Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Quant Plant Biol ; 3: e1, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-37077972

RESUMO

Studies on the mechanics of plant cells usually focus on understanding the effects of turgor pressure and properties of the cell wall (CW). While the functional roles of the underlying cytoskeleton have been studied, the extent to which it contributes to the mechanical properties of cells is not elucidated. Here, we study the contributions of the CW, microtubules (MTs) and actin filaments (AFs), in the mechanical properties of Nicotiana tabacum cells. We use a multiscale biomechanical assay comprised of atomic force microscopy and micro-indentation in solutions that (i) remove MTs and AFs and (ii) alter osmotic pressures in the cells. To compare measurements obtained by the two mechanical tests, we develop two generative statistical models to describe the cell's behaviour using one or both datasets. Our results illustrate that MTs and AFs contribute significantly to cell stiffness and dissipated energy, while confirming the dominant role of turgor pressure.

2.
PLoS Pathog ; 17(12): e1010083, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34910784

RESUMO

Mammalian adenoviruses (AdVs) comprise more than ~350 types including over 100 human (HAdVs) and just three mouse AdVs (MAdVs). While most HAdVs initiate infection by high affinity/avidity binding of their fiber knob (FK) protein to either coxsackievirus AdV receptor (CAR), CD46 or desmoglein (DSG)-2, MAdV-1 (M1) infection requires arginine-glycine-aspartate (RGD) binding integrins. To identify the receptors mediating MAdV infection we generated five novel reporter viruses for MAdV-1/-2/-3 (M1, M2, M3) transducing permissive murine (m) CMT-93 cells, but not B16 mouse melanoma cells expressing mCAR, human (h) CD46 or hDSG-2. Recombinant M1 or M3 FKs cross-blocked M1 and M3 but not M2 infections. Profiling of murine and human cells expressing RGD-binding integrins suggested that αvß6 and αvß8 heterodimers are associated with M1 and M3 infections. Ectopic expression of mß6 in B16 cells strongly enhanced M1 and M3 binding, infection, and progeny production comparable with mαvß6-positive CMT-93 cells, whereas mß8 expressing cells were more permissive to M1 than M3. Anti-integrin antibodies potently blocked M1 and M3 binding and infection of CMT-93 cells and hαvß8-positive M000216 cells. Soluble integrin αvß6, and synthetic peptides containing the RGDLXXL sequence derived from FK-M1, FK-M3 and foot and mouth disease virus coat protein strongly interfered with M1/M3 infections, in agreement with high affinity interactions of FK-M1/FK-M3 with αvß6/αvß8, determined by surface plasmon resonance measurements. Molecular docking simulations of ternary complexes revealed a bent conformation of RGDLXXL-containing FK-M3 peptides on the subunit interface of αvß6/ß8, where the distal leucine residue dips into a hydrophobic pocket of ß6/8, the arginine residue ionically engages αv aspartate215, and the aspartate residue coordinates a divalent cation in αvß6/ß8. Together, the RGDLXXL-bearing FKs are part of an essential mechanism for M1/M3 infection engaging murine and human αvß6/8 integrins. These integrins are highly conserved in other mammals, and may favour cross-species virus transmission.


Assuntos
Infecções por Adenoviridae/metabolismo , Adenoviridae/metabolismo , Antígenos de Neoplasias/metabolismo , Integrinas/metabolismo , Receptores Virais/metabolismo , Animais , Humanos , Camundongos
3.
Virol J ; 14(1): 158, 2017 08 18.
Artigo em Inglês | MEDLINE | ID: mdl-28821267

RESUMO

BACKGROUND: Adenoviruses are common pathogens infecting animals and humans. They are classified based on serology, or genome sequence information. These methods have limitations due to lengthy procedures or lack of infectivity data. Adenoviruses are easy to produce and amenable to genetic and biochemical modifications, which makes them a powerful tool for biological studies, and clinical gene-delivery and vaccine applications. Antibodies directed against adenoviral proteins are important diagnostic tools for virus identification in vivo and in vitro, and are used to elucidate infection mechanisms, often in combination with genomic sequencing and type specific information from hyper-variable regions of structural proteins. RESULTS: Here we describe a novel and readily useable method for cloning, expressing and purifying small fragments of hyper-variable regions 1-6 of the adenoviral hexon protein. We used these polypeptides as antigens for generating polyclonal rabbit antibodies against human adenovirus 3 (HAdV-B3), mouse adenovirus 1 (MAdV-1) and MAdV-2 hexon. In Western immunoblots with lysates from cells infected from thirteen human and three mouse viruses, these antibodies bound to homologous full-length hexon protein and revealed variable levels of cross-reactivity to heterologous hexons. Results from immuno-fluorescence and electron microscopy studies indicated that HAdV-B3 and MAdV-2 hexon antibodies recognized native forms of hexon. CONCLUSIONS: The procedure described here can in principle be applied to any adenovirus for which genome sequence information is available. It provides a basis for generating novel type-specific tools in diagnostics and research, and extends beyond the commonly used anti-viral antibodies raised against purified viruses or subviral components.


Assuntos
Adenoviridae/genética , Anticorpos Antivirais/imunologia , Antígenos Virais/genética , Antígenos Virais/imunologia , Proteínas do Capsídeo/genética , Proteínas Recombinantes/imunologia , Células A549 , Infecções por Adenoviridae/diagnóstico , Infecções por Adenoviridae/imunologia , Adenovírus Humanos/genética , Sequência de Aminoácidos , Animais , Anticorpos Neutralizantes , Anticorpos Antivirais/isolamento & purificação , Sequência de Bases , Western Blotting , Capsídeo/imunologia , Capsídeo/ultraestrutura , Proteínas do Capsídeo/isolamento & purificação , Linhagem Celular , Reações Cruzadas , DNA Viral , Epitopos/imunologia , Regulação Viral da Expressão Gênica , Vetores Genéticos , Células HeLa , Humanos , Camundongos , Microscopia Eletrônica de Transmissão , Coelhos , Alinhamento de Sequência
4.
Hum Gene Ther ; 25(4): 265-84, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24512150

RESUMO

Human adenoviruses are the most widely used vectors in gene medicine, with applications ranging from oncolytic therapies to vaccinations, but adenovirus vectors are not without side effects. In addition, natural adenoviruses pose severe risks for immunocompromised people, yet infections are usually mild and self-limiting in immunocompetent individuals. Here we describe how adenoviruses are recognized by the host innate defense system during entry and replication in immune and nonimmune cells. Innate defense protects the host and represents a major barrier to using adenoviruses as therapeutic interventions in humans. Innate response against adenoviruses involves intrinsic factors present at constant levels, and innate factors mounted by the host cell upon viral challenge. These factors exert antiviral effects by directly binding to viruses or viral components, or shield the virus, for example, soluble factors, such as blood clotting components, the complement system, preexisting immunoglobulins, or defensins. In addition, Toll-like receptors and lectins in the plasma membrane and endosomes are intrinsic factors against adenoviruses. Important innate factors restricting adenovirus in the cytosol are tripartite motif-containing proteins, nucleotide-binding oligomerization domain-like inflammatory receptors, and DNA sensors triggering interferon, such as DEAD (Asp-Glu-Ala-Asp) box polypeptide 41 and cyclic guanosine monophosphate-adenosine monophosphate synthase. Adenovirus tunes the function of antiviral autophagy, and counters innate defense by virtue of its early proteins E1A, E1B, E3, and E4 and two virus-associated noncoding RNAs VA-I and VA-II. We conclude by discussing strategies to engineer adenovirus vectors with attenuated innate responses and enhanced delivery features.


Assuntos
Adenovírus Humanos/imunologia , Imunidade Inata , Infecções por Adenovirus Humanos/imunologia , Infecções por Adenovirus Humanos/metabolismo , Adenovírus Humanos/fisiologia , Citosol/metabolismo , DNA/genética , DNA/imunologia , DNA/metabolismo , Terapia Genética , Vetores Genéticos/genética , Vetores Genéticos/imunologia , Interações Hospedeiro-Patógeno/imunologia , Humanos , Interferons/metabolismo , Transdução de Sinais , Internalização do Vírus
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA