Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
2.
J Urol ; 211(3): 415-425, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38147400

RESUMO

PURPOSE: Less invasive decision support tools are desperately needed to identify occult high-risk disease in men with prostate cancer (PCa) on active surveillance (AS). For a variety of reasons, many men on AS with low- or intermediate-risk disease forgo the necessary repeat surveillance biopsies needed to identify potentially higher-risk PCa. Here, we describe the development of a blood-based immunocyte transcriptomic signature to identify men harboring occult aggressive PCa. We then validate it on a biopsy-positive population with the goal of identifying men who should not be on AS and confirm those men with indolent disease who can safely remain on AS. This model uses subtraction-normalized immunocyte transcriptomic profiles to risk-stratify men with PCa who could be candidates for AS. MATERIALS AND METHODS: Men were eligible for enrollment in the study if they were determined by their physician to have a risk profile that warranted prostate biopsy. Both training (n = 1017) and validation cohort (n = 1198) populations had blood samples drawn coincident to their prostate biopsy. Purified CD2+ and CD14+ immune cells were obtained from peripheral blood mononuclear cells, and RNA was extracted and sequenced. To avoid overfitting and unnecessary complexity, a regularized regression model was built on the training cohort to predict PCa aggressiveness based on the National Comprehensive Cancer Network PCa guidelines. This model was then validated on an independent cohort of biopsy-positive men only, using National Comprehensive Cancer Network unfavorable intermediate risk and worse as an aggressiveness outcome, identifying patients who were not appropriate for AS. RESULTS: The best final model for the AS setting was obtained by combining an immunocyte transcriptomic profile based on 2 cell types with PSA density and age, reaching an AUC of 0.73 (95% CI: 0.69-0.77). The model significantly outperforms (P < .001) PSA density as a biomarker, which has an AUC of 0.69 (95% CI: 0.65-0.73). This model yields an individualized patient risk score with 90% negative predictive value and 50% positive predictive value. CONCLUSIONS: While further validation in an intended-use cohort is needed, the immunocyte transcriptomic model offers a promising tool for risk stratification of individual patients who are being considered for AS.


Assuntos
Antígeno Prostático Específico , Neoplasias da Próstata , Masculino , Humanos , Leucócitos Mononucleares/patologia , Conduta Expectante , Neoplasias da Próstata/patologia , Biópsia , Medição de Risco
3.
Am J Pathol ; 193(9): 1185-1194, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37611969

RESUMO

Thyroid cancer is the most common malignant endocrine tumor. The key test to assess preoperative risk of malignancy is cytologic evaluation of fine-needle aspiration biopsies (FNABs). The evaluation findings can often be indeterminate, leading to unnecessary surgery for benign post-surgical diagnoses. We have developed a deep-learning algorithm to analyze thyroid FNAB whole-slide images (WSIs). We show, on the largest reported data set of thyroid FNAB WSIs, clinical-grade performance in the screening of determinate cases and indications for its use as an ancillary test to disambiguate indeterminate cases. The algorithm screened and definitively classified 45.1% (130/288) of the WSIs as either benign or malignant with risk of malignancy rates of 2.7% and 94.7%, respectively. It reduced the number of indeterminate cases (N = 108) by reclassifying 21.3% (N = 23) as benign with a resultant risk of malignancy rate of 1.8%. Similar results were reproduced using a data set of consecutive FNABs collected during an entire calendar year, achieving clinically acceptable margins of error for thyroid FNAB classification.


Assuntos
Aprendizado Profundo , Neoplasias da Glândula Tireoide , Humanos , Citologia , Neoplasias da Glândula Tireoide/diagnóstico , Algoritmos
4.
J Am Heart Assoc ; 12(14): e029873, 2023 07 18.
Artigo em Inglês | MEDLINE | ID: mdl-37421270

RESUMO

Background Nonalcoholic fatty liver disease (NAFLD) and heart failure with preserved ejection fraction (HFpEF) share common risk factors, including obesity and diabetes. They are also thought to be mechanistically linked. The aim of this study was to define serum metabolites associated with HFpEF in a cohort of patients with biopsy-proven NAFLD to identify common mechanisms. Methods and Results We performed a retrospective, single-center study of 89 adult patients with biopsy-proven NAFLD who had transthoracic echocardiography performed for any indication. Metabolomic analysis was performed on serum using ultrahigh performance liquid and gas chromatography/tandem mass spectrometry. HFpEF was defined as ejection fraction >50% plus at least 1 echocardiographic feature of HFpEF (diastolic dysfunction, abnormal left atrial size) and at least 1 heart failure sign or symptom. We performed generalized linear models to evaluate associations between individual metabolites, NAFLD, and HFpEF. Thirty-seven out of 89 (41.6%) patients met criteria for HFpEF. A total of 1151 metabolites were detected; 656 were analyzed after exclusion of unnamed metabolites and those with >30% missing values. Fifty-three metabolites were associated with the presence of HFpEF with unadjusted P value <0.05; none met statistical significance after adjustment for multiple comparisons. The majority (39/53, 73.6%) were lipid metabolites, and levels were generally increased. Two cysteine metabolites (cysteine s-sulfate and s-methylcysteine) were present at significantly lower levels in patients with HFpEF. Conclusions We identified serum metabolites associated with HFpEF in patients with biopsy-proven NAFLD, with increased levels of multiple lipid metabolites. Lipid metabolism could be an important pathway linking HFpEF to NAFLD.


Assuntos
Insuficiência Cardíaca , Hepatopatia Gordurosa não Alcoólica , Adulto , Humanos , Hepatopatia Gordurosa não Alcoólica/complicações , Hepatopatia Gordurosa não Alcoólica/diagnóstico , Volume Sistólico , Estudos Retrospectivos , Cisteína , Lipídeos , Biópsia
5.
Ann Surg ; 278(6): 890-895, 2023 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-37264901

RESUMO

OBJECTIVE: To implement a machine learning model using only the restricted data available at case creation time to predict surgical case length for multiple services at different locations. BACKGROUND: The operating room is one of the most expensive resources in a health system, estimated to cost $22 to $133 per minute and generate about 40% of hospital revenue. Accurate prediction of surgical case length is necessary for efficient scheduling and cost-effective utilization of the operating room and other resources. METHODS: We introduced a similarity cascade to capture the complexity of cases and surgeon influence on the case length and incorporated that into a gradient-boosting machine learning model. The model loss function was customized to improve the balance between over- and under-prediction of the case length. A production pipeline was created to seamlessly deploy and implement the model across our institution. RESULTS: The prospective analysis showed that the model output was gradually adopted by the schedulers and outperformed the scheduler-predicted case length from August to December 2022. In 33,815 surgical cases across outpatient and inpatient platforms, the operational implementation predicted 11.2% fewer underpredicted cases and 5.9% more cases within 20% of the actual case length compared with the schedulers and only overpredicted 5.3% more. The model assisted schedulers to predict 3.4% more cases within 20% of the actual case length and 4.3% fewer underpredicted cases. CONCLUSIONS: We created a unique framework that is being leveraged every day to predict surgical case length more accurately at case posting time and could be potentially utilized to deploy future machine learning models.


Assuntos
Hospitais , Salas Cirúrgicas , Humanos , Previsões , Aprendizado de Máquina
6.
Liver Transpl ; 29(7): 683-697, 2023 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-37029083

RESUMO

HCC recurrence following liver transplantation (LT) is highly morbid and occurs despite strict patient selection criteria. Individualized prediction of post-LT HCC recurrence risk remains an important need. Clinico-radiologic and pathologic data of 4981 patients with HCC undergoing LT from the US Multicenter HCC Transplant Consortium (UMHTC) were analyzed to develop a REcurrent Liver cAncer Prediction ScorE (RELAPSE). Multivariable Fine and Gray competing risk analysis and machine learning algorithms (Random Survival Forest and Classification and Regression Tree models) identified variables to model HCC recurrence. RELAPSE was externally validated in 1160 HCC LT recipients from the European Hepatocellular Cancer Liver Transplant study group. Of 4981 UMHTC patients with HCC undergoing LT, 71.9% were within Milan criteria, 16.1% were initially beyond Milan criteria with 9.4% downstaged before LT, and 12.0% had incidental HCC on explant pathology. Overall and recurrence-free survival at 1, 3, and 5 years was 89.7%, 78.6%, and 69.8% and 86.8%, 74.9%, and 66.7%, respectively, with a 5-year incidence of HCC recurrence of 12.5% (median 16 months) and non-HCC mortality of 20.8%. A multivariable model identified maximum alpha-fetoprotein (HR = 1.35 per-log SD, 95% CI,1.22-1.50, p < 0.001), neutrophil-lymphocyte ratio (HR = 1.16 per-log SD, 95% CI,1.04-1.28, p < 0.006), pathologic maximum tumor diameter (HR = 1.53 per-log SD, 95% CI, 1.35-1.73, p < 0.001), microvascular (HR = 2.37, 95%-CI, 1.87-2.99, p < 0.001) and macrovascular (HR = 3.38, 95% CI, 2.41-4.75, p < 0.001) invasion, and tumor differentiation (moderate HR = 1.75, 95% CI, 1.29-2.37, p < 0.001; poor HR = 2.62, 95% CI, 1.54-3.32, p < 0.001) as independent variables predicting post-LT HCC recurrence (C-statistic = 0.78). Machine learning algorithms incorporating additional covariates improved prediction of recurrence (Random Survival Forest C-statistic = 0.81). Despite significant differences in European Hepatocellular Cancer Liver Transplant recipient radiologic, treatment, and pathologic characteristics, external validation of RELAPSE demonstrated consistent 2- and 5-year recurrence risk discrimination (AUCs 0.77 and 0.75, respectively). We developed and externally validated a RELAPSE score that accurately discriminates post-LT HCC recurrence risk and may allow for individualized post-LT surveillance, immunosuppression modification, and selection of high-risk patients for adjuvant therapies.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Transplante de Fígado , Humanos , Transplante de Fígado/efeitos adversos , Fatores de Risco , Recidiva Local de Neoplasia/patologia , Estudos Retrospectivos , Recidiva
7.
Mod Pathol ; 36(6): 100129, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36931041

RESUMO

We examined the performance of deep learning models on the classification of thyroid fine-needle aspiration biopsies using microscope images captured in 2 ways: with a high-resolution scanner and with a mobile phone camera. Our training set consisted of images from 964 whole-slide images captured with a high-resolution scanner. Our test set consisted of 100 slides; 20 manually selected regions of interest (ROIs) from each slide were captured in 2 ways as mentioned above. Applying a baseline machine learning algorithm trained on scanner ROIs resulted in performance deterioration when applied to the smartphone ROIs (97.8% area under the receiver operating characteristic curve [AUC], CI = [95.4%, 100.0%] for scanner images vs 89.5% AUC, CI = [82.3%, 96.6%] for mobile images, P = .019). Preliminary analysis via histogram matching showed that the baseline model was overly sensitive to slight color variations in the images (specifically, to color differences between mobile and scanner images). Adding color augmentation during training reduces this sensitivity and narrows the performance gap between mobile and scanner images (97.6% AUC, CI = [95.0%, 100.0%] for scanner images vs 96.0% AUC, CI = [91.8%, 100.0%] for mobile images, P = .309), with both modalities on par with human pathologist performance (95.6% AUC, CI = [91.6%, 99.5%]) for malignancy prediction (P = .398 for pathologist vs scanner and P = .875 for pathologist vs mobile). For indeterminate cases (pathologist-assigned Bethesda category of 3, 4, or 5), color augmentations confer some improvement (88.3% AUC, CI = [73.7%, 100.0%] for the baseline model vs 96.2% AUC, CI = [90.9%, 100.0%] with color augmentations, P = .158). In addition, we found that our model's performance levels off after 15 ROIs, a promising indication that ROI data collection would not be time-consuming for our diagnostic system. Finally, we showed that the model has sensible Bethesda category (TBS) predictions (increasing risk malignancy rate with predicted TBS category, with 0% malignancy for predicted TBS 2 and 100% malignancy for TBS 6).


Assuntos
Citologia , Neoplasias da Glândula Tireoide , Humanos , Smartphone , Neoplasias da Glândula Tireoide/diagnóstico , Neoplasias da Glândula Tireoide/patologia , Aprendizado de Máquina
8.
JID Innov ; 3(1): 100150, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36655135

RESUMO

Artificial intelligence (AI) has recently made great advances in image classification and malignancy prediction in the field of dermatology. However, understanding the applicability of AI in clinical dermatology practice remains challenging owing to the variability of models, image data, database characteristics, and variable outcome metrics. This systematic review aims to provide a comprehensive overview of dermatology literature using convolutional neural networks. Furthermore, the review summarizes the current landscape of image datasets, transfer learning approaches, challenges, and limitations within current AI literature and current regulatory pathways for approval of models as clinical decision support tools.

9.
Neumol. pediátr. (En línea) ; 18(1): 23-24, 2023.
Artigo em Espanhol | LILACS | ID: biblio-1442759

RESUMO

Desde el año 2007 se han generado guías de diagnóstico y tratamiento de micobacterias no tuberculosas (MNTB), la última de las cuales fue desarrollada en el año 2020 por ATS/ERS/ESCMID/IDSA, en ella se actualizan los criterios diagnósticos, los criterios para determinar el inicio de tratamiento y recomendaciones de esquema de antibióticos para las especies más frecuentes. En paralelo se han ido desarrollando terapias alternativas como la fagoterapia. El objetivo de la presente revisión es dar a conocer los cambios que traen estas últimas guías y actualizar algunas de las últimas novedades con respecto al manejo de las micobacterias no tuberculosas.


Since 2007, guidelines for diagnosis and treatment of non-tuberculous Mycobacteria have been generated, the latest of which was developed by ATS/ERS/ESCMID/IDSA, in which the diagnostic criteria, and the criteria for determining the initiation of treatment and antibiotic scheme recommendations for the most frequent species are updated. At the same time, alternative therapies such as phage therapy have been developed. The objective of this review is to show the changes that these latest guidelines bring and update some of the latest developments regarding the management of non-tuberculous Mycobacteria.


Assuntos
Humanos , Infecções por Mycobacterium não Tuberculosas/diagnóstico , Infecções por Mycobacterium não Tuberculosas/microbiologia , Infecções por Mycobacterium não Tuberculosas/terapia , Micobactérias não Tuberculosas/isolamento & purificação
10.
Front Med (Lausanne) ; 9: 946937, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36341258

RESUMO

Background: Understanding performance of convolutional neural networks (CNNs) for binary (benign vs. malignant) lesion classification based on real world images is important for developing a meaningful clinical decision support (CDS) tool. Methods: We developed a CNN based on real world smartphone images with histopathological ground truth and tested the utility of structured electronic health record (EHR) data on model performance. Model accuracy was compared against three board-certified dermatologists for clinical validity. Results: At a classification threshold of 0.5, the sensitivity was 79 vs. 77 vs. 72%, and specificity was 64 vs. 65 vs. 57% for image-alone vs. combined image and clinical data vs. clinical data-alone models, respectively. The PPV was 68 vs. 69 vs. 62%, AUC was 0.79 vs. 0.79 vs. 0.69, and AP was 0.78 vs. 0.79 vs. 0.64 for image-alone vs. combined data vs. clinical data-alone models. Older age, male sex, and number of prior dermatology visits were important positive predictors for malignancy in the clinical data-alone model. Conclusion: Additional clinical data did not significantly improve CNN image model performance. Model accuracy for predicting malignant lesions was comparable to dermatologists (model: 71.31% vs. 3 dermatologists: 77.87, 69.88, and 71.93%), validating clinical utility. Prospective validation of the model in primary care setting will enhance understanding of the model's clinical utility.

11.
Sci Rep ; 12(1): 15836, 2022 09 23.
Artigo em Inglês | MEDLINE | ID: mdl-36151257

RESUMO

We consider machine-learning-based lesion identification and malignancy prediction from clinical dermatological images, which can be indistinctly acquired via smartphone or dermoscopy capture. Additionally, we do not assume that images contain single lesions, thus the framework supports both focal or wide-field images. Specifically, we propose a two-stage approach in which we first identify all lesions present in the image regardless of sub-type or likelihood of malignancy, then it estimates their likelihood of malignancy, and through aggregation, it also generates an image-level likelihood of malignancy that can be used for high-level screening processes. Further, we consider augmenting the proposed approach with clinical covariates (from electronic health records) and publicly available data (the ISIC dataset). Comprehensive experiments validated on an independent test dataset demonstrate that (1) the proposed approach outperforms alternative model architectures; (2) the model based on images outperforms a pure clinical model by a large margin, and the combination of images and clinical data does not significantly improves over the image-only model; and (3) the proposed framework offers comparable performance in terms of malignancy classification relative to three board certified dermatologists with different levels of experience.


Assuntos
Melanoma , Neoplasias Cutâneas , Algoritmos , Dermoscopia/métodos , Humanos , Aprendizado de Máquina , Melanoma/patologia , Neoplasias Cutâneas/diagnóstico por imagem , Neoplasias Cutâneas/patologia
12.
Surgery ; 172(6): 1851-1859, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36116976

RESUMO

BACKGROUND: An emerging body of literature supports the role of individualized prognostic tools to guide the management of patients after trauma. The aim of this study was to develop advanced modeling tools from multidimensional data sources, including immunological analytes and clinical and administrative data, to predict outcomes in trauma patients. METHODS: This was a prospective study of trauma patients at Level 1 centers from 2015 to 2019. Clinical, flow cytometry, and serum cytokine data were collected within 48 hours of admission. Sparse logistic regression models were developed, jointly selecting predictors and estimating the risk of ventilator-associated pneumonia, acute kidney injury, complicated disposition (death, rehabilitation, or nursing facility), and return to the operating room. Model parameters (regularization controlling model sparsity) and performance estimation were obtained via nested leave-one-out cross-validation. RESULTS: A total of 179 patients were included. The incidences of ventilator-associated pneumonia, acute kidney injury, complicated disposition, and return to the operating room were 17.7%, 28.8%, 22.5%, and 12.3%, respectively. Regarding extensive resource use, 30.7% of patients had prolonged intensive care unit stay, 73.2% had prolonged length of stay, and 23.5% had need for prolonged ventilatory support. The models were developed and cross-validated for ventilator-associated pneumonia, acute kidney injury, complicated dispositions, and return to the operating room, yielding predictive areas under the curve from 0.70 to 0.91. Each model derived its optimal predictive value by combining clinical, administrative, and immunological analyte data. CONCLUSION: Clinical, immunological, and administrative data can be combined to predict post-traumatic outcomes and resource use. Multidimensional machine learning modeling can identify trauma patients with complicated clinical trajectories and high resource needs.


Assuntos
Injúria Renal Aguda , Pneumonia Associada à Ventilação Mecânica , Humanos , Estudos Prospectivos , Pneumonia Associada à Ventilação Mecânica/diagnóstico , Pneumonia Associada à Ventilação Mecânica/epidemiologia , Pneumonia Associada à Ventilação Mecânica/etiologia , Aprendizado de Máquina , Modelos Logísticos , Injúria Renal Aguda/diagnóstico , Injúria Renal Aguda/etiologia , Estudos Retrospectivos
13.
JAMA Netw Open ; 5(4): e227299, 2022 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-35420659

RESUMO

Importance: Bacterial and viral causes of acute respiratory illness (ARI) are difficult to clinically distinguish, resulting in the inappropriate use of antibacterial therapy. The use of a host gene expression-based test that is able to discriminate bacterial from viral infection in less than 1 hour may improve care and antimicrobial stewardship. Objective: To validate the host response bacterial/viral (HR-B/V) test and assess its ability to accurately differentiate bacterial from viral infection among patients with ARI. Design, Setting, and Participants: This prospective multicenter diagnostic study enrolled 755 children and adults with febrile ARI of 7 or fewer days' duration from 10 US emergency departments. Participants were enrolled from October 3, 2014, to September 1, 2019, followed by additional enrollment of patients with COVID-19 from March 20 to December 3, 2020. Clinical adjudication of enrolled participants identified 616 individuals as having bacterial or viral infection. The primary analysis cohort included 334 participants with high-confidence reference adjudications (based on adjudicator concordance and the presence of an identified pathogen confirmed by microbiological testing). A secondary analysis of the entire cohort of 616 participants included cases with low-confidence reference adjudications (based on adjudicator discordance or the absence of an identified pathogen in microbiological testing). Thirty-three participants with COVID-19 were included post hoc. Interventions: The HR-B/V test quantified the expression of 45 host messenger RNAs in approximately 45 minutes to derive a probability of bacterial infection. Main Outcomes and Measures: Performance characteristics for the HR-B/V test compared with clinical adjudication were reported as either bacterial or viral infection or categorized into 4 likelihood groups (viral very likely [probability score <0.19], viral likely [probability score of 0.19-0.40], bacterial likely [probability score of 0.41-0.73], and bacterial very likely [probability score >0.73]) and compared with procalcitonin measurement. Results: Among 755 enrolled participants, the median age was 26 years (IQR, 16-52 years); 360 participants (47.7%) were female, and 395 (52.3%) were male. A total of 13 participants (1.7%) were American Indian, 13 (1.7%) were Asian, 368 (48.7%) were Black, 131 (17.4%) were Hispanic, 3 (0.4%) were Native Hawaiian or Pacific Islander, 297 (39.3%) were White, and 60 (7.9%) were of unspecified race and/or ethnicity. In the primary analysis involving 334 participants, the HR-B/V test had sensitivity of 89.8% (95% CI, 77.8%-96.2%), specificity of 82.1% (95% CI, 77.4%-86.6%), and a negative predictive value (NPV) of 97.9% (95% CI, 95.3%-99.1%) for bacterial infection. In comparison, the sensitivity of procalcitonin measurement was 28.6% (95% CI, 16.2%-40.9%; P < .001), the specificity was 87.0% (95% CI, 82.7%-90.7%; P = .006), and the NPV was 87.6% (95% CI, 85.5%-89.5%; P < .001). When stratified into likelihood groups, the HR-B/V test had an NPV of 98.9% (95% CI, 96.1%-100%) for bacterial infection in the viral very likely group and a positive predictive value of 63.4% (95% CI, 47.2%-77.9%) for bacterial infection in the bacterial very likely group. The HR-B/V test correctly identified 30 of 33 participants (90.9%) with acute COVID-19 as having a viral infection. Conclusions and Relevance: In this study, the HR-B/V test accurately discriminated bacterial from viral infection among patients with febrile ARI and was superior to procalcitonin measurement. The findings suggest that an accurate point-of-need host response test with high NPV may offer an opportunity to improve antibiotic stewardship and patient outcomes.


Assuntos
Infecções Bacterianas , COVID-19 , Viroses , Adulto , Bactérias , Infecções Bacterianas/tratamento farmacológico , COVID-19/diagnóstico , Criança , Feminino , Febre/diagnóstico , Expressão Gênica , Humanos , Masculino , Pró-Calcitonina , Viroses/diagnóstico
14.
Ann Surg ; 275(6): 1094-1102, 2022 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-35258509

RESUMO

OBJECTIVE: To design and establish a prospective biospecimen repository that integrates multi-omics assays with clinical data to study mechanisms of controlled injury and healing. BACKGROUND: Elective surgery is an opportunity to understand both the systemic and focal responses accompanying controlled and well-characterized injury to the human body. The overarching goal of this ongoing project is to define stereotypical responses to surgical injury, with the translational purpose of identifying targetable pathways involved in healing and resilience, and variations indicative of aberrant peri-operative outcomes. METHODS: Clinical data from the electronic medical record combined with large-scale biological data sets derived from blood, urine, fecal matter, and tissue samples are collected prospectively through the peri-operative period on patients undergoing 14 surgeries chosen to represent a range of injury locations and intensities. Specimens are subjected to genomic, transcriptomic, proteomic, and metabolomic assays to describe their genetic, metabolic, immunologic, and microbiome profiles, providing a multidimensional landscape of the human response to injury. RESULTS: The highly multiplexed data generated includes changes in over 28,000 mRNA transcripts, 100 plasma metabolites, 200 urine metabolites, and 400 proteins over the longitudinal course of surgery and recovery. In our initial pilot dataset, we demonstrate the feasibility of collecting high quality multi-omic data at pre- and postoperative time points and are already seeing evidence of physiologic perturbation between timepoints. CONCLUSIONS: This repository allows for longitudinal, state-of-the-art geno-mic, transcriptomic, proteomic, metabolomic, immunologic, and clinical data collection and provides a rich and stable infrastructure on which to fuel further biomedical discovery.


Assuntos
Biologia Computacional , Proteômica , Genômica , Humanos , Metabolômica , Estudos Prospectivos , Proteômica/métodos
15.
Arch Pathol Lab Med ; 146(6): 727-734, 2022 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-34591085

RESUMO

CONTEXT.­: Prostate cancer is a common malignancy, and accurate diagnosis typically requires histologic review of multiple prostate core biopsies per patient. As pathology volumes and complexity increase, new tools to improve the efficiency of everyday practice are keenly needed. Deep learning has shown promise in pathology diagnostics, but most studies silo the efforts of pathologists from the application of deep learning algorithms. Very few hybrid pathologist-deep learning approaches have been explored, and these typically require complete review of histologic slides by both the pathologist and the deep learning system. OBJECTIVE.­: To develop a novel and efficient hybrid human-machine learning approach to screen prostate biopsies. DESIGN.­: We developed an algorithm to determine the 20 regions of interest with the highest probability of malignancy for each prostate biopsy; presenting these regions to a pathologist for manual screening limited the initial review by a pathologist to approximately 2% of the tissue area of each sample. We evaluated this approach by using 100 biopsies (29 malignant, 60 benign, 11 other) that were reviewed by 4 pathologists (3 urologic pathologists, 1 general pathologist) using a custom-designed graphical user interface. RESULTS.­: Malignant biopsies were correctly identified as needing comprehensive review with high sensitivity (mean, 99.2% among all pathologists); conversely, most benign prostate biopsies (mean, 72.1%) were correctly identified as needing no further review. CONCLUSIONS.­: This novel hybrid system has the potential to efficiently triage out most benign prostate core biopsies, conserving time for the pathologist to dedicate to detailed evaluation of malignant biopsies.


Assuntos
Próstata , Neoplasias da Próstata , Biópsia , Humanos , Aprendizado de Máquina , Masculino , Patologistas , Próstata/patologia , Neoplasias da Próstata/diagnóstico , Neoplasias da Próstata/patologia
16.
Arch Pathol Lab Med ; 146(7): 872-878, 2022 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-34669924

RESUMO

CONTEXT.­: The use of whole slide images (WSIs) in diagnostic pathology presents special challenges for the cytopathologist. Informative areas on a direct smear from a thyroid fine-needle aspiration biopsy (FNAB) smear may be spread across a large area comprising blood and dead space. Manually navigating through these areas makes screening and evaluation of FNA smears on a digital platform time-consuming and laborious. We designed a machine learning algorithm that can identify regions of interest (ROIs) on thyroid fine-needle aspiration biopsy WSIs. OBJECTIVE.­: To evaluate the ability of the machine learning algorithm and screening software to identify and screen for a subset of informative ROIs on a thyroid FNA WSI that can be used for final diagnosis. DESIGN.­: A representative slide from each of 109 consecutive thyroid fine-needle aspiration biopsies was scanned. A cytopathologist reviewed each WSI and recorded a diagnosis. The machine learning algorithm screened and selected a subset of 100 ROIs from each WSI to present as an image gallery to the same cytopathologist after a washout period of 117 days. RESULTS.­: Concordance between the diagnoses using WSIs and those using the machine learning algorithm-generated ROI image gallery was evaluated using pairwise weighted κ statistics. Almost perfect concordance was seen between the 2 methods with a κ score of 0.924. CONCLUSIONS.­: Our results show the potential of the screening software as an effective screening tool with the potential to reduce cytopathologist workloads.


Assuntos
Software , Glândula Tireoide , Algoritmos , Biópsia por Agulha Fina/métodos , Humanos , Aprendizado de Máquina , Glândula Tireoide/diagnóstico por imagem , Glândula Tireoide/patologia
17.
PLoS One ; 16(12): e0261385, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34905580

RESUMO

OBJECTIVES: Compare three host response strategies to distinguish bacterial and viral etiologies of acute respiratory illness (ARI). METHODS: In this observational cohort study, procalcitonin, a 3-protein panel (CRP, IP-10, TRAIL), and a host gene expression mRNA panel were measured in 286 subjects with ARI from four emergency departments. Multinomial logistic regression and leave-one-out cross validation were used to evaluate the protein and mRNA tests. RESULTS: The mRNA panel performed better than alternative strategies to identify bacterial infection: AUC 0.93 vs. 0.83 for the protein panel and 0.84 for procalcitonin (P<0.02 for each comparison). This corresponded to a sensitivity and specificity of 92% and 83% for the mRNA panel, 81% and 73% for the protein panel, and 68% and 87% for procalcitonin, respectively. A model utilizing all three strategies was the same as mRNA alone. For the diagnosis of viral infection, the AUC was 0.93 for mRNA and 0.84 for the protein panel (p<0.05). This corresponded to a sensitivity and specificity of 89% and 82% for the mRNA panel, and 85% and 62% for the protein panel, respectively. CONCLUSIONS: A gene expression signature was the most accurate host response strategy for classifying subjects with bacterial, viral, or non-infectious ARI.


Assuntos
Bactérias/isolamento & purificação , Infecções Bacterianas/diagnóstico , Infecções Respiratórias/epidemiologia , Viroses/diagnóstico , Vírus/isolamento & purificação , Adulto , Infecções Bacterianas/complicações , Infecções Bacterianas/metabolismo , Infecções Bacterianas/microbiologia , Biomarcadores/metabolismo , Proteína C-Reativa/genética , Proteína C-Reativa/metabolismo , Estudos de Casos e Controles , Quimiocina CXCL10/genética , Quimiocina CXCL10/metabolismo , Diagnóstico Diferencial , Serviço Hospitalar de Emergência , Feminino , Seguimentos , Humanos , Masculino , Pessoa de Meia-Idade , Pró-Calcitonina/genética , Pró-Calcitonina/metabolismo , Prognóstico , Curva ROC , Receptores Imunológicos/genética , Receptores Imunológicos/metabolismo , Infecções Respiratórias/etiologia , Infecções Respiratórias/metabolismo , Infecções Respiratórias/patologia , Estudos Retrospectivos , Ligante Indutor de Apoptose Relacionado a TNF/genética , Ligante Indutor de Apoptose Relacionado a TNF/metabolismo , Estados Unidos/epidemiologia , Viroses/complicações , Viroses/virologia
18.
Front Immunol ; 12: 741837, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34777354

RESUMO

Viruses cause a wide spectrum of clinical disease, the majority being acute respiratory infections (ARI). In most cases, ARI symptoms are similar for different viruses although severity can be variable. The objective of this study was to understand the shared and unique elements of the host transcriptional response to different viral pathogens. We identified 162 subjects in the US and Sri Lanka with infections due to influenza, enterovirus/rhinovirus, human metapneumovirus, dengue virus, cytomegalovirus, Epstein Barr Virus, or adenovirus. Our dataset allowed us to identify common pathways at the molecular level as well as virus-specific differences in the host immune response. Conserved elements of the host response to these viral infections highlighted the importance of interferon pathway activation. However, the magnitude of the responses varied between pathogens. We also identified virus-specific responses to influenza, enterovirus/rhinovirus, and dengue infections. Influenza-specific differentially expressed genes (DEG) revealed up-regulation of pathways related to viral defense and down-regulation of pathways related to T cell and neutrophil responses. Functional analysis of entero/rhinovirus-specific DEGs revealed up-regulation of pathways for neutrophil activation, negative regulation of immune response, and p38MAPK cascade and down-regulation of virus defenses and complement activation. Functional analysis of dengue-specific up-regulated DEGs showed enrichment of pathways for DNA replication and cell division whereas down-regulated DEGs were mainly associated with erythrocyte and myeloid cell homeostasis, reactive oxygen and peroxide metabolic processes. In conclusion, our study will contribute to a better understanding of molecular mechanisms to viral infections in humans and the identification of biomarkers to distinguish different types of viral infections.


Assuntos
Interferons/genética , Infecções Respiratórias/imunologia , Linfócitos T/fisiologia , Viroses/genética , Vírus/imunologia , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Estudos de Coortes , Ativação do Complemento , Feminino , Humanos , Imunidade/genética , Interferons/metabolismo , Sistema de Sinalização das MAP Quinases , Masculino , Pessoa de Meia-Idade , Estresse Oxidativo , Transcriptoma , Adulto Jovem
19.
Cells ; 10(10)2021 09 28.
Artigo em Inglês | MEDLINE | ID: mdl-34685549

RESUMO

The primary objective of this study is to detect biomarkers and develop models that enable the identification of clinically significant prostate cancer and to understand the biologic implications of the genes involved. Peripheral blood samples (1018 patients) were split chronologically into independent training (n = 713) and validation (n = 305) sets. Whole transcriptome RNA sequencing was performed on isolated phagocytic CD14+ and non-phagocytic CD2+ cells and their gene expression levels were used to develop predictive models that correlate to adverse pathologic features. The immune-transcriptomic model with the highest performance for predicting adverse pathology, based on a subtraction of the log-transformed expression signals of the two cell types, displayed an area under the curve (AUC) of the receiver operating characteristic of 0.70. The addition of biomarkers in combination with traditional clinical risk factors (age, serum prostate-specific antigen (PSA), PSA density, race, digital rectal examination (DRE), and family history) enhanced the AUC to 0.91 and 0.83 for the training and validation sets, respectively. The markers identified by this approach uncovered specific pathway associations relevant to (prostate) cancer biology. Increased phagocytic activity in conjunction with cancer-associated (mis-)regulation is also represented by these markers. Differential gene expression of circulating immune cells gives insight into the cellular immune response to early tumor development and immune surveillance.


Assuntos
Biópsia Líquida/métodos , Neoplasias da Próstata/cirurgia , Análise de Sequência de RNA/métodos , Humanos , Masculino , Pessoa de Meia-Idade , Estadiamento de Neoplasias
20.
JAMA Netw Open ; 4(9): e2128534, 2021 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-34586364

RESUMO

Importance: Currently, there are no presymptomatic screening methods to identify individuals infected with a respiratory virus to prevent disease spread and to predict their trajectory for resource allocation. Objective: To evaluate the feasibility of using noninvasive, wrist-worn wearable biometric monitoring sensors to detect presymptomatic viral infection after exposure and predict infection severity in patients exposed to H1N1 influenza or human rhinovirus. Design, Setting, and Participants: The cohort H1N1 viral challenge study was conducted during 2018; data were collected from September 11, 2017, to May 4, 2018. The cohort rhinovirus challenge study was conducted during 2015; data were collected from September 14 to 21, 2015. A total of 39 adult participants were recruited for the H1N1 challenge study, and 24 adult participants were recruited for the rhinovirus challenge study. Exclusion criteria for both challenges included chronic respiratory illness and high levels of serum antibodies. Participants in the H1N1 challenge study were isolated in a clinic for a minimum of 8 days after inoculation. The rhinovirus challenge took place on a college campus, and participants were not isolated. Exposures: Participants in the H1N1 challenge study were inoculated via intranasal drops of diluted influenza A/California/03/09 (H1N1) virus with a mean count of 106 using the median tissue culture infectious dose (TCID50) assay. Participants in the rhinovirus challenge study were inoculated via intranasal drops of diluted human rhinovirus strain type 16 with a count of 100 using the TCID50 assay. Main Outcomes and Measures: The primary outcome measures included cross-validated performance metrics of random forest models to screen for presymptomatic infection and predict infection severity, including accuracy, precision, sensitivity, specificity, F1 score, and area under the receiver operating characteristic curve (AUC). Results: A total of 31 participants with H1N1 (24 men [77.4%]; mean [SD] age, 34.7 [12.3] years) and 18 participants with rhinovirus (11 men [61.1%]; mean [SD] age, 21.7 [3.1] years) were included in the analysis after data preprocessing. Separate H1N1 and rhinovirus detection models, using only data on wearble devices as input, were able to distinguish between infection and noninfection with accuracies of up to 92% for H1N1 (90% precision, 90% sensitivity, 93% specificity, and 90% F1 score, 0.85 [95% CI, 0.70-1.00] AUC) and 88% for rhinovirus (100% precision, 78% sensitivity, 100% specificity, 88% F1 score, and 0.96 [95% CI, 0.85-1.00] AUC). The infection severity prediction model was able to distinguish between mild and moderate infection 24 hours prior to symptom onset with an accuracy of 90% for H1N1 (88% precision, 88% sensitivity, 92% specificity, 88% F1 score, and 0.88 [95% CI, 0.72-1.00] AUC) and 89% for rhinovirus (100% precision, 75% sensitivity, 100% specificity, 86% F1 score, and 0.95 [95% CI, 0.79-1.00] AUC). Conclusions and Relevance: This cohort study suggests that the use of a noninvasive, wrist-worn wearable device to predict an individual's response to viral exposure prior to symptoms is feasible. Harnessing this technology would support early interventions to limit presymptomatic spread of viral respiratory infections, which is timely in the era of COVID-19.


Assuntos
Biometria/métodos , Resfriado Comum/diagnóstico , Vírus da Influenza A Subtipo H1N1 , Influenza Humana/diagnóstico , Rhinovirus , Índice de Gravidade de Doença , Dispositivos Eletrônicos Vestíveis , Adulto , Área Sob a Curva , Bioensaio , Biometria/instrumentação , Estudos de Coortes , Resfriado Comum/virologia , Diagnóstico Precoce , Estudos de Viabilidade , Feminino , Humanos , Vírus da Influenza A Subtipo H1N1/crescimento & desenvolvimento , Influenza Humana/virologia , Masculino , Programas de Rastreamento , Modelos Biológicos , Rhinovirus/crescimento & desenvolvimento , Sensibilidade e Especificidade , Eliminação de Partículas Virais , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA