Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Front Microbiol ; 14: 1150353, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36992929

RESUMO

The recent discovery of the archaeal modified mevalonate pathway revealed that the fundamental units for isoprenoid biosynthesis (isopentenyl diphosphate and dimethylallyl diphosphate) are biosynthesized via a specific intermediate, trans-anhydromevalonate phosphate. In this biosynthetic pathway, which is unique to archaea, the formation of trans-anhydromevalonate phosphate from (R)-mevalonate 5-phosphate is catalyzed by a key enzyme, phosphomevalonate dehydratase. This archaea-specific enzyme belongs to the aconitase X family within the aconitase superfamily, along with bacterial homologs involved in hydroxyproline metabolism. Although an iron-sulfur cluster is thought to exist in phosphomevalonate dehydratase and is believed to be responsible for the catalytic mechanism of the enzyme, the structure and role of this cluster have not been well characterized. Here, we reconstructed the iron-sulfur cluster of phosphomevalonate dehydratase from the hyperthermophilic archaeon Aeropyrum pernix to perform biochemical characterization and kinetic analysis of the enzyme. Electron paramagnetic resonance, iron quantification, and mutagenic studies of the enzyme demonstrated that three conserved cysteine residues coordinate a [4Fe-4S] cluster-as is typical in aconitase superfamily hydratases/dehydratases, in contrast to bacterial aconitase X-family enzymes, which have been reported to harbor a [2Fe-2S] cluster.

2.
FEBS J ; 290(11): 2895-2908, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36695650

RESUMO

Various d-amino acids have been found in a wide range of organisms, including mammals. Although the physiological functions of various d-amino acids have been reported or suggested, the molecular basis of these biological functions has been elucidated in only a few cases. The identification of a d-amino acid biosynthetic enzyme is a critical step in understanding the mechanism of the physiological functions of d-amino acids. While in vivo functional screening can be a powerful tool for identifying novel metabolic enzymes, none of the existing organisms exhibit growth dependent on d-amino acid other than d-Ala and d-Glu. Here, we report the first organism that exhibits non-canonical d-amino acid auxotrophy. We found that an Escherichia coli strain lacking the major d-Ala and d-Glu biosynthetic enzymes, alr, dadX, and murI, and expressing the mutated d-amino acid transaminase (DAAT) gene from Bacillus sp. YM-1 (MB3000/mdaat+ ) grew well when supplemented with certain d-amino acid. A multicopy suppression study with plasmids encoding one of the 51 PLP-dependent enzymes of E. coli showed that MB3000/mdaat+ could detect weak and moonlighting racemase activity, such from cystathionine ß-lyase (MetC) and a negative regulator of MalT activity/cystathionine ß-lyase (MalY)-these exhibit only a few tenths to a few thousandths of the racemization activity of canonical amino acid racemases. We believe that this unique platform will contribute to further research in this field by identifying novel d-amino acid-metabolizing enzymes.


Assuntos
Isomerases de Aminoácido , Aminoácidos , Aminoácidos/genética , Aminoácidos/metabolismo , Escherichia coli/metabolismo , Isomerases de Aminoácido/genética , Racemases e Epimerases/metabolismo , Clonagem Molecular
3.
J Biol Chem ; 298(7): 102111, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35690147

RESUMO

Mevalonate 3,5-bisphosphate decarboxylase is involved in the recently discovered Thermoplasma-type mevalonate pathway. The enzyme catalyzes the elimination of the 3-phosphate group from mevalonate 3,5-bisphosphate as well as concomitant decarboxylation of the substrate. This entire reaction of the enzyme resembles the latter half-reactions of its homologs, diphosphomevalonate decarboxylase and phosphomevalonate decarboxylase, which also catalyze ATP-dependent phosphorylation of the 3-hydroxyl group of their substrates. However, the crystal structure of mevalonate 3,5-bisphosphate decarboxylase and the structural reasons of the difference between reactions catalyzed by the enzyme and its homologs are unknown. In this study, we determined the X-ray crystal structure of mevalonate 3,5-bisphosphate decarboxylase from Picrophilus torridus, a thermoacidophilic archaeon of the order Thermoplasmatales. Structural and mutational analysis demonstrated the importance of a conserved aspartate residue for enzyme activity. In addition, although crystallization was performed in the absence of substrate or ligands, residual electron density having the shape of a fatty acid was observed at a position overlapping the ATP-binding site of the homologous enzyme, diphosphomevalonate decarboxylase. This finding is in agreement with the expected evolutionary route from phosphomevalonate decarboxylase (ATP-dependent) to mevalonate 3,5-bisphosphate decarboxylase (ATP-independent) through the loss of kinase activity. We found that the binding of geranylgeranyl diphosphate, an intermediate of the archeal isoprenoid biosynthesis pathway, evoked significant activation of mevalonate 3,5-bisphosphate decarboxylase, and several mutations at the putative geranylgeranyl diphosphate-binding site impaired this activation, suggesting the physiological importance of ligand binding as well as a possible novel regulatory system employed by the Thermoplasma-type mevalonate pathway.


Assuntos
Carboxiliases/química , Thermoplasmales/enzimologia , Trifosfato de Adenosina/metabolismo , Carboxiliases/metabolismo , Redes e Vias Metabólicas , Ácido Mevalônico/metabolismo
4.
FEBS J ; 289(16): 4981-4997, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35202511

RESUMO

Isoprenoids with reduced Z,E-mixed prenyl groups are found in various organisms. To date, only polyprenol reductases (PR-Dol) involved in dolichol biosynthesis have been identified as enzymes capable of reducing Z,E-mixed prenyl groups. Although C35 -isoprenoids with reduced Z,E-mixed prenyl groups are found in mycobacteria, Z,E-mixed heptaprenyl reductase (HepR) remains unidentified. In the present study, the identification and functional analysis of HepR was performed. No PR-Dol homolog gene was detected in the genome of Mycolicibacterium vanbaalenii. However, a homolog of geranylgeranyl reductase (GGR), which reacts with an all-E prenyl group as a substrate, was encoded in the genome; thus, we analyzed it as a HepR candidate. In vitro enzymatic assay and in vivo gene suppression analysis identified the GGR homolog as HepR and revealed that HepR catalyzes the reduction of ω- and E- prenyl units in Z,E-mixed heptaprenyl diphosphates, and C35 -isoprenoids are mainly biosynthesized using E,E,E-geranylgeranyl diphosphate as a precursor. Thus, it was demonstrated that the Z,E-mixed prenyl reductase family exists in the GGR homologs. To the best of our knowledge, this is the first identification of a new type of Z,E-mixed prenyl reductase with no sequence homology to PR-Dol. The substrate specificity of HepR significantly differed from that of GGR, suggesting that it is a new enzyme. HepR homologs are widely distributed in mycobacterial genomes, and lipid analysis suggests that many strains, including pathogenic species, produce HepR metabolites. The discovery of this new enzyme will promote further research on Z,E-mixed isoprenoids.


Assuntos
Alquil e Aril Transferases , Mycobacterium , Mycobacterium/genética , Neopreno , Oxirredutases/genética , Terpenos
5.
J Biochem ; 171(6): 641-651, 2022 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-35195245

RESUMO

cis-Prenyltransferases (cPTs) form linear polyprenyl pyrophosphates, the precursors of polyprenyl or dolichyl phosphates that are essential for cell function in all living organisms. Polyprenyl phosphate serves as a sugar carrier for peptidoglycan cell wall synthesis in bacteria, a role that dolichyl phosphate performs analogously for protein glycosylation in eukaryotes and archaea. Bacterial cPTs are characterized by their homodimeric structure, while cPTs from eukaryotes usually require two distantly homologous subunits for enzymatic activity. This study identifies the subunits of heteromeric cPT, Af1219 and Af0707, from a thermophilic sulphur-reducing archaeon, Archaeoglobus fulgidus. Both subunits are indispensable for cPT activity, and their protein-protein interactions were demonstrated by a pulldown assay. Gel filtration chromatography and chemical cross-linking experiments suggest that Af1219 and Af0707 likely form a heterotetramer complex. Although this expected subunit composition agrees with a reported heterotetrameric structure of human hCIT/NgBR cPT complex, the similarity of the quaternary structures is likely a result of convergent evolution.


Assuntos
Archaea , Archaeoglobus fulgidus , Archaea/metabolismo , Archaeoglobus fulgidus/metabolismo , Humanos , Transferases/química , Transferases/metabolismo
6.
J Biol Chem ; 296: 100679, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33872599

RESUMO

Polyprenyl groups, products of isoprenoid metabolism, are utilized in peptidoglycan biosynthesis, protein N-glycosylation, and other processes. These groups are formed by cis-prenyltransferases, which use allylic prenyl pyrophosphates as prenyl-donors to catalyze the C-prenylation of the general acceptor substrate, isopentenyl pyrophosphate. Repetition of this reaction forms (Z,E-mixed)-polyprenyl pyrophosphates, which are converted later into glycosyl carrier lipids, such as undecaprenyl phosphate and dolichyl phosphate. MM_0014 from the methanogenic archaeon Methanosarcina mazei is known as a versatile cis-prenyltransferase that accepts both isopentenyl pyrophosphate and dimethylallyl pyrophosphate as acceptor substrates. To learn more about this enzyme's catalytic activity, we determined the X-ray crystal structures of MM_0014 in the presence or absence of these substrates. Surprisingly, one structure revealed a complex with O-prenylglycerol, suggesting that the enzyme catalyzed the prenylation of glycerol contained in the crystallization buffer. Further analyses confirmed that the enzyme could catalyze the O-prenylation of small alcohols, such as 2-propanol, expanding our understanding of the catalytic ability of cis-prenyltransferases.


Assuntos
Biocatálise , Methanosarcina/enzimologia , Prenilação , Transferases/metabolismo , 2-Propanol/metabolismo , Cinética , Modelos Moleculares , Conformação Proteica , Transferases/química
7.
Appl Environ Microbiol ; 84(7)2018 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-29352090

RESUMO

Ophthalmic acid (OA; l-γ-glutamyl-l-2-aminobutyryl-glycine) is an analog of glutathione (GSH; l-γ-glutamyl-l-cysteinyl-glycine) in which the cysteine moiety is replaced by l-2-aminobutyrate. OA is a useful peptide for the pharmaceutical and/or food industries. Herein, we report a method for the production of OA using engineered Escherichia coli cells. yggS-deficient E. coli, which lacks the highly conserved pyridoxal 5'-phosphate-binding protein YggS and naturally accumulates OA, was selected as the starting strain. To increase the production of OA, we overexpressed the OA biosynthetic enzymes glutamate-cysteine ligase (GshA) and glutathione synthase (GshB), desensitized the product inhibition of GshA, and eliminated the OA catabolic enzyme γ-glutamyltranspeptidase. The production of OA was further enhanced by the deletion of miaA and ridA with the aim of increasing the availability of ATP and attenuating the unwanted degradation of amino acids, respectively. The final strain developed in this study successfully produced 277 µmol/liter of OA in 24 h without the formation of by-products in a minimal synthetic medium containing 1 mM each glutamate, 2-aminobutyrate, and glycine.IMPORTANCE Ophthalmic acid (OA) is a peptide that has the potential for use in the pharmaceutical and/or food industries. An efficient method for the production of OA would allow us to expand our knowledge about its physiological functions and enable the industrial/pharmaceutical application of this compound. We demonstrated the production of OA using Escherichia coli cells in which OA biosynthetic enzymes and degradation enymes were engineered. We also showed that unique approaches, including the use of a ΔyggS mutant as a starting strain, the establishment of an S495F mutation in GshA, and the deletion of ridA or miaA, facilitated the efficient production of OA in E. coli.


Assuntos
Escherichia coli/metabolismo , Engenharia Genética/métodos , Microrganismos Geneticamente Modificados/metabolismo , Oligopeptídeos/biossíntese , Escherichia coli/genética , Microrganismos Geneticamente Modificados/genética
8.
J Biol Chem ; 292(6): 2457-2469, 2017 02 10.
Artigo em Inglês | MEDLINE | ID: mdl-28003359

RESUMO

The biosynthesis of isopentenyl diphosphate, a fundamental precursor for isoprenoids, via the mevalonate pathway is completed by diphosphomevalonate decarboxylase. This enzyme catalyzes the formation of isopentenyl diphosphate through the ATP-dependent phosphorylation of the 3-hydroxyl group of (R)-5-diphosphomevalonate followed by decarboxylation coupled with the elimination of the 3-phosphate group. In this reaction, a conserved aspartate residue has been proposed to be involved in the phosphorylation step as the general base catalyst that abstracts a proton from the 3-hydroxyl group. In this study, the catalytic mechanism of this rare type of decarboxylase is re-investigated by structural and mutagenic studies on the enzyme from a thermoacidophilic archaeon Sulfolobus solfataricus The crystal structures of the archaeal enzyme in complex with (R)-5-diphosphomevalonate and adenosine 5'-O-(3-thio)triphosphate or with (R)-5-diphosphomevalonate and ADP are newly solved, and theoretical analysis based on the structure suggests the inability of proton abstraction by the conserved aspartate residue, Asp-281. Site-directed mutagenesis on Asp-281 creates mutants that only show diphosphomevalonate 3-kinase activity, demonstrating that the residue is required in the process of phosphate elimination/decarboxylation, rather than in the preceding phosphorylation step. These results enable discussion of the catalytic roles of the aspartate residue and provide clear proof of the involvement of a long predicted intermediate, (R)-3-phospho-5-diphosphomevalonate, in the reaction of the enzyme.


Assuntos
Substituição de Aminoácidos , Carboxiliases/química , Fosfotransferases/química , Espectroscopia de Ressonância Magnética Nuclear de Carbono-13 , Cristalografia por Raios X , Eletroforese em Gel de Poliacrilamida , Conformação Proteica , Espectrometria de Massas por Ionização por Electrospray , Especificidade por Substrato , Sulfolobus solfataricus/enzimologia
9.
J Biosci Bioeng ; 122(6): 689-693, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27426274

RESUMO

Escherichia coli YggS is a highly conserved pyridoxal 5'-phosphate (PLP)-binding protein whose biochemical function is currently unknown. A previous study with a yggS-deficient E. coli strain (ΔyggS) demonstrated that YggS controls l-Ile- and l-Val-metabolism by modulating 2-ketobutyrate (2-KB), l-2-aminobutyrate (l-2-AB), and/or coenzyme A (CoA) availability in a PLP-dependent fashion. In this study, we found that ΔyggS accumulates an unknown metabolite as judged by amino acid analyses. LC/MS and MS/MS analyses of the compound with propyl chloroformate derivatization, and co-chromatography analysis identified this compound as γ-l-glutamyl-l-2-aminobutyryl-glycine (ophthalmic acid), a glutathione (GSH) analogue in which the l-Cys moiety is replaced by l-2-AB. We also determine the metabolic consequence of the yggS mutation. Absence of YggS initially increases l-2-AB availability, and then causes ophthalmic acid accumulation and CoA limitation in the cell. The expression of a γ-glutamylcysteine synthetase and a glutathione synthetase in a ΔyggS background causes high-level accumulation of ophthalmic acid in the cells (∼1.2 nmol/mg cells) in a minimal synthetic medium. This opens the possibility of a first fermentative production of ophthalmic acid.


Assuntos
Proteínas de Transporte/genética , Proteínas de Escherichia coli/genética , Escherichia coli/genética , Escherichia coli/metabolismo , Deleção de Genes , Oligopeptídeos/biossíntese , Proteínas de Transporte/metabolismo , Coenzima A/metabolismo , Sequência Conservada , Dipeptídeos/genética , Dipeptídeos/metabolismo , Proteínas de Escherichia coli/metabolismo , Glutamato-Cisteína Ligase/genética , Glutamato-Cisteína Ligase/metabolismo , Glutationa Sintase/genética , Glutationa Sintase/metabolismo , Organismos Geneticamente Modificados , Proteínas de Ligação a Fosfato/genética , Proteínas de Ligação a Fosfato/metabolismo , Espectrometria de Massas em Tandem
10.
FEBS J ; 283(12): 2369-83, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-27129422

RESUMO

Cis-prenyltransferase usually consecutively catalyzes the head-to-tail condensation reactions of isopentenyl diphosphate to allylic prenyl diphosphate in the production of (E,Z-mixed) polyprenyl diphosphate, which is the precursor of glycosyl carrier lipids. Some recently discovered homologs of the enzyme, however, catalyze the nonhead-to-tail condensation reactions between allylic prenyl diphosphates. In this study, we characterize a cis-prenyltransferase homolog from a methanogenic archaeon, Methanosarcina acetivorans, to obtain information on the biosynthesis of the glycosyl carrier lipids within it. This enzyme catalyzes both head-to-tail and nonhead-to-tail condensation reactions. The kinetic analysis shows that the main reaction of the enzyme is consecutive head-to-tail prenyl condensation reactions yielding polyprenyl diphosphates, while the chain lengths of the major products seem shorter than expected for the precursor of glycosyl carrier lipids. On the other hand, a subsidiary reaction of the enzyme, i.e., nonhead-to-tail condensation between dimethylallyl diphosphate and farnesyl diphosphate, gives a novel diterpenoid compound, geranyllavandulyl diphosphate.


Assuntos
Lipídeos/química , Methanosarcina/enzimologia , Neopreno/metabolismo , Transferases/química , Catálise , Clonagem Molecular , Cinética , Lipídeos/biossíntese , Neopreno/química , Especificidade por Substrato , Transferases/genética , Transferases/metabolismo
11.
J Bacteriol ; 197(21): 3463-71, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26303832

RESUMO

UNLABELLED: In the present study, the crystal structure of recombinant diphosphomevalonate decarboxylase from the hyperthermophilic archaeon Sulfolobus solfataricus was solved as the first example of an archaeal and thermophile-derived diphosphomevalonate decarboxylase. The enzyme forms a homodimer, as expected for most eukaryotic and bacterial orthologs. Interestingly, the subunits of the homodimer are connected via an intersubunit disulfide bond, which presumably formed during the purification process of the recombinant enzyme expressed in Escherichia coli. When mutagenesis replaced the disulfide-forming cysteine residue with serine, however, the thermostability of the enzyme was significantly lowered. In the presence of ß-mercaptoethanol at a concentration where the disulfide bond was completely reduced, the wild-type enzyme was less stable to heat. Moreover, Western blot analysis combined with nonreducing SDS-PAGE of the whole cells of S. solfataricus proved that the disulfide bond was predominantly formed in the cells. These results suggest that the disulfide bond is required for the cytosolic enzyme to acquire further thermostability and to exert activity at the growth temperature of S. solfataricus. IMPORTANCE: This study is the first report to describe the crystal structures of archaeal diphosphomevalonate decarboxylase, an enzyme involved in the classical mevalonate pathway. A stability-conferring intersubunit disulfide bond is a remarkable feature that is not found in eukaryotic and bacterial orthologs. The evidence that the disulfide bond also is formed in S. solfataricus cells suggests its physiological importance.


Assuntos
Proteínas Arqueais/química , Proteínas Arqueais/metabolismo , Carboxiliases/química , Carboxiliases/metabolismo , Sulfolobus solfataricus/enzimologia , Sequência de Aminoácidos , Proteínas Arqueais/genética , Carboxiliases/genética , Cristalografia por Raios X , Dissulfetos/metabolismo , Estabilidade Enzimática , Temperatura Alta , Dados de Sequência Molecular , Alinhamento de Sequência , Especificidade por Substrato , Sulfolobus solfataricus/química , Sulfolobus solfataricus/genética
12.
J Biol Chem ; 289(23): 15957-67, 2014 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-24755225

RESUMO

The lack of a few conserved enzymes in the classical mevalonate pathway and the widespread existence of isopentenyl phosphate kinase suggest the presence of a partly modified mevalonate pathway in most archaea and in some bacteria. In the pathway, (R)-mevalonate 5-phosphate is thought to be metabolized to isopentenyl diphosphate via isopentenyl phosphate. The long anticipated enzyme that catalyzes the reaction from (R)-mevalonate 5-phosphate to isopentenyl phosphate was recently identified in a Cloroflexi bacterium, Roseiflexus castenholzii, and in a halophilic archaeon, Haloferax volcanii. However, our trial to convert the intermediates of the classical and modified mevalonate pathways into isopentenyl diphosphate using cell-free extract from a thermophilic archaeon Thermoplasma acidophilum implied that the branch point intermediate of these known pathways, i.e. (R)-mevalonate 5-phosphate, is unlikely to be the precursor of isoprenoid. Through the process of characterizing the recombinant homologs of mevalonate pathway-related enzymes from the archaeon, a distant homolog of diphosphomevalonate decarboxylase was found to catalyze the phosphorylation of (R)-mevalonate to yield (R)-mevalonate 3-phosphate. The product could be converted into isopentenyl phosphate, probably through (R)-mevalonate 3,5-bisphosphate, by the action of unidentified T. acidophilum enzymes fractionated by anion-exchange chromatography. These findings demonstrate the presence of a third alternative "Thermoplasma-type" mevalonate pathway, which involves (R)-mevalonate 3-phosphotransferase and probably both (R)-mevalonate 3-phosphate 5-phosphotransferase and (R)-mevalonate 3,5-bisphosphate decarboxylase, in addition to isopentenyl phosphate kinase.


Assuntos
Ácido Mevalônico/análogos & derivados , Ácido Mevalônico/metabolismo , Thermoplasma/metabolismo , Trifosfato de Adenosina/metabolismo , Proteínas Arqueais/genética , Proteínas Arqueais/metabolismo , Sequência de Bases , Sistema Livre de Células , Cromatografia por Troca Iônica , Cromatografia em Camada Fina , Primers do DNA , Filogenia
13.
Org Lett ; 8(5): 943-6, 2006 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-16494480

RESUMO

To determine the enantioselectivity of (S)-2,3-di-O-geranylgeranylglyceryl phosphate synthase (DGGGPS) from the thermoacidophilic archaeon Sulfolobus solfataricus, we developed an efficient enantioselective route to the enantiomeric geranylgeranylglyceryl phosphates (R)-GGGP and (S)-GGGP. Previous routes to these substrates involved enzymatic conversions due to the lability of the polyprenyl chains toward common phosphorylation reaction conditions. The synthesis described herein employs a mild trimethyl phosphite/carbon tetrabromide oxidative phosphorylation to circumvent this problem. In contrast to previous results suggesting that only (S)-GGGP can act as the prenyl acceptor substrate, both (R)-GGGP and (S)-GGGP were found to be substrates for DGGGPS.


Assuntos
Dimetilaliltranstransferase/metabolismo , Glicerofosfatos/síntese química , Lipídeos de Membrana/biossíntese , Fosfatos de Poli-Isoprenil/síntese química , Sulfolobus solfataricus/enzimologia , Glicerofosfatos/química , Lipídeos de Membrana/química , Estrutura Molecular , Fosfatos de Poli-Isoprenil/química , Estereoisomerismo
14.
J Biol Chem ; 279(48): 50197-203, 2004 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-15356000

RESUMO

The core structure of membrane lipids of archaea have some unique properties that permit archaea to be distinguished from the others, i.e. bacteria and eukaryotes. (S)-2,3-Di-O-geranylgeranylglyceryl phosphate synthase, which catalyzes the transfer of a geranylgeranyl group from geranylgeranyl diphosphate to (S)-3-O-geranylgeranylglyceryl phosphate, is involved in the biosynthesis of archaeal membrane lipids. Enzymes of the UbiA prenyltransferase family are known to catalyze the transfer of a prenyl group to various acceptors with hydrophobic ring structures in the biosynthesis of respiratory quinones, hemes, chlorophylls, vitamin E, and shikonin. The thermoacidophilic archaeon Sulfolobus solfataricus was found to encode three homologues of UbiA prenyltransferase in its genome. One of the homologues encoded by SSO0583 was expressed in Escherichia coli, purified, and characterized. Radio-assay and mass spectrometry analysis data indicated that the enzyme specifically catalyzes the biosynthesis of (S)-2,3-di-O-geranylgeranylglyceryl phosphate. The fact that the orthologues of the enzyme are encoded in almost all archaeal genomes clearly indicates the importance of their functions. A phylogenetic tree constructed using the amino acid sequences of some typical members of the UbiA prenyltransferase family and their homologues from S. solfataricus suggests that the two other S. solfataricus homologues, excluding the (S)-2,3-di-O-geranylgeranylglyceryl phosphate synthase, are involved in the production of respiratory quinone and heme, respectively. We propose here that archaeal prenyltransferases involved in membrane lipid biosynthesis might be prototypes of the protein family and that archaea might have played an important role in the molecular evolution of prenyltransferases.


Assuntos
Alquil e Aril Transferases/genética , Sulfolobus solfataricus/enzimologia , Alquil e Aril Transferases/isolamento & purificação , Alquil e Aril Transferases/metabolismo , Sequência de Aminoácidos , Autorradiografia , Cromatografia Líquida de Alta Pressão , Clonagem Molecular , Eletroforese em Gel de Poliacrilamida , Dados de Sequência Molecular , Filogenia , Alinhamento de Sequência
15.
Appl Environ Microbiol ; 69(1): 162-9, 2003 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-12513991

RESUMO

Enzymatic degradation of collagen produces peptides, the collagen peptides, which show a variety of bioactivities of industrial interest. Alicyclobacillus sendaiensis strain NTAP-1, a slightly thermophilic, acidophilic bacterium, extracellularly produces a novel thermostable collagenolytic activity, which exhibits its optimum at the acidic region (pH 3.9) and is potentially applicable to the efficient production of such peptides. Here, we describe the purification to homogeneity, characterization, gene cloning, and heterologous expression of this enzyme, which we call ScpA. Purified ScpA is a monomeric, pepstatin-insensitive carboxyl proteinase with a molecular mass of 37 kDa which exhibited the highest reactivity toward collagen (type I, from a bovine Achilles tendon) among the macromolecular substrates examined. On the basis of the sequences of the peptides obtained by digestion of collagen with ScpA, the following synthetic peptides were designed as substrates for ScpA and kinetically analyzed: Phe-Gly-Pro-Ala*Gly-Pro-Ile-Gly (k(cat), 5.41 s(-1); K(m), 32 micro M) and Met-Gly-Pro-Arg*Gly-Phe-Pro-Gly-Ser (k(cat), 351 s(-1); K(m), 214 micro M), where the asterisks denote the scissile bonds. The cloned scpA gene encoded a protein of 553 amino acids with a calculated molecular mass of 57,167 Da. Heterologous expression of the scpA gene in the Escherichia coli cells yielded a mature 37-kDa species after a two-step proteolytic cleavage of the precursor protein. Sequencing of the scpA gene revealed that ScpA was a collagenolytic member of the serine-carboxyl proteinase family (the S53 family according to the MEROPS database), which is a recently identified proteinase family on the basis of crystallography results. Unexpectedly, ScpA was highly similar to a member of this family, kumamolysin, whose specificity toward macromolecular substrates has not been defined.


Assuntos
Ácido Aspártico Endopeptidases , Bactérias Aeróbias/enzimologia , Colágeno/metabolismo , Sequência de Aminoácidos , Animais , Ácido Aspártico Endopeptidases/química , Ácido Aspártico Endopeptidases/genética , Ácido Aspártico Endopeptidases/isolamento & purificação , Ácido Aspártico Endopeptidases/metabolismo , Bactérias Aeróbias/genética , Clonagem Molecular , Estabilidade Enzimática , Dados de Sequência Molecular , Peptídeos/metabolismo , Inibidores de Proteases/farmacologia , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Análise de Sequência de DNA , Serina/metabolismo , Especificidade por Substrato
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA