Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
1.
Environ Mol Mutagen ; 64(2): 132-143, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36645179

RESUMO

ToxTracker is an in vitro mammalian stem cell-based reporter assay that detects activation of specific cellular signaling pathways (DNA damage, oxidative stress, and/or protein damage) upon chemical exposure using flow cytometry. Here we used quantitative methods to empirically analyze historical control data, and dose-response data across a wide range of reference chemicals. First, we analyzed historical control data to define a fold-change threshold for identification of a significant positive response. Next, we used the benchmark dose (BMD) combined-covariate approach for potency ranking of a set of more than 120 compounds; the BMD values were used for comparative identification of the most potent inducers of each reporter. Lastly, we used principal component analysis (PCA) to investigate functional and statistical relationships between the ToxTracker reporters. The PCA results, based on the BMD results for all substances, indicated that the DNA damage (Rtkn, Bscl2) and p53 (Btg2) reporters are functionally complementary and indicative of genotoxic stress. The oxidative stress (Srxn1 and Blvrb) and protein stress (Ddit3) reporters are independent indicators of cellular stress, and essential for toxicological profiling using the ToxTracker assay. Overall, dose-response modeling of multivariate ToxTracker data can be used for potency ranking and mode-of-action determination. In the future, IVIVE (in vitro to in vivo extrapolation) methods can be employed to determine in vivo AED (administered equivalent dose) values that can in turn be used for human health risk assessment.


Assuntos
Dano ao DNA , Estresse Oxidativo , Testes de Toxicidade , Animais , Humanos , Mamíferos/genética , Testes de Mutagenicidade/métodos , Medição de Risco , Proteínas Supressoras de Tumor/genética , Testes de Toxicidade/métodos , Testes de Toxicidade/estatística & dados numéricos
2.
Toxicol Lett ; 362: 50-58, 2022 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-35569722

RESUMO

Nucleoside analogues have long been designed and tested in cancer treatment and against viral infections. However, several early compounds were shown to have mutagenic properties as a consequence of their mode-of-action. This limited their use, and several have been discontinued for lengthy treatments or altogether. Nonetheless, nucleoside analogues remain an attractive modality for virally driven diseases, of which many still are without proper treatment options. To quantitatively assess the genotoxic mode-of-action of a panel of nucleoside analogues, we applied the ToxTracker® reporter assay. Many of the early nucleoside analogues showed a genotoxic response. The more recently developed nucleoside analogues, Remdesivir and Molnupiravir that are currently being repurposed for Covid-19 treatment, had a different profile in ToxTracker and did not induce the genotoxicity reporters. Our analyses support the metabolite GS-441524 over the parent analogue Remdesivir. In contrast, Molnupiravir was devoid of clear cellular toxicity while its active metabolite (EIDD-1931) was cytotoxic and induced several biomarkers. Nucleoside analogues continue to be attractive treatment options upon viral infections. ToxTracker readily distinguished between the genotoxic analogues and those with different profiles and provides a basis for clustering and potency ranking, offering a comprehensive tool to assess the toxicity of nucleoside analogues.


Assuntos
Tratamento Farmacológico da COVID-19 , Mutagênicos , Dano ao DNA , Humanos , Mutagênicos/toxicidade , Nucleosídeos/toxicidade
3.
Regul Toxicol Pharmacol ; 129: 105120, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35038485

RESUMO

Cobalt metal and cobalt sulfate are carcinogenic in rodents following inhalation exposure. The pre-carcinogenic effects associated with exposure to these cobalt substances include oxidative stress and genotoxicity. Some, but not all, cobalt substances induce in vitro clastogenicity or an increase in micronuclei. As a result, these substances are classified genotoxic carcinogens, having major impacts on their risk assessment, e.g. assumption of a non-thresholded dose response. Here, we investigated the potential of nine cobalt substances to cause genotoxicity and oxidative stress using the ToxTracker assay, with an extension to measure biomarkers of hypoxia. None of the nine tested substances activated the DNA damage markers in ToxTracker, and five substances activated the oxidative stress response reporters. The same five substances also activated the expression of several hypoxia target genes. Consistent with the lower tier of testing found in the preceding paper of this series, these compounds can be grouped based on their ability to release bioavailable cobalt ion and to trigger subsequent key events.


Assuntos
Carcinógenos/química , Carcinógenos/farmacologia , Cobalto/química , Cobalto/farmacologia , Estresse Oxidativo/efeitos dos fármacos , Estresse Oxidativo/genética , Administração por Inalação , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Genótipo , Testes de Mutagenicidade , Oxirredutases atuantes sobre Doadores de Grupo Enxofre/genética , Tamanho da Partícula
4.
Toxicol Sci ; 186(2): 288-297, 2022 03 28.
Artigo em Inglês | MEDLINE | ID: mdl-35094094

RESUMO

Aneuploidy is characterized by the presence of an abnormal number of chromosomes and is a common hallmark of cancer. However, exposure to aneugenic compounds does not necessarily lead to cancer. Aneugenic compounds are mainly identified using the in vitro micronucleus assay but this assay cannot standardly discriminate between aneugens and clastogens and cannot be used to identify the exact mode-of-action (MOA) of aneugens; tubulin stabilization, tubulin destabilization, or inhibition of mitotic kinases. To improve the classification of aneugenic substances and determine their MOA, we developed and validated the TubulinTracker assay that uses a green fluorescent protein-tagged tubulin reporter cell line to study microtubule stability using flow cytometry. Combining the assay with a DNA stain also enables cell cycle analysis. Substances whose exposure resulted in an accumulation of cells in G2/M phase, combined with increased or decreased tubulin levels, were classified as tubulin poisons. All known tubulin poisons included were classified correctly. Moreover, we correctly classified compounds, including aneugens that did not affect microtubule levels. However, the MOA of aneugens not affecting tubulin stability, such as Aurora kinase inhibitors, could not be identified. Here, we show that the TubulinTracker assay can be used to classify microtubule stabilizing and destabilizing compounds in living cells. This insight into the MOA of aneugenic agents is important, eg, to support a weight-of-evidence approach for risk assessment, and the classification as an aneugen as opposed to a clastogen or mutagen, has a big impact on the assessment.


Assuntos
Aneugênicos , Venenos , Aneugênicos/toxicidade , Divisão Celular , Testes para Micronúcleos/métodos , Microtúbulos , Mutagênicos/farmacologia , Venenos/farmacologia , Tubulina (Proteína)
5.
Sci Rep ; 11(1): 21846, 2021 11 08.
Artigo em Inglês | MEDLINE | ID: mdl-34750422

RESUMO

Welding fumes induce lung toxicity and are carcinogenic to humans but the molecular mechanisms have yet to be clarified. The aim of this study was to evaluate the toxicity of stainless and mild steel particles generated via gas-metal arc welding using primary human small airway epithelial cells (hSAEC) and ToxTracker reporter murine stem cells, which track activation of six cancer-related pathways. Metal content (Fe, Mn, Ni, Cr) of the particles was relatively homogenous across particle size. The particles were not cytotoxic in reporter stem cells but stainless steel particles activated the Nrf2-dependent oxidative stress pathway. In hSAEC, both particle types induced time- and dose-dependent cytotoxicity, and stainless steel particles also increased generation of reactive oxygen species. The cellular metal content was higher for hSAEC compared to the reporter stem cells exposed to the same nominal dose. This was, in part, related to differences in particle agglomeration/sedimentation in the different cell media. Overall, our study showed differences in cytotoxicity and activation of cancer-related pathways between stainless and mild steel welding particles. Moreover, our data emphasizes the need for careful assessment of the cellular dose when comparing studies using different in vitro models.


Assuntos
Poluentes Ocupacionais do Ar/toxicidade , Aço Inoxidável/toxicidade , Aço/toxicidade , Soldagem , Poluentes Ocupacionais do Ar/química , Animais , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/metabolismo , Células Epiteliais/ultraestrutura , Humanos , Exposição por Inalação/efeitos adversos , Pulmão/efeitos dos fármacos , Pulmão/metabolismo , Camundongos , Microscopia Eletrônica de Transmissão , Células-Tronco Embrionárias Murinas/efeitos dos fármacos , Células-Tronco Embrionárias Murinas/metabolismo , Células-Tronco Embrionárias Murinas/ultraestrutura , Tamanho da Partícula , Espécies Reativas de Oxigênio/metabolismo , Aço Inoxidável/química , Aço/química , Soldagem/métodos
6.
Mutagenesis ; 36(2): 129-142, 2021 05 31.
Artigo em Inglês | MEDLINE | ID: mdl-33769537

RESUMO

In vitro (geno)toxicity assessment of electronic vapour products (EVPs), relative to conventional cigarette, currently uses assays, including the micronucleus and Ames tests. Whilst informative on induction of a finite endpoint and relative risk posed by test articles, such assays could benefit from mechanistic supplementation. The ToxTracker and Aneugen Clastogen Evaluation analysis can indicate the activation of reporters associated with (geno)toxicity, including DNA damage, oxidative stress, the p53-related stress response and protein damage. Here, we tested for the different effects of a selection of neat e-liquids, EVP aerosols and Kentucky reference 1R6F cigarette smoke samples in the ToxTracker assay. The assay was initially validated to assess whether a mixture of e-liquid base components, propylene glycol (PG) and vegetable glycerine (VG) had interfering effects within the system. This was achieved by spiking three positive controls into the system with neat PG/VG or phosphate-buffered saline bubbled (bPBS) PG/VG aerosol (nicotine and flavour free). PG/VG did not greatly affect responses induced by the compounds. Next, when compared to cigarette smoke samples, neat e-liquids and bPBS aerosols (tobacco flavour; 1.6% freebase nicotine, 1.6% nicotine salt or 0% nicotine) exhibited reduced and less complex responses. Tested up to a 10% concentration, EVP aerosol bPBS did not induce any ToxTracker reporters. Neat e-liquids, tested up to 1%, induced oxidative stress reporters, thought to be due to their effects on osmolarity in vitro. E-liquid nicotine content did not affect responses induced. Additionally, spiking nicotine alone only induced an oxidative stress response at a supraphysiological level. In conclusion, the ToxTracker assay is a quick, informative screen for genotoxic potential and mechanisms of a variety of (compositionally complex) samples, derived from cigarettes and EVPs. This assay has the potential for future application in the assessment battery for next-generation (smoking alternative) products, including EVPs.


Assuntos
Aneugênicos/toxicidade , Sistemas Eletrônicos de Liberação de Nicotina , Glicerol/toxicidade , Testes de Mutagenicidade/métodos , Nicotiana/toxicidade , Nicotina/toxicidade , Propilenoglicol/toxicidade , Aerossóis/efeitos adversos , Aerossóis/análise , Animais , Fumar Cigarros/efeitos adversos , Dano ao DNA , Glicerol/análise , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Células-Tronco Embrionárias Murinas , Mutagênicos/toxicidade , Nicotina/análise , Estresse Oxidativo , Propilenoglicol/análise , Medição de Risco , Fumaça/efeitos adversos , Fumar/efeitos adversos
7.
Toxicol Sci ; 177(1): 202-213, 2020 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-32617558

RESUMO

Understanding the mode-of-action (MOA) of genotoxic compounds and differentiating between direct DNA interaction and indirect genotoxicity is crucial for their reliable safety assessment. ToxTracker is a stem cell-based reporter assay that detects activation of various cellular responses that are associated with genotoxicity and cancer. ToxTracker consists of 6 different GFP reporter cell lines that can detect the induction of DNA damage, oxidative stress, and protein damage in a single test. The assay can thereby provide insight into the MOA of compounds. Genotoxicity is detected in ToxTracker by activation of 2 independent GFP reporters. Activation of the Bscl2-GFP reporter is associated with induction of DNA adducts and subsequent inhibition of DNA replication and the Rtkn-GFP reporter is activated following the formation of DNA double-strand breaks. Here, we show that the differential activation of these 2 genotoxicity reporters could be used to further differentiate between a DNA reactive and clastogenic or a non-DNA-reactive aneugenic MOA of genotoxic compounds. For further classification of aneugenic and clastogenic compounds, the ToxTracker assay was extended with cell cycle analysis and aneuploidy assessment. The extension was validated using a selection of 16 (genotoxic) compounds with a well-established MOA. Furthermore, indirect genotoxicity related to the production of reactive oxygen species was investigated using the DNA damage and oxidative stress ToxTracker reporters in combination with different reactive oxygen species scavengers. With these new extensions, ToxTracker was able to accurately classify compounds as genotoxic or nongenotoxic and could discriminate between DNA-reactive compounds, aneugens, and indirect genotoxicity caused by oxidative stress.


Assuntos
Aneugênicos , Mutagênicos , Aneugênicos/toxicidade , Biomarcadores/metabolismo , Dano ao DNA , Testes de Mutagenicidade , Mutagênicos/toxicidade , Estresse Oxidativo
8.
Environ Mol Mutagen ; 61(1): 114-134, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31603995

RESUMO

In May 2017, the Health and Environmental Sciences Institute's Genetic Toxicology Technical Committee hosted a workshop to discuss whether mode of action (MOA) investigation is enhanced through the application of the adverse outcome pathway (AOP) framework. As AOPs are a relatively new approach in genetic toxicology, this report describes how AOPs could be harnessed to advance MOA analysis of genotoxicity pathways using five example case studies. Each of these genetic toxicology AOPs proposed for further development includes the relevant molecular initiating events, key events, and adverse outcomes (AOs), identification and/or further development of the appropriate assays to link an agent to these events, and discussion regarding the biological plausibility of the proposed AOP. A key difference between these proposed genetic toxicology AOPs versus traditional AOPs is that the AO is a genetic toxicology endpoint of potential significance in risk characterization, in contrast to an adverse state of an organism or a population. The first two detailed case studies describe provisional AOPs for aurora kinase inhibition and tubulin binding, leading to the common AO of aneuploidy. The remaining three case studies highlight provisional AOPs that lead to chromosome breakage or mutation via indirect DNA interaction (inhibition of topoisomerase II, production of cellular reactive oxygen species, and inhibition of DNA synthesis). These case studies serve as starting points for genotoxicity AOPs that could ultimately be published and utilized by the broader toxicology community and illustrate the practical considerations and evidence required to formalize such AOPs so that they may be applied to genetic toxicity evaluation schemes. Environ. Mol. Mutagen. 61:114-134, 2020. © 2019 Wiley Periodicals, Inc.


Assuntos
Rotas de Resultados Adversos , Testes de Mutagenicidade , Mutagênicos/toxicidade , Aneuploidia , Animais , Aurora Quinase A/antagonistas & inibidores , Quebra Cromossômica/efeitos dos fármacos , Dano ao DNA/efeitos dos fármacos , Humanos , Testes de Mutagenicidade/métodos , Mutação/efeitos dos fármacos
9.
Nanotoxicology ; 13(10): 1293-1309, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31418618

RESUMO

Millions of people in the world perform welding as their primary occupation resulting in exposure to metal-containing nanoparticles in the fumes generated. Even though health effects including airway diseases are well-known, there is currently a lack of studies investigating how different welding set-ups and conditions affect the toxicity of generated nanoparticles of the welding fume. The aim of this study was to investigate the toxicity of nine types of welding fume particles generated via active gas shielded metal arc welding (GMAW) of chromium-containing stainless steel under different conditions and, furthermore, to correlate the toxicity to the particle characteristics. Toxicological endpoints investigated were generation of reactive oxygen species (ROS), cytotoxicity, genotoxicity and activation of ToxTracker reporter cell lines. The results clearly underline that the choice of filler material has a large influence on the toxic potential. Fume particles generated by welding with the tested flux-cored wire (FCW) were found to be more cytotoxic compared to particles generated by welding with solid wire or metal-cored wire (MCW). FCW fume particles were also the most potent in causing ROS and DNA damage and they furthermore activated reporters related to DNA double- strand breaks and p53 signaling. Interestingly, the FCW fume particles were the most soluble in PBS, releasing more chromium in the hexavalent form and manganese compared to the other fumes. These results emphasize the importance of solubility of different metal constituents of the fume particles, rather than the total metal content, for their acute toxic potential.


Assuntos
Poluentes Ocupacionais do Ar/toxicidade , Células-Tronco Embrionárias/efeitos dos fármacos , Pulmão/efeitos dos fármacos , Nanopartículas/toxicidade , Aço Inoxidável , Soldagem , Poluentes Ocupacionais do Ar/química , Animais , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Dano ao DNA , Células-Tronco Embrionárias/metabolismo , Células-Tronco Embrionárias/patologia , Humanos , Pulmão/metabolismo , Pulmão/patologia , Metais Pesados/química , Metais Pesados/toxicidade , Camundongos , Estresse Oxidativo/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Solubilidade
10.
Toxicol In Vitro ; 61: 104594, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31279906

RESUMO

The rapid expansion of the incorporation of nano-sized materials in consumer products overlaps with the necessity for high-throughput reliable screening tools for the identification of the potential hazardous properties of the nanomaterials. The ToxTracker assay (mechanism-based reporter assay based on embryonic stem cells that uses GFP-tagged biomarkers for detection of DNA damage, oxidative stress and general cellular stress) is one such tool, which could prove useful in the field of particle toxicology allowing for high throughput screening. Here, ToxTracker was utilised to evaluate the potential hazardous properties of two particulates currently used in the food industry (vegetable carbon (E153) and food-grade TiO2 (E171)). Due to the fact that ToxTracker is based on a stem cell format, it is crucial that the data generated is assessed for its suitability and comparability to more conventionally used relevant source of cells - in this case cells from the gastrointestinal tract and the liver. Therefore, the cell reporter findings were compared to data from traditional assays (cytotoxicity, anti-oxidant depletion and DNA damage) and tissue relevant cell types. The data showed E171 to be the most cytotoxic, decreased intracellular glutathione and the most significant with regards to genotoxic effects. The ToxTracker data showed comparability to conventional toxicity and oxidative stress assays; however, some discrepancies were evident between the findings from ToxTracker and the comet assay.


Assuntos
Aditivos Alimentares/toxicidade , Ensaios de Triagem em Larga Escala , Nanopartículas/toxicidade , Titânio/toxicidade , Testes de Toxicidade/métodos , Animais , Células CACO-2 , Dano ao DNA , Células-Tronco Embrionárias/efeitos dos fármacos , Indústria Alimentícia , Trato Gastrointestinal/citologia , Glutationa/metabolismo , Células Hep G2 , Humanos , Fígado/citologia , Camundongos , Estresse Oxidativo/efeitos dos fármacos
11.
Genet Med ; 21(2): 293-302, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-29988080

RESUMO

PURPOSE: Genetic testing has uncovered large numbers of variants in the BRCA2 gene for which the clinical significance is unclear. Cancer risk prediction of these variants of uncertain significance (VUS) can be improved by reliable assessment of the extent of impairment of the tumor suppressor function(s) of BRCA2. METHODS: Here, we evaluated the performance of the mouse embryonic stem cell (mESC)-based functional assay on an extensive set of BRCA2 missense variants. RESULTS: Whereas all 20 nonpathogenic (class 1/2) variants were able to complement the cell lethal phenotype induced by loss of endogenous mouse Brca2, only 1 out of 15 pathogenic (class 4/5) variants (p.Gly2609Asp) was able to do so. However, in this variant the major tumor suppressive activity of BRCA2, i.e., homology directed repair (HDR), was severely abrogated. Among 43 evaluated VUS (class 3), 7 were unable to complement the lethal phenotype of mouse Brca2 loss while 7 other variants displayed a more severe reduction of HDR activity than observed for class 1/ 2 variants. CONCLUSION: The mESC-based BRCA2 functional assay can reliably determine the functional impact of VUS, distinguish between pathogenic and nonpathogenic variants, and may contribute to improved cancer risk estimation for BRCA2 VUS carriers.


Assuntos
Neoplasias da Mama/genética , Genes BRCA2 , Variação Genética , Células-Tronco Embrionárias Murinas , Animais , Antineoplásicos/farmacologia , Western Blotting , Ciclo Celular , Células Cultivadas , Cisplatino/farmacologia , Fluorbenzenos/farmacologia , Teste de Complementação Genética , Humanos , Camundongos , Células-Tronco Embrionárias Murinas/efeitos dos fármacos , Mutação de Sentido Incorreto , Ftalazinas/farmacologia , Inibidores de Poli(ADP-Ribose) Polimerases/farmacologia , Reação em Cadeia da Polimerase em Tempo Real , Transfecção
12.
Nanotoxicology ; 12(6): 602-620, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29790399

RESUMO

An increasing use of cobalt (Co)-based nanoparticles (NPs) in different applications and exposures at occupational settings triggers the need for toxicity assessment. Improved understanding regarding the physiochemical characteristics of Co metal NPs and different oxides in combination with assessment of toxicity and mechanisms may facilitate decisions for grouping during risk assessment. The aim of this study was to gain mechanistic insights in the correlation between NP reactivity and toxicity of three different Co-based NPs (Co, CoO, and Co3O4) by using various tools for characterization, traditional toxicity assays, as well as six reporter cell lines (ToxTracker) for rapid detection of signaling pathways of relevance for carcinogenicity. The results showed cellular uptake of all NPs in lung cells and induction of DNA strand breaks and oxidative damage (comet assay) by Co and CoO NPs. In-depth studies on the ROS generation showed high reactivity of Co, lower for CoO, and no reactivity of Co3O4 NPs. The reactivity depended on the corrosion and transformation/dissolution properties of the particles and the media highlighting the role of the surface oxide and metal speciation as also confirmed by in silico modeling. By using ToxTracker, Co NPs were shown to be highly cytotoxic and induced reporters related to oxidative stress (Nrf2 signaling) and DNA strand breaks. Similar effects were observed for CoO NPs but at higher concentrations, whereas the Co3O4 NPs were inactive at all concentrations tested. In conclusion, our study suggests that Co and CoO NPs, but not Co3O4, may be grouped together for risk assessment.


Assuntos
Cobalto/toxicidade , Nanopartículas Metálicas/toxicidade , Óxidos/toxicidade , Células A549 , Quebras de DNA/efeitos dos fármacos , Humanos , Estresse Oxidativo/efeitos dos fármacos
13.
Environ Mol Mutagen ; 59(3): 211-222, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29243303

RESUMO

Nickel (Ni) compounds are classified as carcinogenic to humans but the underlying mechanisms are still poorly understood. Furthermore, effects related to nanoparticles (NPs) of Ni have not been fully elucidated. The aim of this study was to investigate genotoxicity and mutagenicity of Ni and NiO NPs and compare the effect to soluble Ni from NiCl2 . We employed different models; i.e., exposure of (1) human bronchial epithelial cells (HBEC) followed by DNA strand break analysis (comet assay and γ-H2AX staining); (2) six different mouse embryonic stem (mES) reporter cell lines (ToxTracker) that are constructed to exhibit fluorescence upon the induction of various pathways of relevance for (geno)toxicity and cancer; and (3) mES cells followed by mutagenicity testing (Hprt assay). The results showed increased DNA strand breaks (comet assay) for the NiO NPs and at higher doses also for the Ni NPs whereas no effects were observed for Ni ions/complexes from NiCl2 . By employing the reporter cell lines, oxidative stress was observed as the main toxic mechanism and protein unfolding occurred at cytotoxic doses for all three Ni-containing materials. Oxidative stress was also detected in the HBEC cells following NP-exposure. None of these materials induced the reporter related to direct DNA damage and stalled replication forks. A small but statistically significant increase in Hprt mutations was observed for NiO but only at one dose. We conclude that Ni and NiO NPs show more pronounced (geno)toxic effects compared to Ni ions/complexes, indicating more serious health concerns. Environ. Mol. Mutagen. 59:211-222, 2018. © 2017 The Authors Environmental and Molecular Mutagenesis published by Wiley Periodicals, Inc. on behalf of Environmental Mutagen Society.


Assuntos
Ensaio Cometa/métodos , Proteínas de Fluorescência Verde/metabolismo , Histonas/metabolismo , Hipoxantina Fosforribosiltransferase/metabolismo , Nanopartículas Metálicas/toxicidade , Testes de Mutagenicidade/métodos , Níquel/toxicidade , Animais , Bioensaio , Brônquios/efeitos dos fármacos , Brônquios/patologia , Sobrevivência Celular , Células Cultivadas , Dano ao DNA , Células-Tronco Embrionárias/efeitos dos fármacos , Células-Tronco Embrionárias/patologia , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/patologia , Genes Reporter , Ensaios de Triagem em Larga Escala , Humanos , Camundongos , Mutagênicos/toxicidade , Mutação , Estresse Oxidativo/efeitos dos fármacos
14.
Science ; 356(6342): 1084-1087, 2017 06 09.
Artigo em Inglês | MEDLINE | ID: mdl-28596366

RESUMO

A recent phase 1 trial of the fatty acid amide hydrolase (FAAH) inhibitor BIA 10-2474 led to the death of one volunteer and produced mild-to-severe neurological symptoms in four others. Although the cause of the clinical neurotoxicity is unknown, it has been postulated, given the clinical safety profile of other tested FAAH inhibitors, that off-target activities of BIA 10-2474 may have played a role. Here we use activity-based proteomic methods to determine the protein interaction landscape of BIA 10-2474 in human cells and tissues. This analysis revealed that the drug inhibits several lipases that are not targeted by PF04457845, a highly selective and clinically tested FAAH inhibitor. BIA 10-2474, but not PF04457845, produced substantial alterations in lipid networks in human cortical neurons, suggesting that promiscuous lipase inhibitors have the potential to cause metabolic dysregulation in the nervous system.


Assuntos
Amidoidrolases/antagonistas & inibidores , Analgésicos/farmacologia , Ansiolíticos/farmacologia , Óxidos N-Cíclicos/farmacologia , Neurônios/efeitos dos fármacos , Piridinas/farmacologia , Analgésicos/efeitos adversos , Analgésicos/química , Analgésicos/metabolismo , Ansiolíticos/efeitos adversos , Ansiolíticos/química , Ansiolíticos/metabolismo , Linhagem Celular Tumoral , Ensaios Clínicos Fase I como Assunto , Reações Cruzadas , Óxidos N-Cíclicos/efeitos adversos , Óxidos N-Cíclicos/química , Óxidos N-Cíclicos/metabolismo , Humanos , Neurônios/metabolismo , Mapas de Interação de Proteínas , Piridazinas/farmacologia , Piridazinas/uso terapêutico , Piridinas/efeitos adversos , Piridinas/química , Piridinas/metabolismo , Ureia/análogos & derivados , Ureia/farmacologia , Ureia/uso terapêutico
15.
Arch Toxicol ; 90(5): 1163-79, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-26026609

RESUMO

Drug-induced liver injury (DILI) is an important problem both in the clinic and in the development of new safer medicines. Two pivotal adaptation and survival responses to adverse drug reactions are oxidative stress and cytokine signaling based on the activation of the transcription factors Nrf2 and NF-κB, respectively. Here, we systematically investigated Nrf2 and NF-κB signaling upon DILI-related drug exposure. Transcriptomics analyses of 90 DILI compounds in primary human hepatocytes revealed that a strong Nrf2 activation is associated with a suppression of endogenous NF-κB activity. These responses were translated into quantitative high-content live-cell imaging of induction of a selective Nrf2 target, GFP-tagged Srxn1, and the altered nuclear translocation dynamics of a subunit of NF-κB, GFP-tagged p65, upon TNFR signaling induced by TNFα using HepG2 cells. Strong activation of GFP-Srxn1 expression by DILI compounds typically correlated with suppression of NF-κB nuclear translocation, yet reversely, activation of NF-κB by TNFα did not affect the Nrf2 response. DILI compounds that provided strong Nrf2 activation, including diclofenac, carbamazepine and ketoconazole, sensitized toward TNFα-mediated cytotoxicity. This was related to an adaptive primary protective response of Nrf2, since loss of Nrf2 enhanced this cytotoxic synergy with TNFα, while KEAP1 downregulation was cytoprotective. These data indicate that both Nrf2 and NF-κB signaling may be pivotal in the regulation of DILI. We propose that the NF-κB-inhibiting effects that coincide with a strong Nrf2 stress response likely sensitize liver cells to pro-apoptotic signaling cascades induced by intrinsic cytotoxic pro-inflammatory cytokines.


Assuntos
Doença Hepática Induzida por Substâncias e Drogas/metabolismo , Hepatócitos/efeitos dos fármacos , Fígado/efeitos dos fármacos , Fator 2 Relacionado a NF-E2/metabolismo , Fator de Transcrição RelA/metabolismo , Fator de Necrose Tumoral alfa/toxicidade , Transporte Ativo do Núcleo Celular , Doença Hepática Induzida por Substâncias e Drogas/genética , Doença Hepática Induzida por Substâncias e Drogas/patologia , Biologia Computacional , Bases de Dados Genéticas , Relação Dose-Resposta a Droga , Perfilação da Expressão Gênica/métodos , Regulação da Expressão Gênica/efeitos dos fármacos , Proteínas de Fluorescência Verde/biossíntese , Proteínas de Fluorescência Verde/genética , Células Hep G2 , Hepatócitos/metabolismo , Hepatócitos/patologia , Humanos , Fígado/metabolismo , Fígado/patologia , Fator 2 Relacionado a NF-E2/genética , Oxirredutases atuantes sobre Doadores de Grupo Enxofre/biossíntese , Oxirredutases atuantes sobre Doadores de Grupo Enxofre/genética , Interferência de RNA , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Proteínas Recombinantes de Fusão/biossíntese , Transdução de Sinais/efeitos dos fármacos , Fatores de Tempo , Fator de Transcrição RelA/genética , Transfecção
16.
J Cell Biol ; 209(1): 33-46, 2015 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-25869665

RESUMO

In addition to correcting mispaired nucleotides, DNA mismatch repair (MMR) proteins have been implicated in mutagenic, cell cycle, and apoptotic responses to agents that induce structurally aberrant nucleotide lesions. Here, we investigated the mechanistic basis for these responses by exposing cell lines with single or combined genetic defects in nucleotide excision repair (NER), postreplicative translesion synthesis (TLS), and MMR to low-dose ultraviolet light during S phase. Our data reveal that the MMR heterodimer Msh2/Msh6 mediates the excision of incorrect nucleotides that are incorporated by TLS opposite helix-distorting, noninstructive DNA photolesions. The resulting single-stranded DNA patches induce canonical Rpa-Atr-Chk1-mediated checkpoints and, in the next cell cycle, collapse to double-stranded DNA breaks that trigger apoptosis. In conclusion, a novel MMR-related DNA excision repair pathway controls TLS a posteriori, while initiating cellular responses to environmentally relevant densities of genotoxic lesions. These results may provide a rationale for the colorectal cancer tropism in Lynch syndrome, which is caused by inherited MMR gene defects.


Assuntos
Dano ao DNA , Reparo de Erro de Pareamento de DNA , Animais , Apoptose , Linhagem Celular , Proteínas de Ligação a DNA/fisiologia , Células-Tronco Embrionárias/fisiologia , Epistasia Genética , Humanos , Camundongos da Linhagem 129 , Proteína 2 Homóloga a MutS/fisiologia , Mutagênese
17.
Arch Toxicol ; 89(12): 2413-27, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25270620

RESUMO

Alternative methods to detect non-genotoxic carcinogens are urgently needed, as this class of carcinogens goes undetected in the current testing strategy for carcinogenicity under REACH. A complicating factor is that non-genotoxic carcinogens act through several distinctive modes of action, which makes prediction of their carcinogenic property difficult. We have recently demonstrated that gene expression profiling in primary mouse hepatocytes is a useful approach to categorize non-genotoxic carcinogens according to their modes of action. In the current study, we improved the methods used for analysis and added mouse embryonic stem cells as a second in vitro test system, because of their features complementary to hepatocytes. Our approach involved an unsupervised analysis based on the 30 most significantly up- and down-regulated genes per chemical. Mouse embryonic stem cells and primary mouse hepatocytes were exposed to a selected set of chemicals and subsequently subjected to gene expression profiling. We focused on non-genotoxic carcinogens, but also included genotoxic carcinogens and non-carcinogens to test the robustness of this approach. Application of the optimized comparison approach resulted in improved categorization of non-genotoxic carcinogens. Mouse embryonic stem cells were a useful addition, especially for genotoxic substances, but also for detection of non-genotoxic carcinogens that went undetected by primary hepatocytes. The approach presented here is an important step forward to categorize chemicals, especially those that are carcinogenic.


Assuntos
Carcinógenos/toxicidade , Células-Tronco Embrionárias/efeitos dos fármacos , Hepatócitos/efeitos dos fármacos , Toxicogenética/métodos , Animais , Regulação para Baixo/efeitos dos fármacos , Células-Tronco Embrionárias/patologia , Perfilação da Expressão Gênica , Hepatócitos/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Mutagênicos/toxicidade , Regulação para Cima/efeitos dos fármacos
18.
Part Fibre Toxicol ; 11: 41, 2014 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-25179117

RESUMO

BACKGROUND: The rapid expansion of manufacturing and use of nano-sized materials fuels the demand for fast and reliable assays to identify their potential hazardous properties and underlying mechanisms. The ToxTracker assay is a recently developed mechanism-based reporter assay based on mouse embryonic stem (mES) cells that uses GFP-tagged biomarkers for detection of DNA damage, oxidative stress and general cellular stress upon exposure. Here, we evaluated the ability of the ToxTracker assay to identify the hazardous properties and underlying mechanisms of a panel of metal oxide- and silver nanoparticles (NPs) as well as additional non-metallic materials (diesel, carbon nanotubes and quartz). METHODS: The metal oxide- and silver nanoparticles were characterized in terms of agglomeration and ion release in cell medium (using photon cross correlation spectroscopy and inductively coupled plasma with optical emission spectroscopy, respectively) as well as acellular ROS production (DCFH-DA assay). Cellular uptake was investigated by means of transmission electron microscopy. GFP reporter induction and cytotoxicity of the NPs was simultaneously determined using flow cytometry, and genotoxicity was further tested using conventional assays (comet assay, γ-H2AX and RAD51 foci formation). RESULTS: We show that the reporter cells were able to take up nanoparticles and, furthermore, that exposure to CuO, NiO and ZnO nanoparticles as well as to quartz resulted in activation of the oxidative stress reporter, although only at high cytotoxicity for ZnO. NiO NPs activated additionally a p53-associated cellular stress response, indicating additional reactive properties. Conventional assays for genotoxicity assessment confirmed the response observed in the ToxTracker assay. We show for CuO NPs that the induction of oxidative stress is likely the consequence of released Cu ions whereas the effect by NiO was related to the particles per se. The DNA replication stress-induced reporter, which is most strongly associated with carcinogenicity, was not activated by any of the tested nanoparticles. CONCLUSIONS: We conclude that the ToxTracker reporter system can be used as a rapid mechanism-based tool for the identification of hazardous properties of metal oxide NPs. Furthermore, genotoxicity of metal oxide NPs seems to occur mainly via oxidative stress rather than direct DNA binding with subsequent replication stress.


Assuntos
Células-Tronco Embrionárias/efeitos dos fármacos , Genes Reporter , Nanopartículas Metálicas/toxicidade , Testes de Mutagenicidade/métodos , Óxidos/toxicidade , Prata/toxicidade , Animais , Biomarcadores/metabolismo , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Dano ao DNA , Relação Dose-Resposta a Droga , Células-Tronco Embrionárias/metabolismo , Células-Tronco Embrionárias/patologia , Gasolina/toxicidade , Proteínas de Fluorescência Verde/biossíntese , Proteínas de Fluorescência Verde/genética , Ensaios de Triagem em Larga Escala , Camundongos , Nanotubos de Carbono/toxicidade , Estresse Oxidativo/efeitos dos fármacos , Óxidos/metabolismo , Tamanho da Partícula , Quartzo/toxicidade , Espécies Reativas de Oxigênio/metabolismo , Medição de Risco , Prata/metabolismo , Solubilidade
19.
Hum Mutat ; 35(11): 1382-91, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25146914

RESUMO

The implementation of next-generation sequence analysis of disease-related genes has resulted in an increasing number of genetic variants with an unknown clinical significance. The functional analysis of these so-called "variants of uncertain significance" (VUS) is hampered by the tedious and time-consuming procedures required to generate and test specific sequence variants in genomic DNA. Here, we describe an efficient pipeline for the generation of gene variants in a full-length human gene, BRCA2, using a bacterial artificial chromosome. This method permits the rapid generation of intronic and exonic variants in a complete gene through the use of an exon-replacement strategy based on simple site-directed mutagenesis and an effective positive-negative selection system in E. coli. The functionality of variants can then be assessed through the use of functional assays, such as complementation of gene-deficient mouse-embryonic stem (mES) cells in the case of human BRCA2. Our methodology builds upon an earlier protocol and, through the introduction of a series of major innovations, now represents a practical proposition for the rapid analysis of BRCA2 variants and a blueprint for the analysis of other genes using similar approaches. This method enables rapid generation and reliable classification of VUS in disease-related genes, allowing informed clinical decision-making.


Assuntos
Proteína BRCA2/genética , Proteína BRCA2/metabolismo , Estudos de Associação Genética/métodos , Testes Genéticos/métodos , Variação Genética , Animais , Linhagem Celular , Células-Tronco Embrionárias/metabolismo , Feminino , Expressão Gênica , Humanos , Camundongos , Mutagênese Sítio-Dirigida , Splicing de RNA , Seleção Genética
20.
J Appl Toxicol ; 33(6): 399-409, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23339022

RESUMO

Most of the current in vitro carcinogenicity assays assess the potential carcinogenic properties of chemicals through the detection of inflicted DNA damage or subsequent chromosome damage and gene mutations. Unfortunately, these assays generally do not provide mechanistic insight into the reactive properties of a chemical. Upon chemical-induced damage of biomolecules, molecular sensors will activate general and damage-specific cellular response pathways that provide protection against the (geno)toxic and potential carcinogenic properties of chemicals. These cellular defense mechanisms include activation of cell-cycle checkpoints, DNA repair systems and induction of apoptosis or necrosis. Visualization of activated cellular-signaling pathways forms a powerful means to readily detect the genotoxic potential of chemical compounds and simultaneously gain insight into their reactive properties. Over the past years, various in vitro reporter assays have been developed that monitor activation of general and more specific cellular-signaling pathways, including the GreenScreen HC and ToxTracker assays. In this review we provide a perspective on how we can exploit activation of cellular signaling pathways to shed light on the mode of action of the chemical exposure and to develop sophisticated mechanism-based in vitro assays for cancer risk assessment.


Assuntos
Testes de Carcinogenicidade/tendências , Carcinógenos/toxicidade , Transdução de Sinais/efeitos dos fármacos , Animais , Humanos , Camundongos , Testes de Mutagenicidade , Medição de Risco
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA