Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Radiographics ; 44(4): e230154, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38512728

RESUMO

Arrhythmogenic cardiomyopathy (ACM) is a genetic disease characterized by replacement of ventricular myocardium with fibrofatty tissue, predisposing the patient to ventricular arrhythmias and/or sudden cardiac death. Most cases of ACM are associated with pathogenic variants in genes that encode desmosomal proteins, an important cell-to-cell adhesion complex present in both the heart and skin tissue. Although ACM was first described as a disease predominantly of the right ventricle, it is now acknowledged that it can also primarily involve the left ventricle or both ventricles. The original right-dominant phenotype is traditionally diagnosed using the 2010 task force criteria, a multifactorial algorithm divided into major and minor criteria consisting of structural criteria based on two-dimensional echocardiographic, cardiac MRI, or right ventricular angiographic findings; tissue characterization based on endomyocardial biopsy results; repolarization and depolarization abnormalities based on electrocardiographic findings; arrhythmic features; and family history. Shortfalls in the task force criteria due to the modern understanding of the disease have led to development of the Padua criteria, which include updated criteria for diagnosis of the right-dominant phenotype and new criteria for diagnosis of the left-predominant and biventricular phenotypes. In addition to incorporating cardiac MRI findings of ventricular dilatation, systolic dysfunction, and regional wall motion abnormalities, the new Padua criteria emphasize late gadolinium enhancement at cardiac MRI as a key feature in diagnosis and imaging-based tissue characterization. Conditions to consider in the differential diagnosis of the right-dominant phenotype include various other causes of right ventricular dilatation such as left-to-right shunts and variants of normal right ventricular anatomy that can be misinterpreted as abnormalities. The left-dominant phenotype can mimic myocarditis at imaging and clinical examination. Additional considerations for the differential diagnosis of ACM, particularly for the left-dominant phenotype, include sarcoidosis and dilated cardiomyopathy. ©RSNA, 2024 Test Your Knowledge questions for this article are available in the supplemental material.


Assuntos
Displasia Arritmogênica Ventricular Direita , Cardiomiopatias , Humanos , Displasia Arritmogênica Ventricular Direita/diagnóstico por imagem , Displasia Arritmogênica Ventricular Direita/genética , Meios de Contraste , Gadolínio , Cardiomiopatias/diagnóstico por imagem , Arritmias Cardíacas/diagnóstico por imagem , Arritmias Cardíacas/genética
2.
iScience ; 26(12): 108472, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-38077130

RESUMO

Mechanical forces provide critical biological signals to cells during healthy and aberrant organ development as well as during disease processes in adults. Within the cardiopulmonary system, mechanical forces, such as shear, compressive, and tensile forces, act across various length scales, and dysregulated forces are often a leading cause of disease initiation and progression such as in bronchopulmonary dysplasia and cardiomyopathies. Engineered in vitro models have supported studies of mechanical forces in a number of tissue and disease-specific contexts, thus enabling new mechanistic insights into cardiopulmonary development and disease. This review first provides fundamental examples where mechanical forces operate at multiple length scales to ensure precise lung and heart function. Next, we survey recent engineering platforms and tools that have provided new means to probe and modulate mechanical forces across in vitro and in vivo settings. Finally, the potential for interdisciplinary collaborations to inform novel therapeutic approaches for a number of cardiopulmonary diseases are discussed.

3.
JACC Basic Transl Sci ; 7(1): 70-83, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-35128211

RESUMO

The primary etiology of a diverse range of cardiomyopathies is now understood to be genetic, creating a new paradigm for targeting treatments on the basis of the underlying molecular cause. This review provides a genetic and etiologic context for the traditional clinical classifications of cardiomyopathy, including molecular subtypes that may exhibit differential responses to existing or emerging treatments. The authors describe several emerging cardiomyopathy treatments, including gene therapy, direct targeting of myofilament function, protein quality control, metabolism, and others. The authors discuss advantages and disadvantages of these approaches and indicate areas of high potential for short- and longer term efficacy.

4.
Eur Heart J ; 42(38): 3932-3944, 2021 10 07.
Artigo em Inglês | MEDLINE | ID: mdl-34491319

RESUMO

AIMS: Risk stratification algorithms for sudden cardiac death (SCD) in hypertrophic cardiomyopathy (HCM) and regional differences in clinical practice have evolved over time. We sought to compare primary prevention implantable cardioverter defibrillator (ICD) implantation rates and associated clinical outcomes in US vs. non-US tertiary HCM centres within the international Sarcomeric Human Cardiomyopathy Registry. METHODS AND RESULTS: We included patients with HCM enrolled from eight US sites (n = 2650) and five non-US (n = 2660) sites and used multivariable Cox-proportional hazards models to compare outcomes between sites. Primary prevention ICD implantation rates in US sites were two-fold higher than non-US sites (hazard ratio (HR) 2.27 [1.89-2.74]), including in individuals deemed at high 5-year SCD risk (≥6%) based on the HCM risk-SCD score (HR 3.27 [1.76-6.05]). US ICD recipients also had fewer traditional SCD risk factors. Among ICD recipients, rates of appropriate ICD therapy were significantly lower in US vs. non-US sites (HR 0.52 [0.28-0.97]). No significant difference was identified in the incidence of SCD/resuscitated cardiac arrest among non-recipients of ICDs in US vs. non-US sites (HR 1.21 [0.74-1.97]). CONCLUSION: Primary prevention ICDs are implanted more frequently in patients with HCM in US vs. non-US sites across the spectrum of SCD risk. There was a lower rate of appropriate ICD therapy in US sites, consistent with a lower-risk population, and no significant difference in SCD in US vs. non-US patients who did not receive an ICD. Further studies are needed to understand what drives malignant arrhythmias, optimize ICD allocation, and examine the impact of different ICD utilization strategies on long-term outcomes in HCM.


Assuntos
Cardiomiopatia Hipertrófica , Desfibriladores Implantáveis , Cardiomiopatia Hipertrófica/complicações , Cardiomiopatia Hipertrófica/terapia , Morte Súbita Cardíaca/epidemiologia , Morte Súbita Cardíaca/prevenção & controle , Humanos , Prevenção Primária , Medição de Risco , Fatores de Risco
5.
Circulation ; 141(23): 1872-1884, 2020 06 09.
Artigo em Inglês | MEDLINE | ID: mdl-32372669

RESUMO

BACKGROUND: Mutations in desmoplakin (DSP), the primary force transducer between cardiac desmosomes and intermediate filaments, cause an arrhythmogenic form of cardiomyopathy that has been variably associated with arrhythmogenic right ventricular cardiomyopathy. Clinical correlates of DSP cardiomyopathy have been limited to small case series. METHODS: Clinical and genetic data were collected on 107 patients with pathogenic DSP mutations and 81 patients with pathogenic plakophilin 2 (PKP2) mutations as a comparison cohort. A composite outcome of severe ventricular arrhythmia was assessed. RESULTS: DSP and PKP2 cohorts included similar proportions of probands (41% versus 42%) and patients with truncating mutations (98% versus 100%). Left ventricular (LV) predominant cardiomyopathy was exclusively present among patients with DSP (55% versus 0% for PKP2, P<0.001), whereas right ventricular cardiomyopathy was present in only 14% of patients with DSP versus 40% for PKP2 (P<0.001). Arrhythmogenic right ventricular cardiomyopathy diagnostic criteria had poor sensitivity for DSP cardiomyopathy. LV late gadolinium enhancement was present in a primarily subepicardial distribution in 40% of patients with DSP (23/57 with magnetic resonance images). LV late gadolinium enhancement occurred with normal LV systolic function in 35% (8/23) of patients with DSP. Episodes of acute myocardial injury (chest pain with troponin elevation and normal coronary angiography) occurred in 15% of patients with DSP and were strongly associated with LV late gadolinium enhancement (90%), even in cases of acute myocardial injury with normal ventricular function (4/5, 80% with late gadolinium enhancement). In 4 DSP cases with 18F-fluorodeoxyglucose positron emission tomography scans, acute LV myocardial injury was associated with myocardial inflammation misdiagnosed initially as cardiac sarcoidosis or myocarditis. Left ventricle ejection fraction <55% was strongly associated with severe ventricular arrhythmias for DSP cases (P<0.001, sensitivity 85%, specificity 53%). Right ventricular ejection fraction <45% was associated with severe arrhythmias for PKP2 cases (P<0.001) but was poorly associated for DSP cases (P=0.8). Frequent premature ventricular contractions were common among patients with severe arrhythmias for both DSP (80%) and PKP2 (91%) groups (P=non-significant). CONCLUSIONS: DSP cardiomyopathy is a distinct form of arrhythmogenic cardiomyopathy characterized by episodic myocardial injury, left ventricular fibrosis that precedes systolic dysfunction, and a high incidence of ventricular arrhythmias. A genotype-specific approach for diagnosis and risk stratification should be used.


Assuntos
Displasia Arritmogênica Ventricular Direita/diagnóstico por imagem , Displasia Arritmogênica Ventricular Direita/genética , Cardiomiopatia Dilatada/diagnóstico por imagem , Cardiomiopatia Dilatada/genética , Desmoplaquinas/genética , Mutação/genética , Adulto , Displasia Arritmogênica Ventricular Direita/metabolismo , Cardiomiopatias/diagnóstico por imagem , Cardiomiopatias/genética , Cardiomiopatias/metabolismo , Cardiomiopatia Dilatada/metabolismo , Desmoplaquinas/metabolismo , Feminino , Fibrose , Humanos , Inflamação/diagnóstico por imagem , Inflamação/genética , Inflamação/metabolismo , Masculino , Pessoa de Meia-Idade , Estudos Retrospectivos , Adulto Jovem
6.
JCI Insight ; 3(11)2018 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-29875314

RESUMO

Cardiac myosin binding protein C (MYBPC3) is the most commonly mutated gene associated with hypertrophic cardiomyopathy (HCM). Haploinsufficiency of full-length MYBPC3 and disruption of proteostasis have both been proposed as central to HCM disease pathogenesis. Discriminating the relative contributions of these 2 mechanisms requires fundamental knowledge of how turnover of WT and mutant MYBPC3 proteins is regulated. We expressed several disease-causing mutations in MYBPC3 in primary neonatal rat ventricular cardiomyocytes. In contrast to WT MYBPC3, mutant proteins showed reduced expression and failed to localize to the sarcomere. In an unbiased coimmunoprecipitation/mass spectrometry screen, we identified HSP70-family chaperones as interactors of both WT and mutant MYBPC3. Heat shock cognate 70 kDa (HSC70) was the most abundant chaperone interactor. Knockdown of HSC70 significantly slowed degradation of both WT and mutant MYBPC3, while pharmacologic activation of HSC70 and HSP70 accelerated degradation. HSC70 was expressed in discrete striations in the sarcomere. Expression of mutant MYBPC3 did not affect HSC70 localization, nor did it induce a protein folding stress response or ubiquitin proteasome dysfunction. Together these data suggest that WT and mutant MYBPC3 proteins are clients for HSC70, and that the HSC70 chaperone system plays a major role in regulating MYBPC3 protein turnover.


Assuntos
Cardiomiopatia Hipertrófica/patologia , Proteínas de Transporte/metabolismo , Proteínas de Choque Térmico HSC70/metabolismo , Acetilcisteína/análogos & derivados , Acetilcisteína/farmacologia , Animais , Animais Recém-Nascidos , Cardiomiopatia Hipertrófica/genética , Proteínas de Transporte/genética , Núcleo Celular/metabolismo , Técnicas de Silenciamento de Genes , Células HEK293 , Proteínas de Choque Térmico HSC70/genética , Haploinsuficiência , Humanos , Miocárdio/patologia , Complexo de Endopeptidases do Proteassoma/efeitos dos fármacos , Inibidores de Proteassoma/farmacologia , Proteólise/efeitos dos fármacos , Proteostase/genética , Ratos , Sarcômeros/patologia , Septo Interventricular/patologia
8.
J Cardiovasc Electrophysiol ; 21(1): 81-7, 2010 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-19682169

RESUMO

BACKGROUND: Catheter ablation of atrial and ventricular tachyarrhythmia involves anatomically based cardiac ablation strategies. CT and MRI images provide the most detailed cardiac anatomy available. Integration of these images into a mapping system should produce detailed and accurate models suitable to guide ablation. OBJECTIVE: The purpose of this study was to validate and assess the accuracy of a novel CT and MRI image integration algorithm designed to facilitate catheter navigation and ablation. METHODS: Using a lateral thoracotomy, markers were sutured to the epicardial surface of each cardiac chamber in 12 swine. Detailed CT/MRI anatomy was imported into the mapping system. The CT/MRI image was then integrated with a detailed catheter geometry of the relevant chamber using a new image integration algorithm. The epicardial markers, identified from the CT/MRI images, were then displayed on the surface of the integrated image. Guided only by the integrated CT/MRI, a single RF lesion was directed at the corresponding endocardial site for each epicardial marker. At autopsy, the distance from the endocardial RF lesion to the target site was assessed. RESULTS: The mean position error (CT/MRI) for the left atrium was 2.5 +/- 2.4 mm/5.1 +/- 3.9 mm, for the right atrium 6.2 +/- 6.5 mm/4.3 +/- 2.2 mm, for the right ventricle 6.2 +/- 4.3 mm/6.6 +/- 5.3 mm, and for the left ventricle 4.7 +/- 3.4 mm/3.1 +/- 2.7 mm. There was no cardiac perforation or tamponade. CONCLUSION: CT and MRI images can be effectively utilized for catheter navigation when integrated into a mapping system. This novel registration module with dynamic registration provides effective guidance for ablation.


Assuntos
Procedimentos Cirúrgicos Cardiovasculares/métodos , Ablação por Cateter/métodos , Coração/diagnóstico por imagem , Imageamento por Ressonância Magnética/métodos , Miocárdio/patologia , Tomografia Computadorizada por Raios X/métodos , Animais , Ablação por Cateter/instrumentação , Modelos Animais , Cuidados Pré-Operatórios/métodos , Técnica de Subtração , Cirurgia Assistida por Computador/métodos , Suínos , Integração de Sistemas , Terapêutica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA