferase. The transfected myoblasts were then differentiated into myotubes and subjected to either estrogen or electrical stimulation. Activation of the ERE sequence was determined by measurement of luciferase activity. The results show that both ERalpha and ERbeta are expressed in myotubes from rats. Both estrogen stimulation and muscle contraction increased (P < 0.05) transactivation of the ERE sequence and enhanced ERbeta mRNA, whereas ERalpha was unaffected by estrogen and attenuated (P < 0.05) by muscle contraction. Use of ER antagonists showed that, whereas the estrogen-induced transactivation is mediated via ERs, the effect of muscle contraction is ER independent. The muscle contraction-induced transactivation of ERE and increase in ERbeta mRNA were instead found to be MAP kinase (MAPK) dependent. This study demonstrates for the first time that muscle contractions have a similar functional effect as estrogen in skeletal muscle myotubes, causing ERE activation and an enhancement in ERbeta mRNA. However, in contrast to estrogen, the effect is independent of ERs and dependent on MAPK, suggesting activation via the estrogen related receptor (ERR).


Assuntos
Receptor beta de Estrogênio/metabolismo , Estrogênios/metabolismo , Contração Muscular , Fibras Musculares Esqueléticas/metabolismo , Elementos de Resposta , Ativação Transcricional , Animais , Células Cultivadas , Estimulação Elétrica , Antagonistas de Estrogênios/farmacologia , Receptor alfa de Estrogênio/metabolismo , Receptor beta de Estrogênio/antagonistas & inibidores , Receptor beta de Estrogênio/genética , Genes Reporter , Masculino , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Fibras Musculares Esqueléticas/efeitos dos fármacos , RNA Mensageiro/metabolismo , Ratos , Ratos Wistar , Ativação Transcricional/efeitos dos fármacos , Transfecção
16.
Angiogenesis ; 7(3): 255-67, 2004.
Artigo em Inglês | MEDLINE | ID: mdl-15609080

RESUMO

The role of muscle contraction, prostanoids, nitric oxide and adenosine in the regulation of vascular endothelial growth factor (VEGF), basic fibroblast growth factor (bFGF) and endothelial cell proliferative compounds in skeletal muscle cell cultures was examined. VEGF and bFGF mRNA, protein release as well as the proliferative effect of extracellular medium was determined in non-stimulated and electro-stimulated rat and human skeletal muscle cells. In rat skeletal muscle cells these aspects were also determined after treatment with inhibitors and/or donors of nitric oxide (NO), prostanoids and adenosine. Electro-stimulation caused an elevation in the VEGF and bFGF mRNA levels of rat muscle cells by 33% and 43% (P < 0.05), respectively, and in human muscle cells VEGF mRNA was elevated by 24%. Medium from electro-stimulated human, but not rat muscle cells induced a 126% higher (P < 0.05) endothelial cell proliferation than medium from non-stimulated cells. Cyclooxygenase inhibition of rat muscle cells induced a 172% increase (P < 0.05) in VEGF mRNA and a 104% increase in the basal VEGF release. Treatment with the NO donor SNAP (0.5 microM) decreased (P < 0.05) VEGF and bFGF mRNA by 42 and 38%, respectively. Medium from SNAP treated muscle cells induced a 45% lower (P < 0.05) proliferation of endothelial cells than control medium. Adenosine enhanced the basal VEGF release from muscle cells by 75% compared to control. The present data demonstrate that contractile activity, NO, adenosine and products of cyclooxygenase regulate the expression of VEGF and bFGF mRNA in skeletal muscle cells and that contractile activity and NO regulate endothelial cell proliferative compounds in muscle extracellular fluid.


Assuntos
Difosfato de Adenosina/análogos & derivados , Adenosina/fisiologia , Fator 2 de Crescimento de Fibroblastos/metabolismo , Contração Muscular/fisiologia , Músculo Esquelético/metabolismo , Óxido Nítrico/fisiologia , Penicilamina/análogos & derivados , Prostaglandinas/fisiologia , Fator A de Crescimento do Endotélio Vascular/metabolismo , Adenosina/farmacologia , Difosfato de Adenosina/farmacologia , Animais , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Estimulação Elétrica , Endotélio Vascular/efeitos dos fármacos , Fator 2 de Crescimento de Fibroblastos/genética , Regulação da Expressão Gênica/efeitos dos fármacos , Regulação da Expressão Gênica/fisiologia , Humanos , Indometacina/farmacologia , Masculino , Células Musculares/química , Células Musculares/metabolismo , Músculo Esquelético/química , Músculo Esquelético/enzimologia , Óxido Nítrico/farmacologia , Nitroarginina/farmacologia , Penicilamina/farmacologia , Prostaglandina-Endoperóxido Sintases/efeitos dos fármacos , Prostaglandina-Endoperóxido Sintases/metabolismo , Prostaglandinas/farmacologia , RNA Mensageiro/análise , RNA Mensageiro/metabolismo , Ratos , Fator A de Crescimento do Endotélio Vascular/genética
17.
J Physiol ; 557(Pt 2): 571-82, 2004 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-15020701

RESUMO

The effect of intense training on endothelial proliferation, capillary growth and distribution of vascular endothelial growth factor (VEGF) and basic fibroblast growth factor (bFGF) was examined in human skeletal muscle. Two intermittent knee extensor training protocols (at approximately 150% (Study 1) versus approximately 90% (Study 2) of leg (O(2) max)) were conducted. Muscle biopsies were obtained throughout the training periods for immunohistochemical assessment of capillarization, cell proliferation (Ki-67-positive cells), VEGF and bFGF. In Study 1, microdialysis samples were collected from the trained and untrained leg at rest and during exercise and added to endothelial cells to measure the proliferative effect. After 4 weeks of training there was a higher (P < 0.05) capillary-to-fibre ratio (Study 1: 2.4 +/- 0.1 versus 1.7 +/- 0.1) and number of Ki-67-positive cells (Study 1: 0.18 +/- 0.05 versus 0.00 +/- 0.01) than before training. Neither the location of proliferating endothelial cells nor capillarization was related to muscle fibre type. The endothelial cell proliferative effect of the muscle microdialysate increased from rest to exercise in both the untrained leg (from 262 +/- 60 to 573 +/- 87% of control perfusate) and the trained leg (from 303 +/- 75 to 415 +/- 108% of perfusate). VEGF and bFGF were localized in endothelial and skeletal muscle cells and training induced no changes in distribution. The results demonstrate that intense intermittent endurance training induces capillary growth and a transient proliferation of endothelial cells within 4 weeks, with a similar growth occurring around type I versus type II muscle fibres.


Assuntos
Capilares/fisiologia , Células Endoteliais/fisiologia , Exercício Físico/fisiologia , Fator 2 de Crescimento de Fibroblastos/análise , Músculo Esquelético/irrigação sanguínea , Músculo Esquelético/fisiologia , Fator A de Crescimento do Endotélio Vascular/análise , Adulto , Indutores da Angiogênese , Biópsia , Proliferação de Células , Humanos , Imuno-Histoquímica , Antígeno Ki-67/análise , Masculino , Músculo Esquelético/química
18.
Am J Physiol Regul Integr Comp Physiol ; 286(1): R182-8, 2004 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-14660478

RESUMO

The effect of oral ribose supplementation on the resynthesis of adenine nucleotides and performance after 1 wk of intense intermittent exercise was examined. Eight subjects performed a random double-blind crossover design. The subjects performed cycle training consisting of 15 x 10 s of all-out sprinting twice per day for 7 days. After training the subjects received either ribose (200 mg/kg body wt; Rib) or placebo (Pla) three times per day for 3 days. An exercise test was performed at 72 h after the last training session. Immediately after the last training session, muscle ATP was lowered (P < 0.05) by 25 +/- 2 and 22 +/- 3% in Pla and Rib, respectively. In both Pla and Rib, muscle ATP levels at 5 and 24 h after the exercise were still lower (P < 0.05) than pretraining. After 72 h, muscle ATP was similar (P > 0.05) to pretraining in Rib (24.6 +/- 0.6 vs. 26.2 +/- 0.2 mmol/kg dry wt) but still lower (P < 0.05) in Pla (21.1 +/- 0.5 vs. 26.0 +/- 0.2 mmol/kg dry wt) and higher (P < 0.05) in Rib than in Pla. Plasma hypoxanthine levels after the test performed at 72 h were higher (P < 0.05) in Rib compared with Pla. Mean and peak power outputs during the test performed at 72 h were similar (P > 0.05) in Pla and Rib. The results support the hypothesis that the availability of ribose in the muscle is a limiting factor for the rate of resynthesis of ATP. Furthermore, the reduction in muscle ATP observed after intense training does not appear to be limiting for high-intensity exercise performance.


Assuntos
Nucleotídeos de Adenina/biossíntese , Suplementos Nutricionais , Educação Física e Treinamento , Resistência Física/fisiologia , Ribose/farmacologia , Trifosfato de Adenosina/metabolismo , Adulto , Ciclismo , Glicemia/análise , Catecolaminas/sangue , Estudos Cross-Over , Método Duplo-Cego , Glicogênio/metabolismo , Humanos , Hipoxantina/sangue , Inosina Monofosfato/metabolismo , Insulina/sangue , Ácido Láctico/metabolismo , Masculino , Músculo Esquelético/metabolismo , Fosfocreatina/metabolismo , Ácido Úrico/sangue
19.
J Physiol ; 542(Pt 3): 977-83, 2002 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-12154194

RESUMO

Bradykinin is known to cause vasodilatation in resistance vessels and may, together with adenosine, be an important regulator of tissue blood flow during exercise. Whether tissue concentrations of bradykinin change with exercise in skeletal muscle and tendon-related connective tissue has not yet been established. Microdialysis (molecular mass cut-off 5 kDa) was performed simultaneously in calf muscle and peritendinous Achilles tissue at rest and during 10 min periods of incremental (0.75 W, 2 W, 3.5 W and 4.75 W) dynamic plantar flexion exercise in 10 healthy individuals (mean age 27 years, range 22-33 years). Interstitial bradykinin and adenosine concentrations were determined using an internal reference to determine relative recovery ([2,3,prolyl-3,4-(3)H(N)]-bradykinin and [2-(3)H]-adenosine). Bradykinin and adenosine recovery were closely related and in the range of 30-50 %. The interstitial concentration of bradykinin rose in response to exercise both in skeletal muscle (from 23.1 +/- 4.9 nmol l(-1) to 110.5 +/- 37.9 nmol l(-1); P < 0.05) and in the peritendinous tissue (from 27.7 +/- 7.8 nmol l(-1) to 105.0 +/- 37.9 nmol l(-1); P < 0.05). In parallel, the adenosine concentration increased both in muscle (from 0.48 +/- 0.07 micromol l(-1) to 1.59 +/- 0.35 micromol l(-1); P < 0.05) and around the tendon (from 0.33 +/- 0.03 micromol l(-1) to 0.86 +/- 0.16 micromol l(-1); P < 0.05). In conclusion, the data show that muscular activity increases the interstitial concentrations of bradykinin and adenosine in both skeletal muscle and the connective tissue around its adjacent tendon. These findings support a role for bradykinin and adenosine in exercise-induced hyperaemia in skeletal muscle and suggest that bradykinin and adenosine are potential regulators of blood flow in peritendinous tissue.


Assuntos
Adenosina/metabolismo , Bradicinina/metabolismo , Tecido Conjuntivo/metabolismo , Exercício Físico/fisiologia , Espaço Extracelular/metabolismo , Músculo Esquelético/metabolismo , Tendão do Calcâneo , Adulto , Feminino , Humanos , Masculino , Concentração Osmolar
20.
Free Radic Biol Med ; 31(11): 1313-22, 2001 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-11728802

RESUMO

Seven males performed two exhaustive cycling bouts (EX1 and EX2) at a work-rate of 90% of maximal oxygen uptake, separated by 60 min. During EX1 there was a significant accumulation of urate (from 0.16 +/- 0.02 to 0.27 +/- 0.03 micromol/kg d.w.) and allantoin (from 0.39 +/- 0.05 to 0.69 +/- 0.14 micromol/kg d.w.) in the muscle. An uptake of urate was observed in early recovery from EX1 (0-9 min: 486 +/- 136 micromol; p <.05). There was no exchange of total glutathione or cysteine over the muscle either during or after exercise, and muscle and plasma total glutathione remained unaltered (p <.05). The glycogen levels were lowered by 40% at the onset of EX2, yet the level of oxidative stress in EX1 and EX2 was similar as evidenced by a similar increase in muscle allantoin in both exercise bouts. The data suggest that urate is utilized as antioxidant in human skeletal muscle and that reactive oxygen species are formed in muscle during intense submaximal exercise. No net exchange of glutathione appears to occur over the muscle either at rest, during exercise or in recovery. Moreover, when an exhaustive exercise bout is repeated with lowered glycogen levels, the level of oxidative stress is not different than that of the first bout.


Assuntos
Alantoína/metabolismo , Exercício Físico/fisiologia , Glutationa/metabolismo , Músculo Esquelético/metabolismo , Ácido Úrico/metabolismo , Trifosfato de Adenosina/metabolismo , Adulto , Biópsia , Velocidade do Fluxo Sanguíneo , Cisteína/sangue , Epinefrina/sangue , Glutationa/sangue , Humanos , Hipoxantina/sangue , Hipoxantina/metabolismo , Inosina Monofosfato/metabolismo , Perna (Membro)/irrigação sanguínea , Masculino , Norepinefrina/sangue , Consumo de Oxigênio , Troca Gasosa Pulmonar , Ácido Úrico/sangue
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA