Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
1.
Cell Rep Med ; 5(2): 101391, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38280379

RESUMO

Prior observational studies suggest an association between intra-pancreatic fat deposition (IPFD) and pancreatic ductal adenocarcinoma (PDAC); however, the causal relationship is unclear. To elucidate causality, we conduct a prospective observational study using magnetic resonance imaging (MRI)-measured IPFD data and also perform a Mendelian randomization study using genetic instruments for IPFD. In the observational study, we use UK Biobank data (N = 29,463, median follow-up: 4.5 years) and find that high IPFD (>10%) is associated with PDAC risk (adjusted hazard ratio [HR]: 3.35, 95% confidence interval [95% CI]: 1.60-7.00). In the Mendelian randomization study, we leverage eight out of nine IPFD-associated genetic variants (p < 5 × 10-8) from a genome-wide association study in the UK Biobank (N = 25,617) and find that genetically determined IPFD is associated with PDAC (odds ratio [OR] per 1-standard deviation [SD] increase in IPFD: 2.46, 95% CI: 1.38-4.40) in the Pancreatic Cancer Cohort Consortium I, II, III (PanScan I-III)/Pancreatic Cancer Case-Control Consortium (PanC4) dataset (8,275 PDAC cases and 6,723 non-cases). This study provides evidence for a potential causal role of IPFD in the pathogenesis of PDAC. Thus, reducing IPFD may lower PDAC risk.


Assuntos
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Humanos , Estudo de Associação Genômica Ampla , Análise da Randomização Mendeliana/métodos , Estudos Prospectivos , Pâncreas/diagnóstico por imagem , Neoplasias Pancreáticas/epidemiologia , Neoplasias Pancreáticas/genética , Carcinoma Ductal Pancreático/epidemiologia , Carcinoma Ductal Pancreático/genética
2.
medRxiv ; 2023 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-37163062

RESUMO

Background & Aims: Pancreatic ductal adenocarcinoma (PDAC) is highly lethal, and any clues to understanding its elusive etiology could lead to breakthroughs in prevention, early detection, or treatment. Observational studies have shown a relationship between pancreas fat accumulation and PDAC, but the causality of this link is unclear. We therefore investigated whether pancreas fat is causally associated with PDAC using two-sample Mendelian randomization. Methods: We leveraged eight genetic variants associated with pancreas fat (P<5×10 -8 ) from a genome-wide association study (GWAS) in the UK Biobank (25,617 individuals), and assessed their association with PDAC in the Pancreatic Cancer Cohort Consortium I-III and the Pancreatic Cancer Case-Control Consortium dataset (8,275 PDAC cases and 6,723 non-cases). Causality was assessed using the inverse-variance weighted method. Although none of these genetic variants were associated with body mass index (BMI) at genome-wide significance, we further conducted a sensitivity analysis excluding genetic variants with a nominal BMI association in GWAS summary statistics from the UK Biobank and the Genetic Investigation of Anthropometric Traits consortium dataset (806,834 individuals). Results: Genetically determined higher levels of pancreas fat using the eight genetic variants was associated with increased risk of PDAC. For one standard deviation increase in pancreas fat levels (i.e., 7.9% increase in pancreas fat fraction), the odds ratio of PDAC was 2.46 (95%CI:1.38-4.40, P=0.002). Similar results were obtained after excluding genetic variants nominally linked to BMI (odds ratio:3.79, 95%CI:1.66-8.65, P=0.002). Conclusions: This study provides genetic evidence for a causal role of pancreas fat in the pathogenesis of PDAC. Thus, reducing pancreas fat could lower the risk of PDAC.

3.
Mol Metab ; 71: 101706, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36931467

RESUMO

OBJECTIVE: The insulin/insulin-like growth factor 1 (IGF1) pathway is emerging as a crucial component of prostate cancer progression. Therefore, we investigated the role of the novel insulin/IGF1 signaling modulator inceptor in prostate cancer. METHODS: We analyzed the expression of inceptor in human samples of benign prostate epithelium and prostate cancer. Further, we performed signaling and functional assays using prostate cancer cell lines. RESULTS: We found that inceptor was expressed in human benign and malignant prostate tissue and its expression positively correlated with various genes of interest, including genes involved in androgen signaling. In vitro, total levels of inceptor were increased upon androgen deprivation and correlated with high levels of androgen receptor in the nucleus. Inceptor overexpression was associated with increased cell migration, altered IGF1R trafficking and higher IGF1R activation. CONCLUSIONS: Our in vitro results showed that inceptor expression was associated with androgen status, increased migration, and IGF1R signaling. In human samples, inceptor expression was significantly correlated with markers of prostate cancer progression. Taken together, these data provide a basis for investigation of inceptor in the context of prostate cancer.


Assuntos
Insulinas , Neoplasias da Próstata , Masculino , Humanos , Fator de Crescimento Insulin-Like I/metabolismo , Neoplasias da Próstata/metabolismo , Próstata/metabolismo , Androgênios , Antagonistas de Androgênios , Movimento Celular
4.
J Clin Endocrinol Metab ; 108(4): 865-875, 2023 03 10.
Artigo em Inglês | MEDLINE | ID: mdl-36285617

RESUMO

CONTEXT: One acute bout of exercise leads to a rapid increase in the systemic cytokine concentration. Regular exercise might alter the cytokine response, in particular in beforehand untrained and obese individuals. OBJECTIVE: Using a proximity extension assay, we studied the effects of acute exercise as well as endurance training on a panel of 92 cytokines related to inflammation. METHODS: A total of 22 individuals (30 ± 9 years; peak oxygen uptake [VO2peak] 25.2 ± 4.2 mL/[kg × min]; body mass index [BMI] 31.7 ± 4.4) participated in an 8-week endurance exercise intervention. Blood samples were collected before and immediately after 30 minutes' ergometer exercise at 80% VO2peak. RESULTS: Before and after the training intervention, 40 and 37 cytokines, respectively, were acutely increased more than 1.2-fold (Benjamini-Hochberg [BH]-adjusted P < .05). The exercise intervention did not change the acute increase in cytokines nor the resting cytokine levels, whereas fitness was improved and adiposity reduced. The increase in fitness led to a slight increase in power output when exercising at the same heart rate, which might explain the comparable increase in cytokines before and after the intervention. The largest acute increase was found for OSM, TGFA, CXCL1 and 5, and TNFSF14 (≥ 1.9-fold, BH-adjusted P < .001). The transcript levels of these proteins in whole blood were also elevated, particularly in the trained state. Only the acute increase in IL6 (1.3-fold) was related to the increase in lactate, confirming the lactate-driven secretion of IL6. CONCLUSION: Our comprehensive proteomics approach detected several underexplored serum exerkines with up to now less understood function in the adaptation to exercise.


Assuntos
Treino Aeróbico , Humanos , Citocinas , Interleucina-6 , Exercício Físico/fisiologia , Obesidade/terapia , Lactatos , Resistência Física/fisiologia
5.
Cell Rep ; 41(8): 111698, 2022 11 22.
Artigo em Inglês | MEDLINE | ID: mdl-36417883

RESUMO

Therapies based on glucagon-like peptide-1 (GLP-1) long-acting analogs and insulin are often used in the treatment of metabolic diseases. Both insulin and GLP-1 receptors are expressed in metabolically relevant brain regions, suggesting a cooperative action. However, the mechanisms underlying the synergistic actions of insulin and GLP-1R agonists remain elusive. In this study, we show that insulin-induced hypoglycemia enhances GLP-1R agonists entry in hypothalamic and area, leading to enhanced whole-body fat oxidation. Mechanistically, this phenomenon relies on the release of tanycyctic vascular endothelial growth factor A, which is selectively impaired after calorie-rich diet exposure. In humans, low blood glucose also correlates with enhanced blood-to-brain passage of insulin, suggesting that blood glucose gates the passage other energy-related signals in the brain. This study implies that the preventing hyperglycemia is important to harnessing the full benefit of GLP-1R agonist entry in the brain and action onto lipid mobilization and body weight loss.


Assuntos
Glicemia , Fator A de Crescimento do Endotélio Vascular , Humanos , Glicemia/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo , Peptídeo 1 Semelhante ao Glucagon/metabolismo , Insulina/metabolismo , Homeostase , Encéfalo/metabolismo
6.
J Clin Med ; 11(22)2022 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-36431238

RESUMO

Although epidemiological studies suggest a lower prostate cancer incidence rate in patients with type 2 diabetes, cancer survival is markedly reduced. Underlying mechanisms that connect the two diseases are still unclear. Potential links between type 2 diabetes and prostate cancer are hallmarks of the metabolic syndrome, such as hyperglycemia and dyslipidemia. Therefore, we explored the systemic metabolism of 103 prostate cancer patients with newly diagnosed and yet untreated prostate cancer compared to 107 healthy controls, who were carefully matched for age and BMI. Here, we report that patients with prostate cancer display higher fasting blood glucose levels and insulin resistance, without changes in insulin secretion. With respect to lipid metabolism, serum triglyceride levels were lower in patients with prostate cancer. In addition, we report increased adrenal steroid biosynthesis in these patients. Our results indicate that higher fasting glucose levels in patients with prostate cancer may be explained at least in part by insulin resistance, due to the enhanced synthesis of adrenal steroids.

7.
J Clin Endocrinol Metab ; 107(6): e2425-e2430, 2022 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-35180296

RESUMO

CONTEXT: Incretins are crucial stimulators of insulin secretion following food intake. Data on incretin secretion and action during pregnancy are sparse. OBJECTIVE: The aim of the study was to investigate the incretin response during an oral glucose tolerance test (OGTT) in pregnant women with and without gestational diabetes mellitus (GDM). DESIGN: We analyzed data from the ongoing observational PREG study (NCT04270578). SETTING: The study was conducted at the University Hospital Tübingen. PARTICIPANTS: We examined 167 women (33 with GDM) during gestational week 27 ±â€…2.2. INTERVENTION: Subjects underwent 5-point OGTT with a 75-g glucose load. MAIN OUTCOME MEASURES: We assessed insulin secretion and levels of total glucagon-like peptide-1 (GLP-1), glucose-dependent insulinotropic peptide (GIP), glicentin, and glucagon during OGTT. Linear regression was used to analyze the relation of GLP-1 and glucose with insulin secretion and the association of incretin levels on birth outcome. RESULTS: Insulin secretion was significantly lower in women with GDM (P < 0.001). Postload GLP-1 and GIP were ~20% higher in women with GDM (all P < 0.05) independent of age, body mass index, and gestational age. GLP-1 increase was associated with insulin secretion only in GDM, but not in normal glucose tolerance. Postprandial GLP-1 levels were negatively associated with birth weight. CONCLUSIONS: The more pronounced GLP-1 increase in women with GDM could be part of a compensatory mechanism counteracting GLP-1 resistance. Higher GLP-1 levels might be protective against fetal overgrowth.


Assuntos
Diabetes Mellitus Tipo 2 , Diabetes Gestacional , Glicemia , Feminino , Macrossomia Fetal , Polipeptídeo Inibidor Gástrico , Peptídeo 1 Semelhante ao Glucagon , Glucose , Humanos , Incretinas , Insulina , Gravidez
8.
Sci Rep ; 11(1): 16642, 2021 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-34404813

RESUMO

The selection of carbohydrates or fat to generate intracellular energy is thought to be crucial for long-term metabolic health. While most studies assess fuel selection after a metabolic challenge, the determinants of substrate oxidation in the fasted state remain largely unexplored. We therefore assessed the respiratory quotient by indirect calorimetry as a read-out for substrate oxidation following an overnight fast. This cross-sectional analysis consisted of 192 (92 women, 100 men) either lean or obese participants. Following an overnight fast, the respiratory quotient (RQ) was assessed, after which a 5-point 75-g oral glucose tolerance test was performed. Unlike glucose and insulin, fasting free fatty acids (FFA) correlated negatively with fasting RQ (p < 0.0001). Participants with high levels of the ketone body ß-hydroxybutyric acid had significantly lower RQ values. Fasting levels of glucose-dependent insulinotropic polypeptide (GIP) and glicentin were positively associated with fasting RQ (all p ≤ 0.03), whereas GLP-1 showed no significant association. Neither BMI, nor total body fat, nor body fat distribution correlated with fasting RQ. No relationship between the RQ and diabetes or the metabolic syndrome could be observed. In the fasting state, FFA concentrations were strongly linked to the preferentially oxidized substrate. Our data did not indicate any relationship between fasting substrate oxidation and metabolic diseases, including obesity, diabetes, and the metabolic syndrome. Since glicentin and GIP are linked to fuel selection in the fasting state, novel therapeutic approaches that target these hormones may have the potential to modulate substrate oxidation.


Assuntos
Jejum , Ácidos Graxos não Esterificados/metabolismo , Polipeptídeo Inibidor Gástrico/metabolismo , Glicentina/metabolismo , Adulto , Peso Corporal , Calorimetria Indireta , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Obesidade/metabolismo , Oxirredução
9.
ESC Heart Fail ; 8(2): 938-942, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33638612

RESUMO

AIMS: Neprilysin (NEP), a zinc metallopeptidase, degrades a variety of bioactive peptides including natriuretic peptides terminating their biological action on arterial blood pressure and natriuresis. Pharmacological inhibition of NEP reduces mortality in patients with heart failure with reduced ejection fraction. Physiological interventions reducing NEP levels are unknown in humans. Because obesity leads to increased NEP levels and increases the risk for heart failure, we hypothesized that weight loss reduces NEP concentrations in plasma and tissue. METHODS AND RESULTS: We randomized overweight to obese human subjects to a low-fat or low-carbohydrate hypocaloric 6 month weight loss intervention. Soluble NEP was determined in plasma, and NEP mRNA was analysed from subcutaneous adipose tissue before and after diet. Low-fat diet-induced weight loss reduced soluble NEP levels from 0.83 ± 0.18 to 0.72 ± 0.18 µg/L (P = 0.038), while subcutaneous adipose tissue NEP mRNA expression was reduced by both dietary interventions [21% (P = 0.0057) by low-fat diet and 16% (P = 0.048) by low-carbohydrate diet]. We also analysed the polymorphisms of the gene coding for NEP, rs9827586 and rs701109, known to be associated with plasma NEP levels. For both single-nucleotide polymorphisms, minor allele carriers (A/A) had higher baseline plasma NEP levels (rs9827586: ß = 0.53 ± 0.23, P < 0.0001; rs701109: ß = 0.43 ± 0.22, P = 0.0016), and minor allele carriers of rs9827586 responded to weight loss with a larger NEP reduction (rs9827586: P = 0.0048). CONCLUSIONS: Our study identifies weight loss via a hypocaloric low-fat diet as the first physiological intervention in humans to reduce NEP in plasma and adipose tissue. Specific single-nucleotide polymorphisms further contribute to the decrease. Our findings may help to explain the beneficial effect of weight loss on cardiac function in patients with heart failure.


Assuntos
Dieta com Restrição de Gorduras , Neprilisina , Dieta Redutora , Humanos , Obesidade/complicações , Sobrepeso , Sujeitos da Pesquisa
10.
Biomedicines ; 8(11)2020 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-33207809

RESUMO

Type 2 diabetes (T2D) is associated with worse prognosis of prostate cancer (PCa). The molecular mechanisms behind this association are still not fully understood. The aim of this study was to identify key factors, which contribute to the more aggressive PCa phenotype in patients with concurrent T2D. Therefore, we investigated benign and PCa tissue of PCa patients with and without diabetes using real time qPCR. Compared to patients without diabetes, patients with T2D showed a decreased E-cadherin/N-cadherin (CDH1/CDH2) ratio in prostate tissue, indicating a switch of epithelial-mesenchymal transition (EMT), which is a pivotal process in carcinogenesis. In addition, the gene expression levels of matrix metalloproteinases (MMPs) and CC chemokine ligands (CCLs) were higher in prostate samples of T2D patients. Next, prostate adenocarcinoma PC3 cells were treated with increasing glucose concentrations to replicate hyperglycemia in vitro. In these cells, high glucose induced expressions of MMPs and CCLs, which showed significant positive associations with the proliferation marker proliferating cell nuclear antigen (PCNA). These results indicate that in prostate tissue of men with T2D, hyperglycemia may induce EMT, increase MMP and CCL gene expressions, which in turn activate invasion and inflammatory processes accelerating the progression of PCa.

11.
Genes (Basel) ; 11(10)2020 10 07.
Artigo em Inglês | MEDLINE | ID: mdl-33036464

RESUMO

Prostate cancer (PCa), the most incident cancer in men, is tightly regulated by endocrine signals. A number of different PCa cell lines are commonly used for in vitro experiments, but these are of diverse origin, and have very different cell-proliferation rates and hormone-response capacities. By analyzing the gene-expression pattern of main hormone pathways, we systematically compared six PCa cell lines and parental primary cells. We compared these cell lines (i) with each other and (ii) with PCa tissue samples from 11 patients. We found major differences in the gene-expression levels of androgen, insulin, estrogen, and oxysterol signaling between PCa tissue and cell lines, and between different cell lines. Our systematic characterization gives researchers a solid basis to choose the appropriate PCa cell model for the hormone pathway of interest.


Assuntos
Androgênios/metabolismo , Biomarcadores Tumorais/metabolismo , Estrogênios/metabolismo , Insulina/metabolismo , Oxisteróis/metabolismo , Neoplasias da Próstata/patologia , Idoso , Biomarcadores Tumorais/genética , Humanos , Masculino , Neoplasias da Próstata/genética , Neoplasias da Próstata/metabolismo , Receptor de Insulina/genética , Receptor de Insulina/metabolismo , Receptores Androgênicos/genética , Receptores Androgênicos/metabolismo , Receptores de Estrogênio/genética , Receptores de Estrogênio/metabolismo
12.
J Pers Med ; 10(3)2020 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-32932589

RESUMO

Aldo-keto reductase family 1 (AKR1) enzymes play a crucial role in diabetic complications. Since type 2 diabetes (T2D) is associated with cancer progression, we investigated the impact of diabetes on AKR1 gene expression in the context of prostate cancer (PCa) development. In this study, we analyzed benign (BEN) prostate and PCa tissue of patients with and without T2D. Furthermore, to replicate hyperglycemia in vitro, we treated the prostate adenocarcinoma cell line PC3 with increasing glucose concentrations. Gene expression was quantified using real-time qPCR. In the prostate tissue of patients with T2D, AKR1C1 and AKR1C2 transcripts were higher compared to samples of patients without diabetes. In PC3 cells, high glucose treatment induced the gene expression levels of AKR1C1, C2, and C3. Furthermore, both in human tissue and in PC3 cells, the transcript levels of AKR1C1, C2, and C3 showed positive associations with oncogenes, which are involved in proliferation processes and HIF1α and NFκB pathways. These results indicate that in the prostate glands of patients with T2D, hyperglycemia could play a pivotal role by inducing the expression of AKR1C1, C2, and C3. The higher transcript level of AKR1C was furthermore associated with upregulated HIF1α and NFκB pathways, which are major drivers of PCa carcinogenesis.

13.
Cancers (Basel) ; 12(7)2020 07 06.
Artigo em Inglês | MEDLINE | ID: mdl-32640711

RESUMO

Despite it being the most common incident of cancer among men, the pathophysiological mechanisms contributing to prostate cancer (PCa) are still poorly understood. Altered mitochondrial metabolism is postulated to play a role in the development of PCa. To determine the key metabolites (which included mitochondrial oncometabolites), benign prostatic and cancer tissues of patients with PCa were analyzed using capillary electrophoresis and liquid chromatography coupled with mass spectrometry. Gene expression was studied using real-time PCR. In PCa tissues, we found reduced levels of early tricarboxylic acid cycle metabolites, whereas the contents of urea cycle metabolites including aspartate, argininosuccinate, arginine, proline, and the oncometabolite fumarate were higher than that in benign controls. Fumarate content correlated positively with the gene expression of oncogenic HIF1α and NFκB pathways, which were significantly higher in the PCa samples than in the benign controls. Furthermore, data from the TCGA database demonstrated that prostate cancer patients with activated NFκB pathway had a lower survival rate. In summary, our data showed that fumarate content was positively associated with carcinogenic genes.

14.
J Clin Endocrinol Metab ; 105(11)2020 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-32725157

RESUMO

CONTEXT: Pancreatic steatosis leading to beta-cell failure might be involved in type 2 diabetes (T2D) pathogenesis. OBJECTIVE: We hypothesized that the genetic background modulates the effect of pancreatic fat on beta-cell function and investigated genotype × pancreatic fat interactions on insulin secretion. DESIGN: Two observational studies. SETTING: University hospital. PATIENTS OR PARTICIPANTS: A total of 360 nondiabetic individuals with elevated risk for T2D (Tuebingen Family Study [TUEF]), and 64 patients undergoing pancreatectomy (Pancreas Biobank [PB], HbA1c <9%, no insulin therapy). MAIN OUTCOME MEASURES: Insulin secretion calculated from 5-point oral glucose tolerance test (TUEF) and fasting blood collection before surgery (PB). A genome-wide polygenic score for T2D was computed from 484,788 genotyped variants. The interaction of magnetic resonance imaging-measured and histologically quantified pancreatic fat with the polygenic score was investigated. Partitioned risk scores using genome-wide significant variants were also computed to gain insight into potential mechanisms. RESULTS: Pancreatic steatosis interacted with genome-wide polygenic score on insulin secretion (P = 0.003), which was similar in the replication cohort with histological measurements (P = 0.03). There was a negative association between pancreatic fat and insulin secretion in participants with high genetic risk, whereas individuals with low genetic risk showed a positive correlation between pancreatic fat and insulin secretion. Consistent interactions were found with insulin resistance-specific and a liver/lipid-specific polygenic scores. CONCLUSIONS: The associations suggest that pancreatic steatosis only impairs beta-cell function in subjects at high genetic risk for diabetes. Genetically determined insulin resistance specifically renders pancreatic fat deleterious for insulin secretion.


Assuntos
Diabetes Mellitus Tipo 2/genética , Resistência à Insulina/genética , Secreção de Insulina/genética , Pâncreas/metabolismo , Pancreatopatias/metabolismo , Tecido Adiposo/diagnóstico por imagem , Idoso , Glicemia , Índice de Massa Corporal , Feminino , Predisposição Genética para Doença , Teste de Tolerância a Glucose , Humanos , Masculino , Pessoa de Meia-Idade , Pâncreas/diagnóstico por imagem , Pancreatopatias/diagnóstico por imagem , Pancreatopatias/genética
15.
Nat Commun ; 11(1): 1841, 2020 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-32296068

RESUMO

Brain insulin action regulates eating behavior and energy fluxes throughout the body. However, numerous people are brain insulin resistant. How brain insulin responsiveness affects long-term weight and body fat composition in humans is still unknown. Here we show that high brain insulin sensitivity before lifestyle intervention associates with a more pronounced reduction in total and visceral fat during the program. High brain insulin sensitivity is also associated with less regain of fat mass during a nine year follow-up. Cross-sectionally, strong insulin responsiveness of the hypothalamus associates with less visceral fat, while subcutaneous fat is unrelated. Our results demonstrate that high brain insulin sensitivity is linked to weight loss during lifestyle intervention and associates with a favorable body fat distribution. Since visceral fat is strongly linked to diabetes, cardiovascular risk and cancer, these findings have implications beyond metabolic diseases and indicate the necessity of strategies to resolve brain insulin resistance.


Assuntos
Diabetes Mellitus Tipo 2/metabolismo , Gordura Intra-Abdominal/metabolismo , Obesidade/metabolismo , Adiposidade/genética , Adiposidade/fisiologia , Adulto , Composição Corporal/genética , Composição Corporal/fisiologia , Encéfalo/metabolismo , Estudos Transversais , Diabetes Mellitus Tipo 2/genética , Feminino , Humanos , Resistência à Insulina/genética , Resistência à Insulina/fisiologia , Masculino , Pessoa de Meia-Idade
16.
J Clin Endocrinol Metab ; 105(1)2020 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-31512724

RESUMO

CONTEXT: Adenosine monophosphate (AMP)-activated protein kinase (AMPK) is a heterotrimeric enzyme and central regulator of cellular energy metabolism. The impact of single nucleotide polymorphisms (SNPs) in all 7 AMPK subunit genes on adiposity, glucose metabolism, and lipid metabolism has not yet been systematically studied. OBJECTIVE: To analyze the associations of common SNPs in all AMPK genes, and of different scores thereof, with adiposity, insulin sensitivity, insulin secretion, blood glucose, low-density lipoprotein (LDL) cholesterol, high-density lipoprotein (HDL) cholesterol, total cholesterol, and triglycerides. STUDY DESIGN AND METHODS: A cohort of 2789 nondiabetic participants from the Tübingen Family study of type 2 diabetes, metabolically characterized by oral glucose tolerance test and genotyped by genome-wide SNP array, was analyzed. RESULTS: We identified 6 largely nonoverlapping SNP sets across 4 AMPK genes (PRKAA1, PRKAA2, PRKAG2, PRKAG3) associated with adiposity, insulin sensitivity, insulin secretion, blood glucose, total/LDL cholesterol, or HDL cholesterol, respectively. A genetic score of body-fat-increasing alleles revealed per-allele effect sizes on body mass index (BMI) of +0.22 kg/m2 (P = 2.3 × 10-7), insulin sensitivity of -0.12 × 1019 L2/mol2 (P = 9.9 × 10-6) and 2-hour blood glucose of +0.02 mmol/L (P = 0.0048). Similar effects on blood glucose were observed with scores of insulin-sensitivity-reducing, insulin-secretion-reducing and glucose-raising alleles, respectively. A genetic cholesterol score increased total and LDL cholesterol by 1.17 mg/dL per allele (P = 0.0002 and P = 3.2 × 10-5, respectively), and a genetic HDL score decreased HDL cholesterol by 0.32 mg/dL per allele (P = 9.1 × 10-6). CONCLUSIONS: We describe largely nonoverlapping genetic determinants in AMPK genes for diabetes-/atherosclerosis-related traits, which reflect the metabolic pathways controlled by the enzyme. Formation of trait-specific genetic scores revealed additivity of allele effects, with body-fat-raising alleles reaching a marked effect size. (J Clin Endocrinol Metab XX: 0-0, 2019).


Assuntos
Proteínas Quinases Ativadas por AMP/genética , Adiposidade , Colesterol/metabolismo , Diabetes Mellitus Tipo 2/epidemiologia , Glucose/metabolismo , Lipídeos/análise , Polimorfismo de Nucleotídeo Único , Adulto , Biomarcadores/análise , Estudos Transversais , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/metabolismo , Feminino , Seguimentos , Alemanha/epidemiologia , Humanos , Insulina/metabolismo , Resistência à Insulina , Masculino , Prevalência , Prognóstico
17.
Metabolism ; 88: 22-30, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30195474

RESUMO

BACKGROUND: The activation of hepatic stellate cells (HSCs) plays a crucial role in liver fibrosis, however the role of HSCs is less understood in hepatic insulin resistance. Since in the liver cGMP-dependent protein kinase I (cGKI) was detected in HSC but not in hepatocytes, and cGKI-deficient mice that express cGKI selectively in smooth muscle but not in other cell types (cGKI-SM mice) displayed hepatic insulin resistance, we hypothesized that cGKI modulates HSC activation and insulin sensitivity. MATERIALS AND METHODS: To study stellate cell activation in cGKI-SM mice, retinol storage and gene expression were studied. Moreover, in the human stellate cell line LX2, the consequences of cGKI-silencing on gene expression were investigated. Finally, cGKI expression was examined in human liver biopsies covering a wide range of liver fat content. RESULTS: Retinyl-ester concentrations in the liver of cGKI-SM mice were lower compared to wild-type animals, which was associated with disturbed expression of genes involved in retinol metabolism and inflammation. cGKI-silenced LX2 cells showed an mRNA expression profile of stellate cell activation, altered matrix degradation and activated chemokine expression. On the other hand, activation of LX2 cells suppressed cGKI expression. In accordance with this finding, in human liver biopsies, we observed a negative correlation between cGKI mRNA and liver fat content. CONCLUSIONS: These results suggest that the lack of cGKI possibly leads to stellate cell activation, which stimulates chemokine expression and activates inflammatory processes, which could disturb hepatic insulin sensitivity.


Assuntos
Proteína Quinase Dependente de GMP Cíclico Tipo I/metabolismo , Células Estreladas do Fígado/citologia , Animais , Biópsia , Linhagem Celular Transformada , Quimiocinas/metabolismo , Proteína Quinase Dependente de GMP Cíclico Tipo I/genética , Fígado Gorduroso/enzimologia , Fígado Gorduroso/metabolismo , Feminino , Células Estreladas do Fígado/metabolismo , Humanos , Fígado/enzimologia , Fígado/metabolismo , Fígado/patologia , Masculino , Camundongos , Camundongos Knockout , RNA Mensageiro/metabolismo , RNA Interferente Pequeno/genética
18.
J Clin Endocrinol Metab ; 103(12): 4373-4383, 2018 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-30202879

RESUMO

Context: Reduced ß-cell mass, impaired islet function, and dedifferentiation are considered causal to development of hyperglycemia and type 2 diabetes. In human cohort studies, changes of islet cell-specific expression patterns have been associated with diabetes but not directly with in vivo insulin secretion. Objective: This study investigates alterations of islet gene expression and corresponding gene variants in the context of in vivo glycemic traits from the same patients. Methods: Fasting blood was collected before surgery, and pancreatic tissue was frozen after resection from 18 patients undergoing pancreatectomy. Islet tissue was isolated by laser capture microdissection. Islet transcriptome was analyzed using microarray and quantitative RT-PCR. Proteins were examined by immunohistochemistry and western blotting. The association of gene variants with insulin secretion was investigated with oral glucose tolerance test (OGTT)-derived insulin secretion measured in a large cohort of subjects at increased risk of type 2 diabetes and with hyperglycemic clamp in a subset. Results: Differential gene expression between islets from normoglycemic and hyperglycemic patients was prominent for the glycolytic enzyme ALDOB and the obesity-associated gene FAIM2. The mRNA levels of both genes correlated negatively with insulin secretion and positively with HbA1c. Islets of hyperglycemic patients displayed increased ALDOB immunoreactivity in insulin-positive cells, whereas α- and δ-cells were negative. Exposure of isolated islets to hyperglycemia augmented ALDOB expression. The minor allele of the ALDOB variant rs550915 associated with significantly higher levels of C-peptide and insulin during OGTT and hyperglycemic clamp, respectively. Conclusion: Our analyses suggest that increased ALDOB expression in human islets is associated with lower insulin secretion.


Assuntos
Diabetes Mellitus Tipo 2/metabolismo , Frutose-Bifosfato Aldolase/metabolismo , Hiperglicemia/metabolismo , Secreção de Insulina/fisiologia , Ilhotas Pancreáticas/metabolismo , Glicemia , Células Cultivadas , Estudos Transversais , Diabetes Mellitus Tipo 2/sangue , Diabetes Mellitus Tipo 2/genética , Frutose-Bifosfato Aldolase/genética , Perfilação da Expressão Gênica , Técnica Clamp de Glucose , Teste de Tolerância a Glucose , Hemoglobinas Glicadas/análise , Voluntários Saudáveis , Humanos , Hiperglicemia/sangue , Hiperglicemia/genética , Insulina/sangue , Microdissecção e Captura a Laser , Pancreatectomia , Neoplasias Pancreáticas/cirurgia , Polimorfismo de Nucleotídeo Único , Cultura Primária de Células
20.
Mol Metab ; 8: 158-166, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29249638

RESUMO

OBJECTIVE: While prostate cancer does not occur more often in men with diabetes, survival is markedly reduced in this patient group. Androgen signaling is a known and major driver for prostate cancer progression. Therefore, we analyzed major components of the androgen signaling chain and cell proliferation in relation to type 2 diabetes. METHODS: Tumor content of 70 prostate tissue samples of men with type 2 diabetes and 59 samples of patients without diabetes was quantified by an experienced pathologist, and a subset of 51 samples was immunohistochemically stained for androgen receptor (AR). mRNA expression of AR, insulin receptor isoform A (IR-A) and B (IR-B), IGF-1 receptor (IGF1R), Cyp27A1 and Cyp7B1, PSA gene KLK3, PSMA gene FOLH1, Ki-67 gene MKI67, and estrogen receptor beta (ESR2) were analyzed by RT-qPCR. RESULTS: AR mRNA and protein expression were associated with the tumor content only in men with diabetes. AR expression also correlated with downstream targets PSA (KLK3) and PSMA (FOLH1) and increased cell proliferation. Only in diabetes, AR expression was correlated to higher IR-A/IR-B ratio and lower IR-B/IGF1R ratio, thus, in favor of the mitogenic isoforms. Reduced Cyp27A1 and increased Cyp7B1 expressions in tumor suggest lower levels of protective estrogen receptor ligands in diabetes. CONCLUSIONS: We report elevated androgen receptor signaling and activity presumably due to altered insulin/IGF-1 receptors and decreased levels of protective estrogen receptor ligands in prostate cancer in men with diabetes. Our results reveal new insights why these patients have a worse prognosis. These findings provide the basis for future clinical trials to investigate treatment response in patients with prostate cancer and diabetes.


Assuntos
Diabetes Mellitus Tipo 2/metabolismo , Próstata/metabolismo , Neoplasias da Próstata/metabolismo , Receptores Androgênicos/metabolismo , Adulto , Idoso , Idoso de 80 Anos ou mais , Antígenos de Superfície/genética , Antígenos de Superfície/metabolismo , Colestanotriol 26-Mono-Oxigenase/genética , Colestanotriol 26-Mono-Oxigenase/metabolismo , Família 7 do Citocromo P450/genética , Família 7 do Citocromo P450/metabolismo , Diabetes Mellitus Tipo 2/complicações , Receptor beta de Estrogênio/genética , Receptor beta de Estrogênio/metabolismo , Glutamato Carboxipeptidase II/genética , Glutamato Carboxipeptidase II/metabolismo , Humanos , Calicreínas/genética , Calicreínas/metabolismo , Antígeno Ki-67/genética , Antígeno Ki-67/metabolismo , Masculino , Pessoa de Meia-Idade , Antígeno Prostático Específico/genética , Antígeno Prostático Específico/metabolismo , Neoplasias da Próstata/complicações , Receptor IGF Tipo 1/genética , Receptor IGF Tipo 1/metabolismo , Receptor de Insulina/genética , Receptor de Insulina/metabolismo , Receptores Androgênicos/genética , Esteroide Hidroxilases/genética , Esteroide Hidroxilases/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA