Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 24(15)2023 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-37569800

RESUMO

Normal developmental progression relies on close interactions between the embryonic and extraembryonic lineages in the pre- and peri-gastrulation stage conceptus. For example, mouse epiblast-derived FGF and NODAL signals are required to maintain a stem-like state in trophoblast cells of the extraembryonic ectoderm, while visceral endoderm signals are pivotal to pattern the anterior region of the epiblast. These developmental stages also coincide with the specification of the first heart precursors. Here, we established a robust differentiation protocol of mouse embryonic stem cells (ESCs) into cardiomyocyte-containing embryoid bodies that we used to test the impact of trophoblast on this key developmental process. Using trophoblast stem cells (TSCs) to produce trophoblast-conditioned medium (TCM), we show that TCM profoundly slows down the cardiomyocyte differentiation dynamics and specifically delays the emergence of cardiac mesoderm progenitors. TCM also strongly promotes the retention of pluripotency transcription factors, thereby sustaining the stem cell state of ESCs. By applying TCM from various mutant TSCs, we further show that those mutations that cause a trophoblast-mediated effect on early heart development in vivo alter the normal cardiomyocyte differentiation trajectory. Our approaches provide a meaningful deconstruction of the intricate crosstalk between the embryonic and the extraembryonic compartments. They demonstrate that trophoblast helps prolong a pluripotent state in embryonic cells and delays early differentiative processes, likely through production of leukemia inhibitory factor (LIF). These data expand our knowledge of the multifaceted signaling interactions among distinct compartments of the early conceptus that ensure normal embryogenesis, insights that will be of significance for the field of synthetic embryo research.

2.
Nat Commun ; 14(1): 1174, 2023 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-36859534

RESUMO

Placental abnormalities have been sporadically implicated as a source of developmental heart defects. Yet it remains unknown how often the placenta is at the root of congenital heart defects (CHDs), and what the cellular mechanisms are that underpin this connection. Here, we selected three mouse mutant lines, Atp11a, Smg9 and Ssr2, that presented with placental and heart defects in a recent phenotyping screen, resulting in embryonic lethality. To dissect phenotype causality, we generated embryo- and trophoblast-specific conditional knockouts for each of these lines. This was facilitated by the establishment of a new transgenic mouse, Sox2-Flp, that enables the efficient generation of trophoblast-specific conditional knockouts. We demonstrate a strictly trophoblast-driven cause of the CHD and embryonic lethality in one of the three lines (Atp11a) and a significant contribution of the placenta to the embryonic phenotypes in another line (Smg9). Importantly, our data reveal defects in the maternal blood-facing syncytiotrophoblast layer as a shared pathology in placentally induced CHD models. This study highlights the placenta as a significant source of developmental heart disorders, insights that will transform our understanding of the vast number of unexplained congenital heart defects.


Assuntos
Cardiopatias , Trofoblastos , Feminino , Gravidez , Animais , Camundongos , Placenta , Coração , Células Epiteliais , Camundongos Transgênicos
3.
Mol Hum Reprod ; 28(7)2022 06 30.
Artigo em Inglês | MEDLINE | ID: mdl-35536234

RESUMO

A distinct age-related alteration in the uterine environment has recently been identified as a prevalent cause of the reproductive decline in older female mice. However, the molecular mechanisms that underlie age-associated uterine adaptability to pregnancy are not known. Sirtuin 1 (SIRT1), a multifunctional NAD+-dependent deacetylase that regulates cell viability, senescence and inflammation during aging, is reduced in aged decidua. Thus, we hypothesize that SIRT1 plays a critical role in uterine adaptability to pregnancy and that uterine-specific ablation of Sirt1 gene accelerates premature uterine aging. Female mice with uterine ablation of Sirt1 gene using progesterone receptor Cre (PgrCre) exhibit subfertility and signs of premature uterine aging. These Sirt1-deficient mothers showed decreases in litter size from their 1st pregnancy and became sterile (25.1 ± 2.5 weeks of age) after giving birth to the third litter. We report that uterine-specific Sirt1 deficiency impairs invasion and spacing of blastocysts, and stromal cell decidualization, leading to abnormal placentation. We found that these problems traced back to the very early stages of hormonal priming of the uterus. During the window of receptivity, Sirt1 deficiency compromises uterine epithelial-stromal crosstalk, whereby estrogen, progesterone and Indian hedgehog signaling pathways are dysregulated, hampering stromal cell priming for decidualization. Uterine transcriptomic analyses also link these causes to perturbations of histone proteins and epigenetic modifiers, as well as adrenomedullin signaling, hyaluronic acid metabolism, and cell senescence. Strikingly, our results also identified genes with significant overlaps with the transcriptome of uteri from aged mice and transcriptomes related to master regulators of decidualization (e.g. Foxo1, Wnt4, Sox17, Bmp2, Egfr and Nr2f2). Our results also implicate accelerated deposition of aging-related fibrillar Type I and III collagens in Sirt1-deficient uteri. Collectively, SIRT1 is an important age-related regulator of invasion and spacing of blastocysts, as well as decidualization of stromal cells.


Assuntos
Decídua , Sirtuína 1 , Envelhecimento , Animais , Blastocisto , Decídua/metabolismo , Implantação do Embrião/fisiologia , Feminino , Proteínas Hedgehog/metabolismo , Camundongos , Gravidez , Sirtuína 1/genética , Sirtuína 1/metabolismo , Células Estromais/metabolismo , Útero/metabolismo
4.
Elife ; 102021 06 25.
Artigo em Inglês | MEDLINE | ID: mdl-34170818

RESUMO

Normal function of the placenta depends on the earliest developmental stages when trophoblast cells differentiate and invade into the endometrium to establish the definitive maternal-fetal interface. Previously, we identified the ubiquitously expressed tumour suppressor BRCA1-associated protein 1 (BAP1) as a central factor of a novel molecular node controlling early mouse placentation. However, functional insights into how BAP1 regulates trophoblast biology are still missing. Using CRISPR/Cas9 knockout and overexpression technology in mouse trophoblast stem cells, here we demonstrate that the downregulation of BAP1 protein is essential to trigger epithelial-mesenchymal transition (EMT) during trophoblast differentiation associated with a gain of invasiveness. Moreover, we show that the function of BAP1 in suppressing EMT progression is dependent on the binding of BAP1 to additional sex comb-like (ASXL1/2) proteins to form the polycomb repressive deubiquitinase (PR-DUB) complex. Finally, both endogenous expression patterns and BAP1 overexpression experiments in human trophoblast stem cells suggest that the molecular function of BAP1 in regulating trophoblast differentiation and EMT progression is conserved in mice and humans. Our results reveal that the physiological modulation of BAP1 determines the invasive properties of the trophoblast, delineating a new role of the BAP1 PR-DUB complex in regulating early placentation.


Assuntos
Transição Epitelial-Mesenquimal/genética , Proteínas Repressoras/genética , Proteínas Supressoras de Tumor/genética , Ubiquitina Tiolesterase/genética , Animais , Diferenciação Celular/genética , Regulação da Expressão Gênica , Humanos , Camundongos , Proteínas Repressoras/metabolismo , Trofoblastos/fisiologia , Proteínas Supressoras de Tumor/metabolismo , Ubiquitina Tiolesterase/metabolismo
5.
Stem Cell Reports ; 15(6): 1301-1316, 2020 12 08.
Artigo em Inglês | MEDLINE | ID: mdl-32442533

RESUMO

The ten-eleven translocation factor TET1 and its conferred epigenetic modification 5-hydroxymethylcytosine (5hmC) have important roles in maintaining the pluripotent state of embryonic stem cells (ESCs). We previously showed that TET1 is also essential to maintain the stem cell state of trophoblast stem cells (TSCs). Here, we establish an integrated panel of absolute 5hmC levels, genome-wide DNA methylation and hydroxymethylation patterns, transcriptomes, and TET1 chromatin occupancy in TSCs and differentiated trophoblast cells. We show that the combined presence of 5-methylcytosine (5mC) and 5hmC correlates with transcriptional activity of associated genes. Hypoxia can slow down the global loss of 5hmC that occurs upon differentiation of TSCs. Notably, unlike in ESCs and epiblast cells, most TET1-bound regions overlap with active chromatin marks and TFAP2C binding sites and demarcate putative trophoblast enhancer regions. These chromatin modification and occupancy patterns are highly informative to identify novel candidate regulators of the TSC state.


Assuntos
Metilação de DNA , Proteínas de Ligação a DNA/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Células-Tronco/metabolismo , Trofoblastos/metabolismo , Animais , Hipóxia Celular , Proteínas de Ligação a DNA/genética , Elementos Facilitadores Genéticos , Camundongos , Proteínas Proto-Oncogênicas/genética , Células-Tronco/citologia , Fator de Transcrição AP-2/genética , Fator de Transcrição AP-2/metabolismo , Trofoblastos/citologia
6.
Nature ; 564(7735): 263-267, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30487605

RESUMO

The placenta is the extraembryonic organ that supports the fetus during intrauterine life. Although placental dysfunction results in major disorders of pregnancy with immediate and lifelong consequences for the mother and child, our knowledge of the human placenta is limited owing to a lack of functional experimental models1. After implantation, the trophectoderm of the blastocyst rapidly proliferates and generates the trophoblast, the unique cell type of the placenta. In vivo, proliferative villous cytotrophoblast cells differentiate into two main sub-populations: syncytiotrophoblast, the multinucleated epithelium of the villi responsible for nutrient exchange and hormone production, and extravillous trophoblast cells, which anchor the placenta to the maternal decidua and transform the maternal spiral arteries2. Here we describe the generation of long-term, genetically stable organoid cultures of trophoblast that can differentiate into both syncytiotrophoblast and extravillous trophoblast. We used human leukocyte antigen (HLA) typing to confirm that the organoids were derived from the fetus, and verified their identities against four trophoblast-specific criteria3. The cultures organize into villous-like structures, and we detected the secretion of placental-specific peptides and hormones, including human chorionic gonadotropin (hCG), growth differentiation factor 15 (GDF15) and pregnancy-specific glycoprotein (PSG) by mass spectrometry. The organoids also differentiate into HLA-G+ extravillous trophoblast cells, which vigorously invade in three-dimensional cultures. Analysis of the methylome reveals that the organoids closely resemble normal first trimester placentas. This organoid model will be transformative for studying human placental development and for investigating trophoblast interactions with the local and systemic maternal environment.


Assuntos
Relações Materno-Fetais , Modelos Biológicos , Organoides/citologia , Organoides/fisiologia , Placentação , Técnicas de Cultura de Tecidos , Trofoblastos/citologia , Trofoblastos/fisiologia , Diferenciação Celular , Movimento Celular , Gonadotropina Coriônica/metabolismo , Metilação de DNA , Decídua/citologia , Feminino , Fator 15 de Diferenciação de Crescimento/metabolismo , Antígenos HLA/metabolismo , Humanos , Organoides/metabolismo , Gravidez , Glicoproteínas beta 1 Específicas da Gravidez/metabolismo , Transcriptoma/genética , Trofoblastos/metabolismo
7.
Nat Commun ; 9(1): 4189, 2018 10 10.
Artigo em Inglês | MEDLINE | ID: mdl-30305613

RESUMO

The establishment of the embryonic and trophoblast lineages is a developmental decision underpinned by dramatic differences in the epigenetic landscape of the two compartments. However, it remains unknown how epigenetic information and transcription factor networks map to the 3D arrangement of the genome, which in turn may mediate transcriptional divergence between the two cell lineages. Here, we perform promoter capture Hi-C experiments in mouse trophoblast (TSC) and embryonic (ESC) stem cells to understand how chromatin conformation relates to cell-specific transcriptional programmes. We find that key TSC genes that are kept repressed in ESCs exhibit interactions between H3K27me3-marked regions in ESCs that depend on Polycomb repressive complex 1. Interactions that are prominent in TSCs are enriched for enhancer-gene contacts involving key TSC transcription factors, as well as TET1, which helps to maintain the expression of TSC-relevant genes. Our work shows that the first developmental cell fate decision results in distinct chromatin conformation patterns establishing lineage-specific contexts involving both repressive and active interactions.


Assuntos
Linhagem da Célula , Cromatina/metabolismo , Células-Tronco Embrionárias Murinas/citologia , Células-Tronco Embrionárias Murinas/metabolismo , Trofoblastos/citologia , Trofoblastos/metabolismo , Animais , Proteínas de Ligação a DNA/metabolismo , Embrião de Mamíferos/citologia , Elementos Facilitadores Genéticos/genética , Regulação da Expressão Gênica no Desenvolvimento , Genoma , Histonas/metabolismo , Lisina/metabolismo , Metilação , Camundongos , Camundongos Endogâmicos ICR , Complexo Repressor Polycomb 1/metabolismo , Proteínas Proto-Oncogênicas/metabolismo
8.
Stem Cell Reports ; 10(4): 1355-1368, 2018 04 10.
Artigo em Inglês | MEDLINE | ID: mdl-29576538

RESUMO

The ten-eleven translocation (TET) proteins are well known for their role in maintaining naive pluripotency of embryonic stem cells. Here, we demonstrate that, jointly, TET1 and TET2 also safeguard the self-renewal potential of trophoblast stem cells (TSCs) and have partially redundant roles in maintaining the epithelial integrity of TSCs. For the more abundantly expressed TET1, we show that this is achieved by binding to critical epithelial genes, notably E-cadherin, which becomes hyper-methylated and downregulated in the absence of TET1. The epithelial-to-mesenchymal transition phenotype of mutant TSCs is accompanied by centrosome duplication and separation defects. Moreover, we identify a role of TET1 in maintaining cyclin B1 stability, thereby acting as facilitator of mitotic cell-cycle progression. As a result, Tet1/2 mutant TSCs are prone to undergo endoreduplicative cell cycles leading to the formation of polyploid trophoblast giant cells. Taken together, our data reveal essential functions of TET proteins in the trophoblast lineage.


Assuntos
Ciclo Celular , Proteínas Proto-Oncogênicas/metabolismo , Células-Tronco/citologia , Células-Tronco/metabolismo , Trofoblastos/citologia , Animais , Linhagem Celular , Forma do Núcleo Celular , Centrossomo/metabolismo , Ciclina B1/metabolismo , Endorreduplicação , Células Epiteliais/metabolismo , Transição Epitelial-Mesenquimal , Regulação da Expressão Gênica , Técnicas de Inativação de Genes , Humanos , Poliploidia , Estabilidade Proteica
9.
Elife ; 62017 12 11.
Artigo em Inglês | MEDLINE | ID: mdl-29227245

RESUMO

In cycling human endometrium, menstruation is followed by rapid estrogen-dependent growth. Upon ovulation, progesterone and rising cellular cAMP levels activate the transcription factor Forkhead box O1 (FOXO1) in endometrial stromal cells (EnSCs), leading to cell cycle exit and differentiation into decidual cells that control embryo implantation. Here we show that FOXO1 also causes acute senescence of a subpopulation of decidualizing EnSCs in an IL-8 dependent manner. Selective depletion or enrichment of this subpopulation revealed that decidual senescence drives the transient inflammatory response associated with endometrial receptivity. Further, senescent cells prevent differentiation of endometrial mesenchymal stem cells in decidualizing cultures. As the cycle progresses, IL-15 activated uterine natural killer (uNK) cells selectively target and clear senescent decidual cells through granule exocytosis. Our findings reveal that acute decidual senescence governs endometrial rejuvenation and remodeling at embryo implantation, and suggest a critical role for uNK cells in maintaining homeostasis in cycling endometrium.


Assuntos
Senescência Celular , Decídua/citologia , Endométrio/citologia , Células Matadoras Naturais/citologia , Células Estromais/citologia , Útero/citologia , Diferenciação Celular , Células Cultivadas , Decídua/metabolismo , Endométrio/metabolismo , Feminino , Proteína Forkhead Box O1/metabolismo , Regulação da Expressão Gênica , Humanos , Interleucina-15/metabolismo , Interleucina-8/metabolismo , Células Matadoras Naturais/metabolismo , Transdução de Sinais , Células Estromais/metabolismo , Útero/metabolismo
10.
Nat Cell Biol ; 19(5): 568-577, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28394884

RESUMO

In humans, the endometrium, the uterine mucosal lining, undergoes dynamic changes throughout the menstrual cycle and pregnancy. Despite the importance of the endometrium as the site of implantation and nutritional support for the conceptus, there are no long-term culture systems that recapitulate endometrial function in vitro. We adapted conditions used to establish human adult stem-cell-derived organoid cultures to generate three-dimensional cultures of normal and decidualized human endometrium. These organoids expand long-term, are genetically stable and differentiate following treatment with reproductive hormones. Single cells from both endometrium and decidua can generate a fully functional organoid. Transcript analysis confirmed great similarity between organoids and the primary tissue of origin. On exposure to pregnancy signals, endometrial organoids develop characteristics of early pregnancy. We also derived organoids from malignant endometrium, and so provide a foundation to study common diseases, such as endometriosis and endometrial cancer, as well as the physiology of early gestation.


Assuntos
Células-Tronco Adultas/efeitos dos fármacos , Técnicas de Cultura de Células , Meios de Cultura/metabolismo , Endométrio/efeitos dos fármacos , Estrogênios/farmacologia , Organoides/efeitos dos fármacos , Progesterona/farmacologia , Engenharia Tecidual/métodos , Células-Tronco Adultas/metabolismo , Diferenciação Celular/efeitos dos fármacos , Linhagem da Célula , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Meios de Cultura/química , Decídua/citologia , Decídua/efeitos dos fármacos , Decídua/metabolismo , Neoplasias do Endométrio/metabolismo , Neoplasias do Endométrio/patologia , Endométrio/citologia , Endométrio/metabolismo , Feminino , Regulação da Expressão Gênica no Desenvolvimento , Genótipo , Humanos , Organoides/citologia , Organoides/metabolismo , Fenótipo , Gravidez , Fatores de Tempo , Células Tumorais Cultivadas
11.
Stem Cell Reports ; 6(2): 257-72, 2016 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-26862703

RESUMO

Controversy surrounds reports describing the derivation of human trophoblast cells from placentas and embryonic stem cells (ESC), partly due to the difficulty in identifying markers that define cells as belonging to the trophoblast lineage. We have selected criteria that are characteristic of primary first-trimester trophoblast: a set of protein markers, HLA class I profile, methylation of ELF5, and expression of microRNAs (miRNAs) from the chromosome 19 miRNA cluster (C19MC). We tested these criteria on cells previously reported to show some phenotypic characteristics of trophoblast: bone morphogenetic protein (BMP)-treated human ESC and 2102Ep, an embryonal carcinoma cell line. Both cell types only show some, but not all, of the four trophoblast criteria. Thus, BMP-treated human ESC have not fully differentiated to trophoblast. Our study identifies a robust panel, including both protein and non-protein-coding markers that, in combination, can be used to reliably define cells as characteristic of early trophoblast.


Assuntos
Primeiro Trimestre da Gravidez/metabolismo , Trofoblastos/citologia , Biomarcadores/metabolismo , Células Cultivadas , Cromossomos Humanos Par 19/genética , Metilação de DNA/genética , Proteínas de Ligação a DNA , Feminino , Fatores de Crescimento de Fibroblastos/farmacologia , Antígenos de Histocompatibilidade Classe I/metabolismo , Células-Tronco Embrionárias Humanas/citologia , Células-Tronco Embrionárias Humanas/efeitos dos fármacos , Humanos , MicroRNAs/genética , MicroRNAs/metabolismo , Gravidez , Regiões Promotoras Genéticas/genética , Proteínas Proto-Oncogênicas c-ets/genética , Pirimidinas/farmacologia , Terminologia como Assunto , Fatores de Transcrição , Trofoblastos/efeitos dos fármacos , Trofoblastos/metabolismo
12.
Nat Commun ; 6: 7776, 2015 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-26206133

RESUMO

Esrrb (oestrogen-related receptor beta) is a transcription factor implicated in embryonic stem (ES) cell self-renewal, yet its knockout causes intrauterine lethality due to defects in trophoblast development. Here we show that in trophoblast stem (TS) cells, Esrrb is a downstream target of fibroblast growth factor (Fgf) signalling and is critical to drive TS cell self-renewal. In contrast to its occupancy of pluripotency-associated loci in ES cells, Esrrb sustains the stemness of TS cells by direct binding and regulation of TS cell-specific transcription factors including Elf5 and Eomes. To elucidate the mechanisms whereby Esrrb controls the expression of its targets, we characterized its TS cell-specific interactome using mass spectrometry. Unlike in ES cells, Esrrb interacts in TS cells with the histone demethylase Lsd1 and with the RNA Polymerase II-associated Integrator complex. Our findings provide new insights into both the general and context-dependent wiring of transcription factor networks in stem cells by master transcription factors.


Assuntos
Células-Tronco Embrionárias/fisiologia , Fatores de Crescimento de Fibroblastos/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Receptores de Estrogênio/metabolismo , Animais , Diferenciação Celular , Linhagem Celular , Epigênese Genética , Redes Reguladoras de Genes , Histona Desmetilases/metabolismo , Sistema de Sinalização das MAP Quinases , Camundongos , Mapeamento de Interação de Proteínas , RNA Polimerase II/metabolismo , Trofoblastos/citologia
13.
Biochem Biophys Res Commun ; 436(2): 313-8, 2013 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-23743205

RESUMO

Trophoblast lineage differentiation is properly regulated to support embryogenesis. Besides normal developmental process, during germ cell tumor formation or development of other reproductive system diseases, unregulated trophoblast differentiation is also observed and affects the pathogenesis of the diseases. During normal embryogenesis, cell fate of late-stage blastcyst is regulated by a reciprocal repression of the key transcriptional factors; Oct3/4 dominancy inhibits Cdx2 expression in inner cell mass (ICM) and leads them to epiblast/primitive ectoderm but Cdx2 dominancy in trophectoderm (TE) leads them to trophoblast lineage. In contrast during early blastcyst stage, the Cdx2 expression is restricted in TE and not present in ICM, although Oct3/4 signaling does not inhibit the Cdx2 expression in ICM, implying that some factors could be inactivated leading to the suppressed Cdx2 expression in ICM of early blastcyst. ES cells (ESCs), which are derived from ICM, could be a unique model to study trophoblast differentiation in an ectopic context. We previously showed that poly(ADP-ribose) polymerase-1 (Parp-1) deficient ESCs highly expressed non-coding RNA H19 and could differentiate into trophoblast lineage. The expression of H19 is known to start at pre-blastcyst stage during mouse development, and the gene shows high expression only in trophoectoderm (TE) at blastcyst stage. However, its role in trophoblast differentiation has not been clarified yet. Thus, we hypothesized that the H19 activation may act as a trigger for induction of trophoblast differentiation cascade in mouse ESCs. To investigate this issue, we asked whether a forced H19 expression drives ESCs into trophoblast lineage or not. We demonstrated that the H19 induction leads to trophoblast lineage commitment through induction of the Cdx2 expression. We also showed that the expression of Cdx2 is induced in ESCs by forced H19 expression even under a high level of Oct3/4, which could act as a suppressor for Cdx2 expression. It is thus suggested that the H19 induction promotes trophoblast lineage commitment against the repression pressure by Oct3/4 in differentiating ESCs. Taken together, this study suggests that the H19 expression is able to function as a cascade activator of trophoblast lineage commitment possibly by overriding the Oct3/4 action in ESCs.


Assuntos
Linhagem da Célula/genética , Células-Tronco Embrionárias/metabolismo , RNA Longo não Codificante/genética , Ativação Transcricional , Trofoblastos/metabolismo , Animais , Northern Blotting , Fator de Transcrição CDX2 , Diferenciação Celular/genética , Células-Tronco Embrionárias/citologia , Proteínas de Homeodomínio/genética , Camundongos , Camundongos Knockout , Modelos Genéticos , Fator 3 de Transcrição de Octâmero/genética , Poli(ADP-Ribose) Polimerase-1 , Poli(ADP-Ribose) Polimerases/deficiência , Poli(ADP-Ribose) Polimerases/genética , Fatores de Transcrição/genética , Trofoblastos/citologia
14.
J Reprod Immunol ; 97(1): 36-42, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23432870

RESUMO

Viviparity has many evolutionary advantages but brings with it the problem of the semi-allogeneic foetus having to coexist with the mother for the duration of pregnancy. In species with haemochorial placentation this problem is particularly evident as foetal trophoblast cells are extensively intermingled with maternal tissue and are directly exposed to maternal blood. Fascinating adaptations on both the foetal and maternal side have allowed for this interaction to be re-directed away from an immune rejection response not only towards immunotolerance, but in fact towards actively supporting reproductive success. Recent data have shown that some of these remarkable adaptations are conserved between mice and humans. Thus, a subset of trophoblast cells that is directly exposed to the maternal uterine environment shares the feature of expressing an unusual antigen repertoire on their surface. Paternal antigens can be recognized by maternal immune cells, in particular uterine natural killer cells that express cognate receptors, to regulate the extensive remodelling events that take place at the implantation site. Detailed genetic dissection experiments in the mouse have further demonstrated the direct impact of antigenic dissimilarity on foetal growth. With the availability of inbred strains, in vitro culture systems of trophoblast stem cells, and in-depth genetic, genomic and epigenomic data the mouse will be a valuable model system to study the intricate immune crosstalk at the foeto-maternal boundary. These insights will pave the way towards unravelling the mutual and synergistic interactions between trophoblast and its surrounding maternal environment, and in doing so help understand pregnancy pathologies.


Assuntos
Homeostase , Sistema Imunitário , Células Matadoras Naturais/imunologia , Troca Materno-Fetal/imunologia , Reprodução/imunologia , Trofoblastos/imunologia , Animais , Evolução Biológica , Comunicação Celular , Feminino , Humanos , Camundongos , Circulação Placentária/imunologia , Gravidez/imunologia , Tolerância ao Transplante
15.
J Pathol ; 228(4): 554-64, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-22733590

RESUMO

We recently reported the first evidence of placental endoplasmic reticulum (ER) stress in the pathophysiology of human intrauterine growth restriction. Here, we used a mouse model to investigate potential underlying mechanisms. Eif2s1(tm1RjK) mice, in which Ser51 of eukaryotic initiation factor 2 subunit alpha (eIF2α) is mutated, display a 30% increase in basal translation. In Eif2s1(tm1RjK) placentas, we observed increased ER stress and anomalous accumulation of glycoproteins in the endocrine junctional zone (Jz), but not in the labyrinthine zone where physiological exchange occurs. Placental and fetal weights were reduced by 15% (97 mg to 82 mg, p < 0.001) and 20% (1009 mg to 798 mg, p < 0.001), respectively. To investigate whether ER stress affects bioactivity of secreted proteins, mouse embryonic fibroblasts (MEFs) were derived from Eif2s1(tm1RjK) mutants. These MEFs exhibited ER stress, grew 50% slower, and showed reduced Akt-mTOR signalling compared to wild-type cells. Conditioned medium (CM) derived from Eif2s1(tm1RjK) MEFs failed to maintain trophoblast stem cells in a progenitor state, but the effect could be rescued by exogenous application of FGF4 and heparin. In addition, ER stress promoted accumulation of pro-Igf2 with altered glycosylation in the CM without affecting cellular levels, indicating that the protein failed to be processed after release. Igf2 is the major growth factor for placental development; indeed, activity in the Pdk1-Akt-mTOR pathways was decreased in Eif2s1(tm1RjK) placentas, indicating loss of Igf2 signalling. Furthermore, we observed premature differentiation of trophoblast progenitors at E9.5 in mutant placentas, consistent with the in vitro results and with the disproportionate development of the labyrinth and Jz seen in placentas at E18.5. Similar disproportion has been reported in the Igf2-null mouse. These results demonstrate that ER stress adversely affects placental development, and that modulation of post-translational processing, and hence bioactivity, of secreted growth factors contributes to this effect. Placental dysmorphogenesis potentially affects fetal growth through reduced exchange capacity.


Assuntos
Estresse do Retículo Endoplasmático/fisiologia , Retardo do Crescimento Fetal/metabolismo , Retardo do Crescimento Fetal/patologia , Placenta/patologia , Placentação , Animais , Diferenciação Celular/fisiologia , Modelos Animais de Doenças , Fator de Iniciação 2 em Eucariotos/genética , Fator de Iniciação 2 em Eucariotos/metabolismo , Feminino , Retardo do Crescimento Fetal/fisiopatologia , Glicoproteínas/metabolismo , Glicosilação , Humanos , Camundongos Endogâmicos C57BL , Camundongos Mutantes , Tamanho do Órgão , Placenta/metabolismo , Gravidez , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Piruvato Desidrogenase Quinase de Transferência de Acetil , Transdução de Sinais/fisiologia , Serina-Treonina Quinases TOR/metabolismo
16.
Cell Stem Cell ; 9(2): 144-55, 2011 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-21816365

RESUMO

BMP is thought to induce hESC differentiation toward multiple lineages including mesoderm and trophoblast. The BMP-induced trophoblast phenotype is a long-standing paradox in stem cell biology. Here we readdressed BMP function in hESCs and mouse epiblast-derived cells. We found that BMP4 cooperates with FGF2 (via ERK) to induce mesoderm and to inhibit endoderm differentiation. These conditions induced cells with high levels of BRACHYURY (BRA) that coexpressed CDX2. BRA was necessary for and preceded CDX2 expression; both genes were essential for expression not only of mesodermal genes but also of trophoblast-associated genes. Maximal expression of the latter was seen in the absence of FGF but these cells coexpressed mesodermal genes and moreover they differed in cell surface and epigenetic properties from placental trophoblast. We conclude that BMP induces human and mouse pluripotent stem cells primarily to form mesoderm, rather than trophoblast, acting through BRA and CDX2.


Assuntos
Proteína Morfogenética Óssea 4/farmacologia , Diferenciação Celular/efeitos dos fármacos , Linhagem da Célula/efeitos dos fármacos , Células-Tronco Embrionárias/citologia , Proteínas Fetais/metabolismo , Proteínas de Homeodomínio/metabolismo , Células-Tronco Pluripotentes/citologia , Proteínas com Domínio T/metabolismo , Animais , Fator de Transcrição CDX2 , Cromonas/farmacologia , Embrião de Mamíferos/citologia , Embrião de Mamíferos/efeitos dos fármacos , Células-Tronco Embrionárias/efeitos dos fármacos , Células-Tronco Embrionárias/metabolismo , Proteínas Fetais/genética , Fator 2 de Crescimento de Fibroblastos/farmacologia , Regulação da Expressão Gênica no Desenvolvimento/efeitos dos fármacos , Redes Reguladoras de Genes/genética , Subunidade alfa de Hormônios Glicoproteicos/genética , Subunidade alfa de Hormônios Glicoproteicos/metabolismo , Proteínas de Homeodomínio/genética , Humanos , Queratina-7/genética , Queratina-7/metabolismo , Mesoderma/citologia , Mesoderma/efeitos dos fármacos , Mesoderma/metabolismo , Camundongos , Morfolinas/farmacologia , Neuropeptídeos/genética , Neuropeptídeos/metabolismo , Células-Tronco Pluripotentes/efeitos dos fármacos , Células-Tronco Pluripotentes/metabolismo , Transdução de Sinais/efeitos dos fármacos , Proteínas com Domínio T/genética , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Trofoblastos/citologia , Trofoblastos/efeitos dos fármacos , Trofoblastos/metabolismo
17.
Sci Signal ; 3(145): ra76, 2010 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-20978237

RESUMO

One function of phosphoinositide 3-kinase α (PI3Kα), which generates the lipid second messenger phosphatidylinositol 3,4,5-trisphosphate [PtdIns(3,4,5)P(3)], is its regulation of angiogenesis in the developing embryo and in pathological situations. ARAP3 is a PtdIns(3,4,5)P(3)- and Rap-activated guanosine triphosphatase (GTPase)-activating protein (GAP) for the small GTPases RhoA and Arf6. Here, we show that deleting Arap3 in the mouse caused embryonic death in mid-gestation due to an endothelial cell-autonomous defect in sprouting angiogenesis. Explants taken at a developmental stage at which no defect was yet present reproduced this phenotype ex vivo, demonstrating that the defect was not secondary to hypoxia, placental defects, or organ failure. In addition, knock-in mice expressing an ARAP3 point mutant that cannot be activated by PtdIns(3,4,5)P(3) had angiogenesis defects similar to those of Arap3(-/-) embryos. Our work delineates a previously unknown signaling pathway that controls angiogenesis immediately downstream of PI3Kα through ARAP3 to the Rho and Arf family of small GTPases.


Assuntos
Classe Ia de Fosfatidilinositol 3-Quinase/metabolismo , Embrião de Mamíferos/metabolismo , Proteínas Ativadoras de GTPase/metabolismo , Neovascularização Fisiológica/fisiologia , Fosfatos de Fosfatidilinositol/metabolismo , Sistemas do Segundo Mensageiro/fisiologia , Animais , Classe Ia de Fosfatidilinositol 3-Quinase/genética , Perda do Embrião/genética , Perda do Embrião/metabolismo , Proteínas Ativadoras de GTPase/genética , Deleção de Genes , Camundongos , Fosfatos de Fosfatidilinositol/genética , Mutação Puntual
18.
Hum Mol Genet ; 19(12): 2456-67, 2010 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-20354077

RESUMO

The first definitive cell fate decision in development occurs at the blastocyst stage with establishment of the trophoblast and embryonic cell lineages. In the mouse, lineage commitment is achieved by epigenetic regulation of a critical gatekeeper gene, the transcription factor Elf5, that reinforces placental cell fate and is necessary for trophoblast stem (TS) cell self-renewal. In humans, however, the epigenetic lineage boundary seems to be less stringent since human embryonic stem (ES) cells, unlike their murine counterparts, harbour some potential to differentiate into trophoblast derivatives. Here, we show that ELF5 is expressed in the human placenta in villous cytotrophoblast cells but not in post-mitotic syncytiotrophoblast and invasive extravillous cytotrophoblast cells. ELF5 establishes a circuit of mutually interacting transcription factors with CDX2 and EOMES, and the highly proliferative ELF5(+)/CDX2(+) double-positive subset of cytotrophoblast cells demarcates a putative TS cell compartment in the early human placenta. In contrast to placental trophoblast, however, ELF5 is hypermethylated and largely repressed in human ES cells and derived trophoblast cell lines, as well as in induced pluripotent stem cells and murine epiblast stem cells. Thus, these cells exhibit an embryonic lineage-specific epigenetic signature and do not undergo an epigenetic reprogramming to reflect the trophoblast lineage at key loci such as ELF5. Our identification of the trophoblast-specific transcriptional circuit established by ELF5 will be instrumental to derive human TS cell lines that truly reflect early placental trophoblast and that will be most beneficial to gain insights into the aetiology of common pregnancy complications, including intra-uterine growth restriction and pre-eclampsia.


Assuntos
Linhagem da Célula/genética , Epigênese Genética , Redes Reguladoras de Genes , Placenta/metabolismo , Proteínas Proto-Oncogênicas c-ets/genética , Células-Tronco/metabolismo , Trofoblastos/metabolismo , Animais , Fator de Transcrição CDX2 , Metilação de DNA , Proteínas de Ligação a DNA , Feminino , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Humanos , Camundongos , Análise de Sequência com Séries de Oligonucleotídeos , Células-Tronco Pluripotentes/metabolismo , Gravidez , Complicações na Gravidez/genética , Proteínas Proto-Oncogênicas c-ets/metabolismo , Proteínas com Domínio T/genética , Proteínas com Domínio T/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
19.
Dev Biol ; 335(1): 120-31, 2009 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-19716815

RESUMO

Prolonged maintenance of trophoblast stem (TS) cells requires fibroblast growth factor (FGF) 4 and embryonic fibroblast feeder cells or feeder cell-conditioned medium. Previous studies have shown that TGF-beta and Activin are sufficient to replace embryonic fibroblast-conditioned medium. Nodal, a member of the TGF-beta superfamily, is also known to be important in vivo for the maintenance of TS cells in the developing placenta. Our current studies indicate that TS cells do not express the Nodal co-receptor, Cripto, and do not respond directly to active Nodal in culture. Conversely, Activin subunits and their receptors are expressed in the placenta and TS cell cultures, with Activin predominantly expressed by trophoblast giant cells (TGCs). Differentiation of TS cells in the presence of TGC-conditioned medium or exogenous Activin results in a reduction in the expression of TGC markers. In line with TGC-produced Activin representing the active component in TGC-conditioned medium, this differentiation-inhibiting effect can be reversed by the addition of follistatin. Additional experiments in which TS cells were differentiated in the presence or absence of exogenous Activin or TGF-beta show that Activin but not TGF-beta results in the maintenance of expression of TS cell markers, prolongs the expression of syncytiotrophoblast markers, and significantly delays the expression of spongiotrophoblast and TGC markers. These results suggest that Activin rather than TGF-beta (or Nodal) acts directly on TS cells influencing both TS cell maintenance and cell fate, depending on whether the cells are also exposed to FGF4.


Assuntos
Ativinas/farmacologia , Diferenciação Celular/efeitos dos fármacos , Orelha Interna , Células-Tronco/efeitos dos fármacos , Células-Tronco/fisiologia , Trofoblastos , Receptores de Ativinas/genética , Receptores de Ativinas/metabolismo , Ativinas/genética , Ativinas/metabolismo , Animais , Biomarcadores/metabolismo , Diferenciação Celular/fisiologia , Linhagem da Célula , Células Cultivadas , Meios de Cultivo Condicionados/química , Orelha Interna/citologia , Orelha Interna/embriologia , Embrião de Mamíferos/anatomia & histologia , Embrião de Mamíferos/metabolismo , Fator de Crescimento Epidérmico/genética , Fator de Crescimento Epidérmico/metabolismo , Feminino , Fator 4 de Crescimento de Fibroblastos/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Inibinas/genética , Inibinas/metabolismo , Masculino , Glicoproteínas de Membrana/genética , Glicoproteínas de Membrana/metabolismo , Camundongos , Análise em Microsséries , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Proteína Nodal/genética , Proteína Nodal/metabolismo , Proteína Nodal/farmacologia , Comunicação Parácrina/fisiologia , Placenta/citologia , Placenta/metabolismo , Gravidez , Células-Tronco/citologia , Fator de Crescimento Transformador beta/farmacologia , Trofoblastos/citologia , Trofoblastos/efeitos dos fármacos
20.
Cell Signal ; 21(12): 1846-56, 2009 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-19686845

RESUMO

Cdx2 is a homeodomain transcription factor that regulates normal intestinal cell differentiation. Cdx2 is frequently lost during progression of colorectal cancer (CRC) and is widely viewed as a colorectal tumour suppressor. A previous study suggested that activation of protein kinase C (PKC) may be responsible for Cdx2 down-regulation in CRC cells. Here we show that activation of PKC does indeed promote down-regulation of Cdx2 at both the mRNA and protein levels. However, PKC-dependent loss of Cdx2 is dependent upon activation of the Raf-MEK-ERK1/2 pathway. Indeed, specific activation of the ERK1/2 pathway using the conditional kinase DeltaRaf-1:ER is sufficient to inhibit Cdx2 transcription. The Raf-MEK-ERK1/2 pathway is hyper-activated in a large fraction of colorectal cancers due to mutations in K-Ras and we show that treatment of CRC cell lines with MEK inhibitors causes an increase in Cdx2 expression. Furthermore, activation of the ERK1/2 pathway promotes the phosphorylation and proteasome-dependent degradation of the Cdx2 protein. The inhibitory effect of ERK1/2 upon Cdx2 in CRC cells is in sharp contrast to its stimulatory effect upon Cdx2 expression in trophectoderm and trophoblast stem cells. These results provide important new insights into the regulation of the Cdx2 tumour suppressor by linking it to ERK1/2, a pathway which is frequently activated in CRC.


Assuntos
Carcinoma/metabolismo , Neoplasias Colorretais/metabolismo , Proteínas de Homeodomínio/genética , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Proteína Quinase C/metabolismo , Proteínas Proto-Oncogênicas c-raf/metabolismo , Fator de Transcrição CDX2 , Carcinoma/genética , Linhagem Celular Tumoral , Células Cultivadas , Neoplasias Colorretais/genética , Regulação para Baixo , Proteínas de Homeodomínio/metabolismo , Humanos , Sistema de Sinalização das MAP Quinases , Regiões Promotoras Genéticas , Células-Tronco/metabolismo , Trofoblastos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA