Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 56
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Nucleic Acids Res ; 52(10): 5841-5851, 2024 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-38716877

RESUMO

Therapeutic fluoropyrimidines 5-fluorouracil (5-FU) and 5-fluorocytosine (5-FC) are in long use for treatment of human cancers and severe invasive fungal infections, respectively. 5-Fluorouridine triphosphate represents a bioactive metabolite of both drugs and is incorporated into target cells' RNA. Here we use the model fungus Saccharomyces cerevisiae to define fluorinated tRNA as a key mediator of 5-FU and 5-FC cytotoxicity when specific tRNA methylations are absent. tRNA methylation deficiency caused by loss of Trm4 and Trm8 was previously shown to trigger an RNA quality control mechanism resulting in partial destabilization of hypomodified tRNAValAAC. We demonstrate that, following incorporation into tRNA, fluoropyrimidines strongly enhance degradation of yeast tRNAValAAC lacking Trm4 and Trm8 dependent methylations. At elevated temperature, such effect occurs already in absence of Trm8 alone. Genetic approaches and quantification of tRNA modification levels reveal that enhanced fluoropyrimidine cytotoxicity results from additional, drug induced uridine modification loss and activation of tRNAValAAC decay involving the exonuclease Xrn1. These results suggest that inhibition of tRNA methylation may be exploited to boost therapeutic efficiency of 5-FU and 5-FC.


Assuntos
Flucitosina , Fluoruracila , RNA de Transferência , Saccharomyces cerevisiae , Exorribonucleases/metabolismo , Exorribonucleases/genética , Flucitosina/farmacologia , Fluoruracila/farmacologia , Metilação , Estabilidade de RNA/efeitos dos fármacos , RNA de Transferência/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/efeitos dos fármacos , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , tRNA Metiltransferases/metabolismo , tRNA Metiltransferases/genética , Uridina/metabolismo
2.
ChemMedChem ; 19(13): e202400115, 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38630955

RESUMO

The continuous deciphering of crucial biological roles of RNA modifications and their involvement in various pathological conditions, together with their key roles in the use of RNA-based therapeutics, has reignited interest in studying the occurrence and identity of non-canonical ribonucleoside structures during the past years. Discovery and structural elucidation of new modified structures is usually achieved by combination of liquid chromatography coupled to tandem mass spectrometry (LC-MS/MS) at the nucleoside level and stable isotope labeling experiments. This approach, however, has its pitfalls as demonstrated in the course of the present study: we structurally elucidated a new nucleoside structure that showed significant similarities to the family of (c)t6A modifications and was initially considered a genuine modification, but subsequently turned out to be an in vitro formed glycerol ester of t6A. This artifact is generated from ct6A during RNA hydrolysis upon addition of enzymes stored in glycerol containing buffers in a mildly alkaline milieu, and was moreover shown to undergo an intramolecular transesterification reaction. Our results demand for extra caution, not only in the discovery of new RNA modifications, but also with regard to the quantification of known modified structures, in particular chemically labile modifications, such as ct6A, that might suffer from exposure to putatively harmless reagents during the diverse steps of sample preparation.


Assuntos
RNA , RNA/química , RNA/metabolismo , Esterificação , Adenosina/química , Adenosina/análogos & derivados , Estrutura Molecular , Espectrometria de Massas em Tandem
3.
Mol Psychiatry ; 29(5): 1427-1439, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38287100

RESUMO

One mechanism of particular interest to regulate mRNA fate post-transcriptionally is mRNA modification. Especially the extent of m1A mRNA methylation is highly discussed due to methodological differences. However, one single m1A site in mitochondrial ND5 mRNA was unanimously reported by different groups. ND5 is a subunit of complex I of the respiratory chain. It is considered essential for the coupling of oxidation and proton transport. Here we demonstrate that this m1A site might be involved in the pathophysiology of Alzheimer's disease (AD). One of the pathological hallmarks of this neurodegenerative disease is mitochondrial dysfunction, mainly induced by Amyloid ß (Aß). Aß mainly disturbs functions of complex I and IV of the respiratory chain. However, the molecular mechanism of complex I dysfunction is still not fully understood. We found enhanced m1A methylation of ND5 mRNA in an AD cell model as well as in AD patients. Formation of this m1A methylation is catalyzed by increased TRMT10C protein levels, leading to translation repression of ND5. As a consequence, here demonstrated for the first time, TRMT10C induced m1A methylation of ND5 mRNA leads to mitochondrial dysfunction. Our findings suggest that this newly identified mechanism might be involved in Aß-induced mitochondrial dysfunction.


Assuntos
Adenosina , Doença de Alzheimer , Peptídeos beta-Amiloides , Complexo I de Transporte de Elétrons , Mitocôndrias , RNA Mensageiro , Humanos , Doença de Alzheimer/metabolismo , Doença de Alzheimer/genética , RNA Mensageiro/metabolismo , Adenosina/metabolismo , Mitocôndrias/metabolismo , Metilação , Complexo I de Transporte de Elétrons/metabolismo , Complexo I de Transporte de Elétrons/genética , Peptídeos beta-Amiloides/metabolismo , Masculino , Feminino , Idoso , Metiltransferases/metabolismo , Metiltransferases/genética , Idoso de 80 Anos ou mais , Proteínas Mitocondriais/metabolismo , Proteínas Mitocondriais/genética
4.
iScience ; 26(8): 107300, 2023 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-37554463

RESUMO

METTL3 is the major writer of N6-Methyladenosine (m6A) and has been associated with controversial roles in cancer. This is best illustrated in urothelial carcinoma of the bladder (UCB), where METTL3 was described to have both oncogenic and tumor-suppressive functions. Here, we reinvestigated the role of METTL3 in UCB. METTL3 knockout reduced the oncogenic phenotype and m6A levels of UCB cell lines. However, complete depletion of METTL3/m6A was not achieved due to selection of cells expressing alternative METTL3 isoforms. Systematic vulnerability and inhibitor response analyses suggested that uroepithelial cells depend on METTL3 for viability. Furthermore, expression and survival analyses of clinical data revealed a complex role for METTL3 in UCB, with decreased m6A mRNA levels in UCB tumors. Our results suggest that METTL3 expression may be a suitable diagnostic UCB biomarker, as the enzyme promotes UCB formation. However, the suitability of the enzyme as a therapeutic target should be evaluated carefully.

5.
Mol Cancer ; 22(1): 119, 2023 07 29.
Artigo em Inglês | MEDLINE | ID: mdl-37516825

RESUMO

Newly growing evidence highlights the essential role that epitranscriptomic marks play in the development of many cancers; however, little is known about the role and implications of altered epitranscriptome deposition in prostate cancer. Here, we show that the transfer RNA N7-methylguanosine (m7G) transferase METTL1 is highly expressed in primary and advanced prostate tumours. Mechanistically, we find that METTL1 depletion causes the loss of m7G tRNA methylation and promotes the biogenesis of a novel class of small non-coding RNAs derived from 5'tRNA fragments. 5'tRNA-derived small RNAs steer translation control to favour the synthesis of key regulators of tumour growth suppression, interferon pathway, and immune effectors. Knockdown of Mettl1 in prostate cancer preclinical models increases intratumoural infiltration of pro-inflammatory immune cells and enhances responses to immunotherapy. Collectively, our findings reveal a therapeutically actionable role of METTL1-directed m7G tRNA methylation in cancer cell translation control and tumour biology.


Assuntos
Carcinogênese , Neoplasias da Próstata , Masculino , Humanos , Carcinogênese/genética , Transformação Celular Neoplásica , Neoplasias da Próstata/genética , Transcrição Gênica , Processamento Pós-Transcricional do RNA , Metiltransferases/genética
6.
ACS Med Chem Lett ; 14(6): 777-787, 2023 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-37312859

RESUMO

The DNA methyltransferase 2 (DNMT2) is an RNA modifying enzyme associated with pathophysiological processes, such as mental and metabolic disorders or cancer. Although the development of methyltransferase inhibitors remains challenging, DNMT2 is not only a promising target for drug discovery, but also for the development of activity-based probes. Here, we present covalent SAH-based DNMT2 inhibitors decorated with a new type of aryl warhead. Based on a noncovalent DNMT2 inhibitor with N-benzyl substituent, the Topliss scheme was followed for optimization. The results showed that electron-deficient benzyl moieties highly increased affinity. By decorating the structures with strong electron-withdrawing moieties and leaving groups, we adjusted the electrophilicity to create covalent DNMT2 inhibitors. A 4-bromo-3-nitrophenylsulfonamide-decorated SAH derivative (80) turned out to be the most potent (IC50 = 1.2 ± 0.1 µM) and selective inhibitor. Protein mass spectrometry confirmed the covalent reaction with the catalytically active cysteine-79.

7.
Angew Chem Int Ed Engl ; 62(11): e202217128, 2023 03 06.
Artigo em Inglês | MEDLINE | ID: mdl-36629490

RESUMO

The fields of RNA modification and RNA damage both exhibit a plethora of non-canonical nucleoside structures. While RNA modifications have evolved to improve RNA function, the term RNA damage implies detrimental effects. Based on stable isotope labelling and mass spectrometry, we report the identification and characterisation of 2-methylthio-1,N6-ethenoadenosine (ms2 ϵA), which is related to 1,N6-ethenoadenine, a lesion resulting from exposure of nucleic acids to alkylating chemicals in vivo. In contrast, a sophisticated isoprene labelling scheme revealed that ms2 ϵA biogenesis involves cleavage of a prenyl moiety in the known transfer RNA (tRNA) modification 2-methylthio-N6-isopentenyladenosine (ms2 i6 A). The relative abundance of ms2 ϵA in tRNAs from translating ribosomes suggests reduced function in comparison to its parent RNA modification, establishing the nature of the new structure in a newly perceived overlap of the two previously separate fields, namely an RNA modification damage.


Assuntos
Adenosina , Nucleosídeos , Adenosina/química , RNA de Transferência/química , RNA , RNA Bacteriano
8.
J Bacteriol ; 205(1): e0029422, 2023 01 26.
Artigo em Inglês | MEDLINE | ID: mdl-36468867

RESUMO

Actinobacterial genus Streptomyces (streptomycetes) represents one of the largest cultivable group of bacteria famous for their ability to produce valuable specialized (secondary) metabolites. Regulation of secondary metabolic pathways inextricably couples the latter to essential cellular processes that determine levels of amino acids, carbohydrates, phosphate, etc. Post-transcriptional tRNA modifications remain one of the least studied aspects of streptomycete physiology, albeit a few of them were recently shown to impact antibiotic production. In this study, we describe the diversity of post-transcriptional tRNA modifications in model strain Streptomyces albus (albidoflavus) J1074 by combining mass spectrometry and genomic data. Our results show that J1074 can produce more chemically distinct tRNA modifications than previously thought. An in silico approach identified orthologs for enzymes governing most of the identified tRNA modifications. Yet, genetic control of certain modifications remained elusive, suggesting early divergence of tRNA modification pathways in Streptomyces from the better studied model bacteria, such as Escherichia coli and Bacillus subtilis. As a first point in case, our data point to the presence of a non-canonical MiaE enzyme performing hydroxylation of prenylated adenosines. A further finding concerns the methylthiotransferase MiaB, which requires previous modification of adenosines by MiaA to i6A for thiomethylation to ms2i6A. We show here that the J1074 ortholog, when overexpressed, yields ms2A in a ΔmiaA background. Our results set the working ground for and justify a more detailed studies of biological significance of tRNA modification pathways in streptomycetes. IMPORTANCE Post-transcriptional tRNA modifications (PTTMs) play an important role in maturation and functionality of tRNAs. Little is known about tRNA modifications in the antibiotic-producing actinobacterial genus Streptomyces, even though peculiar tRNA-based regulatory mechanisms operate in this taxon. We provide a first detailed description of the chemical diversity of PTTMs in the model species, S. albidoflavus J1074, and identify most plausible genes for these PTTMs. Some of the PTTMs are described for the first time for Streptomyces. Production of certain PTTMs in J1074 appears to depend on enzymes that show no sequence similarity to known PTTM enzymes from model species. Our findings are of relevance for interrogation of genetic basis of PTTMs in pathogenic actinobacteria, such as M. tuberculosis.


Assuntos
Streptomyces , Streptomyces/genética , Streptomyces/metabolismo , Genômica , Espectrometria de Massas , RNA de Transferência/genética , RNA de Transferência/metabolismo , Antibacterianos/metabolismo
9.
ACS Pharmacol Transl Sci ; 5(11): 1079-1085, 2022 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-36407957

RESUMO

Developing methyltransferase inhibitors is challenging, since most of the currently used assays are time-consuming and cost-intensive. Therefore, efficient, fast, and reliable methods for screenings and affinity determinations are of utmost importance. Starting from a literature-known fluorescent S-adenosylhomocysteine derivative, 5-FAM-triazolyl-adenosyl-Dab, developed for a fluorescence polarization assay to investigate the histone methyltransferase mixed-lineage leukemia 1, we herein describe the applicability of this compound as a fluorescent tracer for the investigation of DNA-methyltransferase 2 (DNMT2), a human RNA methyltransferase. Based on these findings, we established a microscale thermophoresis (MST) assay for DNMT2. This displacement assay can circumvent various problems inherent to this method. Furthermore, we optimized a screening method via MST which even indicates if the detected binding is competitive and gives the opportunity to estimate the potency of a ligand, both of which are not possible with a direct binding assay.

10.
RNA ; 28(12): 1568-1581, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36192131

RESUMO

Transfer RNAs acquire a large plethora of chemical modifications. Among those, modifications of the anticodon loop play important roles in translational fidelity and tRNA stability. Four human wobble U-containing tRNAs obtain 5-methoxycarbonylmethyluridine (mcm5U34) or 5-methoxycarbonylmethyl-2-thiouridine (mcm5s2U34), which play a role in decoding. This mark involves a cascade of enzymatic activities. The last step is mediated by alkylation repair homolog 8 (ALKBH8). In this study, we performed a transcriptome-wide analysis of the repertoire of ALKBH8 RNA targets. Using a combination of HITS-CLIP and RIP-seq analyses, we uncover ALKBH8-bound RNAs. We show that ALKBH8 targets fully processed and CCA modified tRNAs. Our analyses uncovered the previously known set of wobble U-containing tRNAs. In addition, both our approaches revealed ALKBH8 binding to several other types of noncoding RNAs, in particular C/D box snoRNAs.


Assuntos
Sequenciamento de Cromatina por Imunoprecipitação , RNA de Transferência , Humanos , RNA de Transferência/genética , RNA de Transferência/metabolismo , Anticódon , RNA não Traduzido/genética , Homólogo AlkB 8 da RNAt Metiltransferase/genética
11.
RNA ; 28(11): 1542-1552, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36100352

RESUMO

Epstein-Barr virus (EBV) expresses two highly abundant noncoding RNAs called EBV-encoded RNA 1 (EBER1) and EBER2, which are preserved in all clinical isolates of EBV, thus underscoring their essential function in the viral life cycle. Recent epitranscriptomics studies have uncovered a vast array of distinct RNA modifications within cellular as well as viral noncoding RNAs that are instrumental in executing their function. Here we show that EBER2 is marked by pseudouridylation, and by using HydraPsiSeq the modification site was mapped to a single nucleotide within the 3' region of EBER2. The writer enzyme was identified to be the snoRNA-dependent pseudouridine synthase Dyskerin, which is the catalytic subunit of H/ACA small nucleolar ribonucleoprotein complexes, and is guided to EBER2 by SNORA22. Similar to other noncoding RNAs for which pseudouridylation has a positive effect on RNA stability, loss of EBER2 pseudouridylation results in a decrease in RNA levels. Furthermore, pseudouridylation of EBER2 is required for the prolific accumulation of progeny viral genomes, suggesting that this single modification in EBER2 is important for efficient viral lytic replication. Taken together, our findings add to the list of RNA modifications that are essential for noncoding RNAs to implement their physiological roles.


Assuntos
Infecções por Vírus Epstein-Barr , Herpesvirus Humano 4 , Humanos , Herpesvirus Humano 4/genética , RNA Viral/genética , RNA não Traduzido/genética , Estabilidade de RNA , Replicação Viral/genética
12.
J Med Chem ; 65(14): 9750-9788, 2022 07 28.
Artigo em Inglês | MEDLINE | ID: mdl-35849534

RESUMO

Selective manipulation of the epitranscriptome could be beneficial for the treatment of cancer and also broaden the understanding of epigenetic inheritance. Inhibitors of the tRNA methyltransferase DNMT2, the enzyme catalyzing the S-adenosylmethionine-dependent methylation of cytidine 38 to 5-methylcytidine, were designed, synthesized, and analyzed for their enzyme-binding and -inhibiting properties. For rapid screening of potential DNMT2 binders, a microscale thermophoresis assay was established. Besides the natural inhibitors S-adenosyl-l-homocysteine (SAH) and sinefungin (SFG), we identified new synthetic inhibitors based on the structure of N-adenosyl-2,4-diaminobutyric acid (Dab). Structure-activity relationship studies revealed the amino acid side chain and a Y-shaped substitution pattern at the 4-position of Dab as crucial for DNMT2 inhibition. The most potent inhibitors are alkyne-substituted derivatives, exhibiting similar binding and inhibitory potencies as the natural compounds SAH and SFG. CaCo-2 assays revealed that poor membrane permeabilities of the acids and rapid hydrolysis of an ethylester prodrug might be the reasons for the insufficient activity in cellulo.


Assuntos
Metiltransferases , Neoplasias , Proteínas Arqueais , Células CACO-2 , DNA , Humanos , Neoplasias/tratamento farmacológico , S-Adenosil-Homocisteína/química , S-Adenosil-Homocisteína/metabolismo , S-Adenosil-Homocisteína/farmacologia , S-Adenosilmetionina/metabolismo
13.
Nucleic Acids Res ; 50(8): 4216-4245, 2022 05 06.
Artigo em Inglês | MEDLINE | ID: mdl-35412633

RESUMO

RNA methyltransferases (MTases) are ubiquitous enzymes whose hitherto low profile in medicinal chemistry, contrasts with the surging interest in RNA methylation, the arguably most important aspect of the new field of epitranscriptomics. As MTases become validated as drug targets in all major fields of biomedicine, the development of small molecule compounds as tools and inhibitors is picking up considerable momentum, in academia as well as in biotech. Here we discuss the development of small molecules for two related aspects of chemical biology. Firstly, derivates of the ubiquitous cofactor S-adenosyl-l-methionine (SAM) are being developed as bioconjugation tools for targeted transfer of functional groups and labels to increasingly visible targets. Secondly, SAM-derived compounds are being investigated for their ability to act as inhibitors of RNA MTases. Drug development is moving from derivatives of cosubstrates towards higher generation compounds that may address allosteric sites in addition to the catalytic centre. Progress in assay development and screening techniques from medicinal chemistry have led to recent breakthroughs, e.g. in addressing human enzymes targeted for their role in cancer. Spurred by the current pandemic, new inhibitors against coronaviral MTases have emerged at a spectacular rate, including a repurposed drug which is now in clinical trial.


Assuntos
Metiltransferases/antagonistas & inibidores , RNA , Desenvolvimento de Medicamentos , Humanos , S-Adenosilmetionina/análogos & derivados
14.
Wiley Interdiscip Rev RNA ; 13(1): e1691, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34913259

RESUMO

Among RNA modifications, transfer of methylgroups from the typical cofactor S-adenosyl-l-methionine by methyltransferases (MTases) to RNA is by far the most common reaction. Since our last review about a decade ago, the field has witnessed the re-emergence of mRNA methylation as an important mechanism in gene regulation. Attention has then spread to many other RNA species; all being included into the newly coined concept of the "epitranscriptome." The focus moved from prokaryotes and single cell eukaryotes as model organisms to higher eukaryotes, in particular to mammals. The perception of the field has dramatically changed over the past decade. A previous lack of phenotypes in knockouts in single cell organisms has been replaced by the apparition of MTases in numerous disease models and clinical investigations. Major driving forces of the field include methylation mapping techniques, as well as the characterization of the various MTases, termed "writers." The latter term has spilled over from DNA modification in the neighboring epigenetics field, along with the designations "readers," applied to mediators of biological effects upon specific binding to a methylated RNA. Furthermore "eraser" enzymes effect the newly discovered oxidative removal of methylgroups. A sense of reversibility and dynamics has replaced the older perception of RNA modification as a concrete-cast, irreversible part of RNA maturation. A related concept concerns incompletely methylated residues, which, through permutation of each site, lead to inhomogeneous populations of numerous modivariants. This review recapitulates the major developments of the past decade outlined above, and attempts a prediction of upcoming trends. This article is categorized under: RNA Processing > RNA Editing and Modification.


Assuntos
Metiltransferases , Nucleotídeos , Animais , Epigênese Genética , Metilação , Metiltransferases/metabolismo , RNA
15.
Mol Cell ; 81(23): 4810-4825.e12, 2021 12 02.
Artigo em Inglês | MEDLINE | ID: mdl-34774131

RESUMO

Mitochondria contain a specific translation machinery for the synthesis of mitochondria-encoded respiratory chain components. Mitochondrial tRNAs (mt-tRNAs) are also generated from the mitochondrial DNA and, similar to their cytoplasmic counterparts, are post-transcriptionally modified. Here, we find that the RNA methyltransferase METTL8 is a mitochondrial protein that facilitates 3-methyl-cytidine (m3C) methylation at position C32 of the mt-tRNASer(UCN) and mt-tRNAThr. METTL8 knockout cells show a reduction in respiratory chain activity, whereas overexpression increases activity. In pancreatic cancer, METTL8 levels are high, which correlates with lower patient survival and an enhanced respiratory chain activity. Mitochondrial ribosome profiling uncovered mitoribosome stalling on mt-tRNASer(UCN)- and mt-tRNAThr-dependent codons. Further analysis of the respiratory chain complexes using mass spectrometry revealed reduced incorporation of the mitochondrially encoded proteins ND6 and ND1 into complex I. The well-balanced translation of mt-tRNASer(UCN)- and mt-tRNAThr-dependent codons through METTL8-mediated m3C32 methylation might, therefore, facilitate the optimal composition and function of the mitochondrial respiratory chain.


Assuntos
Metiltransferases/metabolismo , RNA Mitocondrial/química , RNA de Transferência/química , Animais , Anticódon , Proliferação de Células , Códon , Citoplasma , DNA Mitocondrial/metabolismo , Transporte de Elétrons , Proteínas de Fluorescência Verde/metabolismo , Células HEK293 , Humanos , Camundongos , Mitocôndrias/metabolismo , Membranas Mitocondriais , Proteínas Mitocondriais/química , Consumo de Oxigênio , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/mortalidade , Ribossomos/metabolismo , Regulação para Cima
16.
Int J Mol Sci ; 22(21)2021 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-34768885

RESUMO

Transfer RNA[Ser]Sec carries multiple post-transcriptional modifications. The A37G mutation in tRNA[Ser]Sec abrogates isopentenylation of base 37 and has a profound effect on selenoprotein expression in mice. Patients with a homozygous pathogenic p.R323Q variant in tRNA-isopentenyl-transferase (TRIT1) show a severe neurological disorder, and hence we wondered whether selenoprotein expression was impaired. Patient fibroblasts with the homozygous p.R323Q variant did not show a general decrease in selenoprotein expression. However, recombinant human TRIT1R323Q had significantly diminished activities towards several tRNA substrates in vitro. We thus engineered mice conditionally deficient in Trit1 in hepatocytes and neurons. Mass-spectrometry revealed that hypermodification of U34 to mcm5Um occurs independently of isopentenylation of A37 in tRNA[Ser]Sec. Western blotting and 75Se metabolic labeling showed only moderate effects on selenoprotein levels and 75Se incorporation. A detailed analysis of Trit1-deficient liver using ribosomal profiling demonstrated that UGA/Sec re-coding was moderately affected in Selenop, Txnrd1, and Sephs2, but not in Gpx1. 2'O-methylation of U34 in tRNA[Ser]Sec depends on FTSJ1, but does not affect UGA/Sec re-coding in selenoprotein translation. Taken together, our results show that a lack of isopentenylation of tRNA[Ser]Sec affects UGA/Sec read-through but differs from a A37G mutation.


Assuntos
Alquil e Aril Transferases/genética , RNA de Transferência/metabolismo , Selenoproteínas/metabolismo , Alquil e Aril Transferases/metabolismo , Animais , Linhagem Celular , Cisteína/metabolismo , Hepatócitos/metabolismo , Humanos , Fígado/metabolismo , Camundongos , Neurônios/metabolismo , Fosfotransferases/genética , Fosfotransferases/metabolismo , Biossíntese de Proteínas/genética , RNA de Transferência/genética , Ribossomos/metabolismo , Selênio/metabolismo , Selenocisteína/genética , Selenoproteína P/genética , Selenoproteínas/genética
17.
Nat Commun ; 12(1): 5981, 2021 10 13.
Artigo em Inglês | MEDLINE | ID: mdl-34645812

RESUMO

The acidic tumor microenvironment in melanoma drives immune evasion by up-regulating cyclic adenosine monophosphate (cAMP) in tumor-infiltrating monocytes. Here we show that the release of non-toxic concentrations of an adenylate cyclase (AC) inhibitor from poly(sarcosine)-block-poly(L-glutamic acid γ-benzyl ester) (polypept(o)id) copolymer micelles restores antitumor immunity. In combination with selective, non-therapeutic regulatory T cell depletion, AC inhibitor micelles achieve a complete remission of established B16-F10-OVA tumors. Single-cell sequencing of melanoma-infiltrating immune cells shows that AC inhibitor micelles reduce the number of anti-inflammatory myeloid cells and checkpoint receptor expression on T cells. AC inhibitor micelles thus represent an immunotherapeutic measure to counteract melanoma immune escape.


Assuntos
Inibidores de Adenilil Ciclases/farmacologia , Adenilil Ciclases/genética , Antineoplásicos/farmacologia , AMP Cíclico/antagonistas & inibidores , Melanoma Experimental/tratamento farmacológico , Neoplasias Cutâneas/tratamento farmacológico , Inibidores de Adenilil Ciclases/síntese química , Adenilil Ciclases/imunologia , Animais , Antineoplásicos/síntese química , Compostos de Benzil/química , AMP Cíclico/imunologia , AMP Cíclico/metabolismo , Ésteres , Feminino , Expressão Gênica , Humanos , Imunidade Inata/efeitos dos fármacos , Injeções Intralesionais , Proteína Antagonista do Receptor de Interleucina 1/genética , Proteína Antagonista do Receptor de Interleucina 1/imunologia , Melanoma Experimental/genética , Melanoma Experimental/imunologia , Melanoma Experimental/patologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Micelas , Células Mieloides/efeitos dos fármacos , Células Mieloides/imunologia , Células Mieloides/patologia , Peptídeos/química , Ácido Poliglutâmico/química , Receptores Imunológicos/antagonistas & inibidores , Receptores Imunológicos/genética , Receptores Imunológicos/imunologia , Sarcosina/análogos & derivados , Sarcosina/química , Neoplasias Cutâneas/genética , Neoplasias Cutâneas/imunologia , Neoplasias Cutâneas/patologia , Linfócitos T Reguladores/efeitos dos fármacos , Linfócitos T Reguladores/imunologia , Linfócitos T Reguladores/patologia , Carga Tumoral/efeitos dos fármacos , Evasão Tumoral/efeitos dos fármacos , Microambiente Tumoral/efeitos dos fármacos , Microambiente Tumoral/genética , Microambiente Tumoral/imunologia
18.
Nat Commun ; 12(1): 3778, 2021 06 18.
Artigo em Inglês | MEDLINE | ID: mdl-34145251

RESUMO

N6-methyladenosine (m6A) is the most abundant internal modification on mRNA which influences most steps of mRNA metabolism and is involved in several biological functions. The E3 ubiquitin ligase Hakai was previously found in complex with components of the m6A methylation machinery in plants and mammalian cells but its precise function remained to be investigated. Here we show that Hakai is a conserved component of the methyltransferase complex in Drosophila and human cells. In Drosophila, its depletion results in reduced m6A levels and altered m6A-dependent functions including sex determination. We show that its ubiquitination domain is required for dimerization and interaction with other members of the m6A machinery, while its catalytic activity is dispensable. Finally, we demonstrate that the loss of Hakai destabilizes several subunits of the methyltransferase complex, resulting in impaired m6A deposition. Our work adds functional and molecular insights into the mechanism of the m6A mRNA writer complex.


Assuntos
Adenosina/análogos & derivados , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Metiltransferases/metabolismo , RNA Mensageiro/genética , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo , Adenosina/metabolismo , Animais , Linhagem Celular , Drosophila melanogaster , Células HeLa , Humanos , Metilação , Metiltransferases/genética , Processamento Pós-Transcricional do RNA/genética , Splicing de RNA/genética
19.
FEBS Lett ; 595(14): 1876-1885, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34060653

RESUMO

IM30, the inner membrane-associated protein of 30 kDa, is conserved in cyanobacteria and chloroplasts. Although its exact physiological function is still mysterious, IM30 is clearly essential for thylakoid membrane biogenesis and/or dynamics. Recently, a cryptic IM30 GTPase activity has been reported, albeit thus far no physiological function has been attributed to this. Yet, it is still possible that GTP binding/hydrolysis affects formation of the prototypical large homo-oligomeric IM30 ring and rod structures. Here, we show that the Synechocystis sp. PCC 6803 IM30 protein in fact is an NTPase that hydrolyzes GTP and ATP, but not CTP or UTP, with about identical rates. While IM30 forms large oligomeric ring complexes, nucleotide binding and/or hydrolysis are clearly not required for ring formation.


Assuntos
Trifosfato de Adenosina/metabolismo , Proteínas de Bactérias/metabolismo , Guanosina Trifosfato/metabolismo , Proteínas de Membrana/metabolismo , Nucleosídeo-Trifosfatase/metabolismo , Synechocystis/enzimologia , Tilacoides/enzimologia , Trifosfato de Adenosina/química , Proteínas de Bactérias/genética , Clonagem Molecular , Ensaios Enzimáticos , Escherichia coli/genética , Escherichia coli/metabolismo , Expressão Gênica , Vetores Genéticos/química , Vetores Genéticos/metabolismo , Guanosina Trifosfato/química , Hidrólise , Cinética , Proteínas de Membrana/genética , Microscopia Eletrônica , Nucleosídeo-Trifosfatase/genética , Ligação Proteica , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Especificidade por Substrato , Synechocystis/genética , Synechocystis/ultraestrutura , Tilacoides/genética , Tilacoides/ultraestrutura
20.
Nucleic Acids Res ; 49(10): 5568-5587, 2021 06 04.
Artigo em Inglês | MEDLINE | ID: mdl-33999208

RESUMO

Heterochromatin has essential functions in maintaining chromosome structure, in protecting genome integrity and in stabilizing gene expression programs. Heterochromatin is often nucleated by underlying DNA repeat sequences, such as major satellite repeats (MSR) and long interspersed nuclear elements (LINE). In order to establish heterochromatin, MSR and LINE elements need to be transcriptionally competent and generate non-coding repeat RNA that remain chromatin associated. We explored whether these heterochromatic RNA, similar to DNA and histones, may be methylated, particularly for 5-methylcytosine (5mC) or methyl-6-adenosine (m6A). Our analysis in mouse ES cells identifies only background level of 5mC but significant enrichment for m6A on heterochromatic RNA. Moreover, MSR transcripts are a novel target for m6A RNA modification, and their m6A RNA enrichment is decreased in ES cells that are mutant for Mettl3 or Mettl14, which encode components of a central RNA methyltransferase complex. Importantly, MSR transcripts that are partially deficient in m6A RNA methylation display impaired chromatin association and have a reduced potential to form RNA:DNA hybrids. We propose that m6A modification of MSR RNA will enhance the functions of MSR repeat transcripts to stabilize mouse heterochromatin.


Assuntos
DNA/metabolismo , Heterocromatina , RNA/metabolismo , Adenosina/análogos & derivados , Adenosina/metabolismo , Animais , Metilação , Camundongos , Células-Tronco Embrionárias Murinas , Sequências de Repetição em Tandem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA