Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 56
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 24(13)2023 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-37446116

RESUMO

The prolonged cooling of cells results in cell death, in which both apoptosis and ferroptosis have been implicated. Preservation solutions such as the University of Wisconsin Cold Storage Solution (UW) encompass approaches addressing both. The use of UW improves survival and thus extends preservation limits, yet it remains unclear how exactly organ preservation solutions exert their cold protection. Thus, we explored cooling effects on lipid peroxidation and adenosine triphosphate (ATP) levels and the actions of blockers of apoptosis and ferroptosis, and of compounds enhancing mitochondrial function. Cooling and rewarming experiments were performed in a cellular transplantation model using Human Embryonic Kidney (HEK) 293 cells. Cell viability was assessed by neutral red assay. Lipid peroxidation levels were measured by Western blot against 4-Hydroxy-Nonenal (4HNE) and the determination of Malondialdehyde (MDA). ATP was measured by luciferase assay. Cooling beyond 5 h in Dulbecco's Modified Eagle Medium (DMEM) induced complete cell death in HEK293, whereas cooling in UW preserved ~60% of the cells, with a gradual decline afterwards. Cooling-induced cell death was not precluded by inhibiting apoptosis. In contrast, the blocking of ferroptosis by Ferrostatin-1 or maintaining of mitochondrial function by the 6-chromanol SUL150 completely inhibited cell death both in DMEM- and UW-cooled cells. Cooling for 24 h in UW followed by rewarming for 15 min induced a ~50% increase in MDA, while concomitantly lowering ATP by >90%. Treatment with SUL150 of cooled and rewarmed HEK293 effectively precluded the increase in MDA and preserved normal ATP in both DMEM- and UW-cooled cells. Likewise, treatment with Ferrostatin-1 blocked the MDA increase and preserved the ATP of rewarmed UW HEK293 cells. Cooling-induced HEK293 cell death from hypothermia and/or rewarming was caused by ferroptosis rather than apoptosis. UW slowed down ferroptosis during hypothermia, but lipid peroxidation and ATP depletion rapidly ensued upon rewarming, ultimately resulting in complete cell death. Treatment throughout UW cooling with small-molecule Ferrostatin-1 or the 6-chromanol SUL150 effectively prevented ferroptosis, maintained ATP, and limited lipid peroxidation in UW-cooled cells. Counteracting ferroptosis during cooling in UW-based preservation solutions may provide a simple method to improve graft survival following cold static cooling.


Assuntos
Ferroptose , Hipotermia , Humanos , Células HEK293 , Reaquecimento , Universidades , Wisconsin , Trifosfato de Adenosina/metabolismo , Temperatura Baixa , Alopurinol/farmacologia , Glutationa/farmacologia , Insulina/farmacologia , Preservação de Órgãos
2.
Int J Mol Sci ; 24(7)2023 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-37047303

RESUMO

Sepsis is defined as a dysregulated host response leading to organ dysfunction, which may ultimately result in the patient's death. Mitochondrial dysfunction plays a key role in developing organ dysfunction in sepsis. In this study, we explored the efficacy of the novel mitochondrial protective compound, SUL-138, in sepsis models in HUVECs and mice. In LPS-challenged HUVECs, SUL-138 preserved mitochondrial membrane potential and oxygen consumption and limited mitochondrial oxidative stress, resulting in increased survival at 48 h. Further, SUL-138 dampened the LPS-induced expression of IL-1ß, but not of NLRP3, and IL-18 in HUVECs. Sepsis in mice induced by cecal ligation and puncture (CLP) led to a lower mitochondrial membrane potential and increased levels of mitochondrial oxidative stress in the kidney, which SUL-138 limited. In addition, SUL-138 mitigated the CLP-induced increase in kidney dysfunction markers NGAL and urea. It dampened the rise in kidney expression of IL-6, IL-1ß, and ICAM-1, but not TNF-α and E-selectin. Yet, SUL-138 limited the increase in plasma levels of IL-6 and TNF-α of CLP mice. These results demonstrate that SUL-138 supports mitochondrial function, resulting in a limitation of systemic inflammation and preservation of kidney function.


Assuntos
Interleucina-6 , Sepse , Camundongos , Animais , Interleucina-6/metabolismo , Lipopolissacarídeos/toxicidade , Lipopolissacarídeos/metabolismo , Insuficiência de Múltiplos Órgãos/metabolismo , Rim/metabolismo , Células Endoteliais/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Sepse/complicações , Sepse/tratamento farmacológico , Sepse/metabolismo , Mitocôndrias/metabolismo
3.
JAMA Netw Open ; 5(10): e2237970, 2022 10 03.
Artigo em Inglês | MEDLINE | ID: mdl-36287565

RESUMO

Importance: A variety of perioperative risk factors are associated with postoperative mortality risk. However, the relative contribution of routinely collected intraoperative clinical parameters to short-term and long-term mortality remains understudied. Objective: To examine the performance of multiple machine learning models with data from different perioperative periods to predict 30-day, 1-year, and 5-year mortality and investigate factors that contribute to these predictions. Design, Setting, and Participants: In this prognostic study using prospectively collected data, risk prediction models were developed for short-term and long-term mortality after cardiac surgery. Included participants were adult patients undergoing a first-time valve operation, coronary artery bypass grafting, or a combination of both between 1997 and 2017 in a single center, the University Medical Centre Groningen in the Netherlands. Mortality data were obtained in November 2017. Data analysis took place between February 2020 and August 2021. Exposure: Cardiac surgery. Main Outcomes and Measures: Postoperative mortality rates at 30 days, 1 year, and 5 years were the primary outcomes. The area under the receiver operating characteristic curve (AUROC) was used to assess discrimination. The contribution of all preoperative, intraoperative hemodynamic and temperature, and postoperative factors to mortality was investigated using Shapley additive explanations (SHAP) values. Results: Data from 9415 patients who underwent cardiac surgery (median [IQR] age, 68 [60-74] years; 2554 [27.1%] women) were included. Overall mortality rates at 30 days, 1 year, and 5 years were 268 patients (2.8%), 420 patients (4.5%), and 612 patients (6.5%), respectively. Models including preoperative, intraoperative, and postoperative data achieved AUROC values of 0.82 (95% CI, 0.78-0.86), 0.81 (95% CI, 0.77-0.85), and 0.80 (95% CI, 0.75-0.84) for 30-day, 1-year, and 5-year mortality, respectively. Models including only postoperative data performed similarly (30 days: 0.78 [95% CI, 0.73-0.82]; 1 year: 0.79 [95% CI, 0.74-0.83]; 5 years: 0.77 [95% CI, 0.73-0.82]). However, models based on all perioperative data provided less clinically usable predictions, with lower detection rates; for example, postoperative models identified a high-risk group with a 2.8-fold increase in risk for 5-year mortality (4.1 [95% CI, 3.3-5.1]) vs an increase of 11.3 (95% CI, 6.8-18.7) for the high-risk group identified by the full perioperative model. Postoperative markers associated with metabolic dysfunction and decreased kidney function were the main factors contributing to mortality risk. Conclusions and Relevance: This study found that the addition of continuous intraoperative hemodynamic and temperature data to postoperative data was not associated with improved machine learning-based identification of patients at increased risk of short-term and long-term mortality after cardiac operations.


Assuntos
Procedimentos Cirúrgicos Cardíacos , Adulto , Humanos , Feminino , Idoso , Masculino , Procedimentos Cirúrgicos Cardíacos/efeitos adversos , Fatores de Risco , Ponte de Artéria Coronária/efeitos adversos , Curva ROC , Aprendizado de Máquina
4.
Cell Transplant ; 31: 9636897221108705, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35808831

RESUMO

Cooling at 4°C is routinely used to lower metabolism and preserve cell and tissue integrity in laboratory and clinical settings, including organ transplantation. However, cooling and rewarming produce cell damage, attributed primarily to a burst of reactive oxygen species (ROS) upon rewarming. While DNA represents a highly vulnerable target of ROS, it is unknown whether cooling and/or rewarming produces DNA damage. Here, we show that cooling alone suffices to produce extensive DNA damage in cultured primary cells and cell lines, including double-strand breaks (DSBs), as shown by comet assay and pulsed-field gel electrophoresis. Cooling-induced DSB formation is time- and temperature-dependent and coincides with an excess production of ROS, rather than a decrease in ATP levels. Immunohistochemistry confirmed that DNA damage activates the DNA damage response marked by the formation of nuclear foci of proteins involved in DSB repair, γ-H2Ax, and 53BP1. Subsequent rewarming for 24 h fails to recover ATP levels and only marginally lowers DSB amounts and nuclear foci. Precluding ROS formation by dopamine and the hydroxychromanol, Sul-121, dose-dependently reduces DSBs. Finally, a standard clinical kidney transplant procedure, using cold static storage in UW preservation solution up to 24 h in porcine kidney, lowered ATP, increased ROS, and produced increasing amounts of DSBs with recruitment of 53BP1. Given that DNA repair is erroneous by nature, cooling-inflicted DNA damage may affect cell survival, proliferation, and genomic stability, significantly impacting cellular and organ function, with relevance in stem cell and transplantation procedures.


Assuntos
Dano ao DNA , Histonas , Trifosfato de Adenosina/metabolismo , Animais , DNA/metabolismo , Histonas/metabolismo , Estresse Oxidativo , Espécies Reativas de Oxigênio/metabolismo , Suínos
5.
Front Physiol ; 12: 624950, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33867999

RESUMO

Tissue-resident stem cells may enter a dormant state, also known as quiescence, which allows them to withstand metabolic stress and unfavorable conditions. Similarly, hibernating mammals can also enter a state of dormancy used to evade hostile circumstances, such as food shortage and low ambient temperatures. In hibernation, the dormant state of the individual and its cells is commonly known as torpor, and is characterized by metabolic suppression in individual cells. Given that both conditions represent cell survival strategies, we here compare the molecular aspects of cellular quiescence, particularly of well-studied hematopoietic stem cells, and torpor at the cellular level. Critical processes of dormancy are reviewed, including the suppression of the cell cycle, changes in metabolic characteristics, and cellular mechanisms of dealing with damage. Key factors shared by hematopoietic stem cell quiescence and torpor include a reversible activation of factors inhibiting the cell cycle, a shift in metabolism from glucose to fatty acid oxidation, downregulation of mitochondrial activity, key changes in hypoxia-inducible factor one alpha (HIF-1α), mTOR, reversible protein phosphorylation and autophagy, and increased radiation resistance. This similarity is remarkable in view of the difference in cell populations, as stem cell quiescence regards proliferating cells, while torpor mainly involves terminally differentiated cells. A future perspective is provided how to advance our understanding of the crucial pathways that allow stem cells and hibernating animals to engage in their 'great slumbers.'

6.
Sci Rep ; 11(1): 3467, 2021 02 10.
Artigo em Inglês | MEDLINE | ID: mdl-33568739

RESUMO

Despite having a similar post-operative complication profile, cardiac valve operations are associated with a higher mortality rate compared to coronary artery bypass grafting (CABG) operations. For long-term mortality, few predictors are known. In this study, we applied an ensemble machine learning (ML) algorithm to 88 routinely collected peri-operative variables to predict 5-year mortality after different types of cardiac operations. The Super Learner algorithm was trained using prospectively collected peri-operative data from 8241 patients who underwent cardiac valve, CABG and combined operations. Model performance and calibration were determined for all models, and variable importance analysis was conducted for all peri-operative parameters. Results showed that the predictive accuracy was the highest for solitary mitral (0.846 [95% CI 0.812-0.880]) and solitary aortic (0.838 [0.813-0.864]) valve operations, confirming that ensemble ML using routine data collected perioperatively can predict 5-year mortality after cardiac operations with high accuracy. Additionally, post-operative urea was identified as a novel and strong predictor of mortality for several types of operation, having a seemingly additive effect to better known risk factors such as age and postoperative creatinine.


Assuntos
Procedimentos Cirúrgicos Cardíacos/mortalidade , Ponte de Artéria Coronária/mortalidade , Doenças das Valvas Cardíacas/cirurgia , Aprendizado de Máquina , Idoso , Algoritmos , Estudos de Coortes , Feminino , Humanos , Masculino , Probabilidade , Medição de Risco , Sensibilidade e Especificidade , Fatores de Tempo
7.
Crit Care ; 25(1): 36, 2021 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-33494815

RESUMO

BACKGROUND: Sepsis is a life-threatening condition accompanied by organ dysfunction subsequent to a dysregulated host response to infection. Up to 60% of patients with sepsis develop acute kidney injury (AKI), which is associated with a poor clinical outcome. The pathophysiology of sepsis-associated AKI (sepsis-AKI) remains incompletely understood, but mitochondria have emerged as key players in the pathogenesis. Therefore, our aim was to identify mitochondrial damage in patients with sepsis-AKI. METHODS: We conducted a clinical laboratory study using "warm" postmortem biopsies from sepsis-associated AKI patients from a university teaching hospital. Biopsies were taken from adult patients (n = 14) who died of sepsis with AKI at the intensive care unit (ICU) and control patients (n = 12) undergoing tumor nephrectomy. To define the mechanisms of the mitochondrial contribution to the pathogenesis of sepsis-AKI, we explored mRNA and DNA expression of mitochondrial quality mechanism pathways, DNA oxidation and mitochondrial DNA (mtDNA) integrity in renal biopsies from sepsis-AKI patients and control subjects. Next, we induced human umbilical vein endothelial cells (HUVECs) with lipopolysaccharide (LPS) for 48 h to mimic sepsis and validate our results in vitro. RESULTS: Compared to control subjects, sepsis-AKI patients had upregulated mRNA expression of oxidative damage markers, excess mitochondrial DNA damage and lower mitochondrial mass. Sepsis-AKI patients had lower mRNA expression of mitochondrial quality markers TFAM, PINK1 and PARKIN, but not of MFN2 and DRP1. Oxidative DNA damage was present in the cytosol of tubular epithelial cells in the kidney of sepsis-AKI patients, whereas it was almost absent in biopsies from control subjects. Oxidative DNA damage co-localized with both the nuclei and mitochondria. Accordingly, HUVECs induced with LPS for 48 h showed an increased mnSOD expression, a decreased TFAM expression and higher mtDNA damage levels. CONCLUSION: Sepsis-AKI induces mitochondrial DNA damage in the human kidney, without upregulation of mitochondrial quality control mechanisms, which likely resulted in a reduction in mitochondrial mass.


Assuntos
Injúria Renal Aguda/genética , DNA Mitocondrial/análise , Rim/fisiopatologia , Sepse/genética , Injúria Renal Aguda/etiologia , Injúria Renal Aguda/fisiopatologia , Adulto , Idoso , Dano ao DNA/fisiologia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Insuficiência de Múltiplos Órgãos/etiologia , Insuficiência de Múltiplos Órgãos/genética , Sepse/complicações
8.
Dev Comp Immunol ; 119: 104024, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33503449

RESUMO

Hibernation consists of alternating periods of reduced metabolism (torpor) with brief periods of metabolism similar to summer euthermia (arousal). The function of the innate immune system is reduced during hibernation, of which the underlying mechanisms are incompletely understood. Here, we studied neutrophil functionality during hibernation in Syrian hamsters. The inflammatory response to LPS-induced endotoxemia is inhibited in hibernation, partly mediated by reduced IL-6 production in early arousal. Furthermore, neutrophil pathogen binding, phagocytosis and oxidative burst is profoundly reduced in early arousal. Functionality of both summer and early arousal neutrophils was repressed in plasma from early arousal and mixed plasma from early arousal and summer euthermic, but restored by summer euthermic plasma, signifying that a plasma factor in early arousal inhibits TLR-recognition. Identification of the inhibiting factor may offer a target to modulate neutrophil function with relevance to (auto-)inflammatory diseases.


Assuntos
Hibernação/imunologia , Imunidade Inata/imunologia , Mesocricetus/imunologia , Neutrófilos/imunologia , Estações do Ano , Proteínas de Fase Aguda/imunologia , Animais , Nível de Alerta/genética , Nível de Alerta/fisiologia , Proteínas de Transporte/sangue , Proteínas de Transporte/imunologia , Citocinas/imunologia , Citocinas/metabolismo , Expressão Gênica/imunologia , Hibernação/genética , Hibernação/fisiologia , Imunidade Inata/genética , Imunoglobulina G/sangue , Imunoglobulina G/imunologia , Interleucina-6/imunologia , Interleucina-6/metabolismo , Receptores de Lipopolissacarídeos/sangue , Receptores de Lipopolissacarídeos/imunologia , Receptores de Lipopolissacarídeos/metabolismo , Lipopolissacarídeos/imunologia , Lipopolissacarídeos/metabolismo , Glicoproteínas de Membrana/sangue , Glicoproteínas de Membrana/imunologia , Mesocricetus/genética , Mesocricetus/metabolismo , NF-kappa B/imunologia , NF-kappa B/metabolismo , Neutrófilos/metabolismo , Neutrófilos/fisiologia , Fagocitose/imunologia , Explosão Respiratória/imunologia , Explosão Respiratória/fisiologia , Fatores de Tempo
9.
Int J Mol Sci ; 21(5)2020 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-32182837

RESUMO

Mitochondrial failure is recognized to play an important role in a variety of diseases. We previously showed hibernating species to have cell-autonomous protective mechanisms to resist cellular stress and sustain mitochondrial function. Here, we set out to detail these mitochondrial features of hibernators. We compared two hibernator-derived cell lines (HaK and DDT1MF2) with two non-hibernating cell lines (HEK293 and NRK) during hypothermia (4 °C) and rewarming (37 °C). Although all cell lines showed a strong decrease in oxygen consumption upon cooling, hibernator cells maintained functional mitochondria during hypothermia, without mitochondrial permeability transition pore (mPTP) opening, mitochondrial membrane potential decline or decreased adenosine triphosphate (ATP) levels, which were all observed in both non-hibernator cell lines. In addition, hibernator cells survived hypothermia in the absence of extracellular energy sources, suggesting their use of an endogenous substrate to maintain ATP levels. Moreover, hibernator-derived cells did not accumulate reactive oxygen species (ROS) damage and showed normal cell viability even after 48 h of cold-exposure. In contrast, non-hibernator cells accumulated ROS and showed extensive cell death through ferroptosis. Understanding the mechanisms that hibernators use to sustain mitochondrial activity and counteract damage in hypothermic circumstances may help to define novel preservation techniques with relevance to a variety of fields, such as organ transplantation and cardiac arrest.


Assuntos
Hibernação/fisiologia , Hipotermia/fisiopatologia , Trifosfato de Adenosina/metabolismo , Animais , Linhagem Celular , Cricetinae , Células HEK293 , Humanos , Hipotermia/metabolismo , Potencial da Membrana Mitocondrial/fisiologia , Mitocôndrias/metabolismo , Mitocôndrias/fisiologia , Poro de Transição de Permeabilidade Mitocondrial/metabolismo , Poro de Transição de Permeabilidade Mitocondrial/fisiologia , Espécies Reativas de Oxigênio/metabolismo , Reaquecimento/métodos
10.
Antioxid Redox Signal ; 31(2): 134-152, 2019 07 10.
Artigo em Inglês | MEDLINE | ID: mdl-30403161

RESUMO

Significance: Sepsis is the main cause of death among patients admitted to the intensive care unit. As current treatment is limited to antimicrobial therapy and supportive care, mortality remains high, which warrants efforts to find novel therapies. Recent Advances: Mitochondrial dysfunction is emerging as a key process in the induction of organ dysfunction during sepsis, and metabolic resuscitation might reveal to be a novel cornerstone in the treatment of sepsis. Critical Issues: Here, we review novel strategies to maintain organ function in sepsis by precluding mitochondrial dysfunction by lowering energetic demand to allow preservation of adenosine triphosphate-levels, while reducing free radical generation. As the most common strategy to suppress metabolism, that is, cooling, does not reveal unequivocal beneficial effects and may even increase mortality, caloric restriction or modulation of energy-sensing pathways (i.e., sirtuins and AMP-activated protein kinase) may offer safe alternatives. Similar effects may be offered when mimicking hibernation by hydrogen sulfide (H2S). In addition H2S may also confer beneficial effects through upregulation of antioxidant mechanisms, similar to the other gasotransmitters nitric oxide and carbon monoxide, which display antioxidant and anti-inflammatory effects in sepsis. In addition, oxidative stress may be averted by systemic or mitochondria-targeted antioxidants, of which a wide range are able to lower inflammation, as well as reduce organ dysfunction and mortality from sepsis. Future Directions: Mitochondrial dysfunction plays a key role in the pathophysiology of sepsis. As a consequence, metabolic resuscitation might reveal to be a novel cornerstone in the treatment of sepsis.


Assuntos
Terapia Combinada/métodos , Insuficiência de Múltiplos Órgãos/prevenção & controle , Sepse/terapia , Restrição Calórica/efeitos adversos , Metabolismo Energético/efeitos dos fármacos , Humanos , Sulfeto de Hidrogênio/farmacologia , Sulfeto de Hidrogênio/uso terapêutico , Hipotermia Induzida/efeitos adversos , Hipotermia Induzida/métodos , Mitocôndrias/efeitos dos fármacos , Fosforilação Oxidativa/efeitos dos fármacos , Sepse/complicações , Sepse/fisiopatologia
12.
Nephrol Dial Transplant ; 33(12): 2128-2138, 2018 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-29660027

RESUMO

Background: Mitochondrial dysfunction plays an important role in kidney damage in various pathologies, including acute and chronic kidney injury and diabetic nephropathy. In addition to the well-studied ischaemia/reperfusion (I/R) injury, hypothermia/rewarming (H/R) also inflicts acute kidney injury. Substituted 6-hydroxychromanols are a novel class of mitochondrial medicines that ameliorate mitochondrial oxidative stress and protect the mitochondrial network. To identify a novel 6-hydroxychromanol that protects mitochondrial structure and function in the kidney during H/R, we screened multiple compounds in vitro and subsequently assessed the efficacy of the 6-hydroxychromanol derivatives SUL-109 and SUL-121 in vivo to protect against kidney injury after H/R in rats. Methods: Human proximal tubule cell viability was assessed following exposure to H/R for 48/4 h in the presence of various 6-hydroxychromanols. Selected compounds (SUL-109, SUL-121) or vehicle were administered to ketamine-anaesthetized male Wistar rats (IV 135 µg/kg/h) undergoing H/R at 15°C for 3 h followed by rewarming and normothermia for 1 h. Metabolic parameters and body temperature were measured throughout. In addition, renal function, renal injury, histopathology and mitochondrial fitness were assessed. Results: H/R injury in vitro lowered cell viability by 94 ± 1%, which was counteracted dose-dependently by multiple 6-hydroxychomanols derivatives. In vivo, H/R in rats showed kidney injury molecule 1 expression in the kidney and tubular dilation, accompanied by double-strand DNA breaks and protein nitrosylation. SUL-109 and SUL-121 ameliorated tubular kidney damage, preserved mitochondrial mass and maintained cortical adenosine 5'-triphosphate (ATP) levels, although SUL-121 did not reduce protein nitrosylation. Conclusions: The substituted 6-hydroxychromanols SUL-109 and SUL-121 ameliorate kidney injury during in vivo H/R by preserving mitochondrial mass, function and ATP levels. In addition, both 6-hydroxychromanols limit DNA damage, but only SUL-109 also prevented protein nitrosylation in tubular cells. Therefore SUL-109 offers a promising therapeutic strategy to preserve kidney mitochondrial function.


Assuntos
Injúria Renal Aguda/prevenção & controle , Cromanos/química , Crioprotetores/farmacologia , Hipotermia/complicações , Traumatismo por Reperfusão/prevenção & controle , Reaquecimento/efeitos adversos , Injúria Renal Aguda/etiologia , Injúria Renal Aguda/patologia , Animais , Cromanos/farmacologia , Cromanos/uso terapêutico , Crioprotetores/química , Humanos , Masculino , Mitocôndrias/metabolismo , Soluções para Preservação de Órgãos , Estresse Oxidativo , Ratos , Ratos Wistar
13.
Ann Thorac Surg ; 106(1): 92-98, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29501641

RESUMO

BACKGROUND: Perioperative acute kidney injury (AKI) is an important predictor of long-term all-cause mortality after coronary artery bypass (CABG). However, the effect of AKI on long-term mortality after cardiac valve operations is hitherto undocumented. METHODS: Perioperative renal injury and long-term all-cause mortality after valve operations were studied in a prospective cohort of patients undergoing solitary valve operations (n = 2,806) or valve operations combined with CABG (n = 1,260) with up to 18 years of follow-up. Postoperative serum creatinine increase was classified according to AKI staging 0 to 3. Patients undergoing solitary CABG (n = 4,938) with cardiopulmonary bypass served as reference. RESULTS: In both valve and valve+CABG operations, postoperative renal injury of AKI stage 1 or higher was progressively associated with an increase in long-term mortality (hazard ratio [HR], 2.27, p < 0.05 for valve; HR, 1.65, p < 0.05 for valve+CABG; HR, 1.56, p < 0.05 for CABG). Notably, the mortality risk increased already substantially at serum creatinine increases of 10% to 25%-that is, far below the threshold for AKI stage 1 after valve operations (HR, 1.39, p < 0.05), but not after valve operations combined with CABG or CABG only. CONCLUSIONS: An increase in serum creatinine by more than 10% during the first week after valve operation is associated with an increased risk for long-term mortality after cardiac valve operation. Thus, AKI classification clearly underestimates long-term mortality risk in patients undergoing valve operations.


Assuntos
Injúria Renal Aguda/etiologia , Injúria Renal Aguda/mortalidade , Ponte Cardiopulmonar/efeitos adversos , Causas de Morte , Ponte de Artéria Coronária/efeitos adversos , Implante de Prótese de Valva Cardíaca/efeitos adversos , Injúria Renal Aguda/classificação , Idoso , Ponte Cardiopulmonar/métodos , Estudos de Coortes , Ponte de Artéria Coronária/métodos , Feminino , Implante de Prótese de Valva Cardíaca/métodos , Humanos , Testes de Função Renal , Masculino , Pessoa de Meia-Idade , Valor Preditivo dos Testes , Modelos de Riscos Proporcionais , Estudos Prospectivos , Sistema de Registros , Medição de Risco , Análise de Sobrevida , Sobreviventes , Fatores de Tempo
14.
Sci Rep ; 7(1): 15482, 2017 11 14.
Artigo em Inglês | MEDLINE | ID: mdl-29138454

RESUMO

Hibernators show superior resistance to ischemia and hypothermia, also outside the hibernation season. Therefore, hibernation is a promising strategy to decrease cellular damage in a variety of fields, such as organ transplantation. Here, we explored the role of mitochondria herein, by comparing epithelial cell lines from a hibernator (hamster kidney cells, HaK) and a non-hibernator (human embryonic kidney cells, HEK293) during cold preservation at 4 °C and rewarming. Cell survival (Neutral Red), ATP and MDA levels, mitochondrial membrane potential (MMP), mitochondrial morphology (using fluorescent probes) and metabolism (seahorse XF) were assessed. Hypothermia induced dispersion of the tubular mitochondrial network, a loss of MMP, increased oxygen radical (MDA) and decreased ATP production in HEK293. In contrast, HaK maintained MMP and ATP production without an increase in oxygen radicals during cooling and rewarming, resulting in superior cell survival compared to HEK293. Further, normothermic HaK showed a dispersed mitochondrial network and higher respiratory and glycolysis capacity compared to HEK293. Disclosing the mechanisms that hibernators use to counteract cell death in hypothermic and ischemic circumstances may help to eventually improve organ preservation in a variety of fields, including organ transplantation.


Assuntos
Células Epiteliais/metabolismo , Hibernação/fisiologia , Rim/metabolismo , Mitocôndrias/metabolismo , Animais , Temperatura Baixa/efeitos adversos , Células Epiteliais/citologia , Células HEK293 , Humanos , Hipotermia/etiologia , Hipotermia/metabolismo , Isquemia/etiologia , Isquemia/metabolismo , Rim/citologia , Potencial da Membrana Mitocondrial , Mesocricetus , Reaquecimento
15.
Antioxid Redox Signal ; 27(9): 599-617, 2017 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-28322600

RESUMO

SIGNIFICANCE: Therapeutic hypothermia is commonly applied to limit ischemic injury in organ transplantation, during cardiac and brain surgery and after cardiopulmonary resuscitation. In these procedures, the kidneys are particularly at risk for ischemia/reperfusion injury (IRI), likely due to their high rate of metabolism. Although hypothermia mitigates ischemic kidney injury, it is not a panacea. Residual mitochondrial failure is believed to be a key event triggering loss of cellular homeostasis, and potentially cell death. Subsequent rewarming generates large amounts of reactive oxygen species that aggravate organ injury. Recent Advances: Hibernators are able to withstand periods of profoundly reduced metabolism and body temperature ("torpor"), interspersed by brief periods of rewarming ("arousal") without signs of organ injury. Specific adaptations allow maintenance of mitochondrial homeostasis, limit oxidative stress, and protect against cell death. These adaptations consist of active suppression of mitochondrial function and upregulation of anti-oxidant enzymes and anti-apoptotic pathways. CRITICAL ISSUES: Unraveling the precise molecular mechanisms that allow hibernators to cycle through torpor and arousal without precipitating organ injury may translate into novel pharmacological approaches to limit IRI in patients. FUTURE DIRECTIONS: Although the precise signaling routes involved in natural hibernation are not yet fully understood, torpor-like hypothermic states with increased resistance to ischemia/reperfusion can be induced pharmacologically by 5'-adenosine monophosphate (5'-AMP), adenosine, and hydrogen sulfide (H2S) in non-hibernators. In this review, we compare the molecular effects of hypothermia in non-hibernators with natural and pharmacologically induced torpor, to delineate how safe and reversible metabolic suppression may provide resistance to renal IRI. Antioxid. Redox Signal. 27, 599-617.


Assuntos
Hibernação , Rim/metabolismo , Mitocôndrias/metabolismo , Adaptação Fisiológica , Animais , Antioxidantes/metabolismo , Temperatura Baixa , Humanos , Traumatismo por Reperfusão/prevenção & controle , Transdução de Sinais
16.
Sci Rep ; 6: 28401, 2016 06 22.
Artigo em Inglês | MEDLINE | ID: mdl-27329690

RESUMO

Occlusion of the middle cerebral artery (MCA) by an intraluminal filament is widely used to study focal brain ischemia in male Sprague-Dawley rats. However, permanent occlusion goes along with a high fatality. To overcome this drawback we designed a new filament carrying a bowling pin-shaped tip (BP-tip) and compared this with three conventionally tipped filaments. Follow-up periods were 24 h (all groups) and 72 and 120 h in BP-tip group. Ischemic damage and swelling were quantified using silver nitrate staining. Collateral flow via the posterior cerebral artery (PCA) was assessed using selective dye perfusion of the internal carotid artery. Despite a comparable decrease of brain perfusion in all groups, ischemic damage was significantly smaller in BP-tips (p < 0.05). Moreover, BP-tip significantly reduced mortality from 60% to 12.5% and widely spared the occipital region and hypothalamus from ischemic damage. Conventional but not BP-tip filaments induced vascular distortion, measured as gross displacement of the MCA origin, which correlated with occipital infarction size. Accordingly, BP-tip occluded rats showed a significantly better collateral filling of the PCA territory. Ischemic volume significantly increased in BP-tip occlusion at 72 h follow-up. BP-tip filaments offer superior survival in permanent MCA occlusion, while mimicking the course of a malignant stroke in patients.


Assuntos
Isquemia Encefálica/etiologia , Isquemia Encefálica/mortalidade , Infarto da Artéria Cerebral Média/etiologia , Infarto da Artéria Cerebral Média/mortalidade , Animais , Encéfalo/patologia , Isquemia Encefálica/patologia , Modelos Animais de Doenças , Infarto da Artéria Cerebral Média/patologia , Masculino , Ratos , Ratos Sprague-Dawley , Análise de Sobrevida
17.
Sci Rep ; 6: 26928, 2016 05 27.
Artigo em Inglês | MEDLINE | ID: mdl-27229886

RESUMO

COPD is characterized by persistent airflow limitation, neutrophilia and oxidative stress from endogenous and exogenous insults. Current COPD therapy involving anticholinergics, ß2-adrenoceptor agonists and/or corticosteroids, do not specifically target oxidative stress, nor do they reduce chronic pulmonary inflammation and disease progression in all patients. Here, we explore the effects of Sul-121, a novel compound with anti-oxidative capacity, on hyperresponsiveness (AHR) and inflammation in experimental models of COPD. Using a guinea pig model of lipopolysaccharide (LPS)-induced neutrophilia, we demonstrated that Sul-121 inhalation dose-dependently prevented LPS-induced airway neutrophilia (up to ~60%) and AHR (up to ~90%). Non-cartilaginous airways neutrophilia was inversely correlated with blood H2S, and LPS-induced attenuation of blood H2S (~60%) was prevented by Sul-121. Concomitantly, Sul-121 prevented LPS-induced production of the oxidative stress marker, malondialdehyde by ~80%. In immortalized human airway smooth muscle (ASM) cells, Sul-121 dose-dependently prevented cigarette smoke extract-induced IL-8 release parallel with inhibition of nuclear translocation of the NF-κB subunit, p65 (each ~90%). Sul-121 also diminished cellular reactive oxygen species production in ASM cells, and inhibited nuclear translocation of the anti-oxidative response regulator, Nrf2. Our data show that Sul-121 effectively inhibits airway inflammation and AHR in experimental COPD models, prospectively through inhibition of oxidative stress.


Assuntos
Anti-Inflamatórios não Esteroides/farmacologia , Antioxidantes/farmacologia , Cromanos/farmacologia , Hipersensibilidade/prevenção & controle , Piperazinas/farmacologia , Doença Pulmonar Obstrutiva Crônica/tratamento farmacológico , Espécies Reativas de Oxigênio/antagonistas & inibidores , Animais , Linhagem Celular Transformada , Cromanos/química , Misturas Complexas/antagonistas & inibidores , Misturas Complexas/farmacologia , Modelos Animais de Doenças , Regulação da Expressão Gênica , Cobaias , Humanos , Sulfeto de Hidrogênio/agonistas , Sulfeto de Hidrogênio/sangue , Hipersensibilidade/etiologia , Hipersensibilidade/imunologia , Hipersensibilidade/metabolismo , Inflamação , Interleucina-8/antagonistas & inibidores , Interleucina-8/genética , Interleucina-8/imunologia , Lipopolissacarídeos/administração & dosagem , Pulmão , Masculino , Malondialdeído/antagonistas & inibidores , Malondialdeído/metabolismo , Miócitos de Músculo Liso/efeitos dos fármacos , Miócitos de Músculo Liso/imunologia , Miócitos de Músculo Liso/patologia , Fator 2 Relacionado a NF-E2/antagonistas & inibidores , Fator 2 Relacionado a NF-E2/genética , Fator 2 Relacionado a NF-E2/imunologia , Neutrófilos/efeitos dos fármacos , Neutrófilos/imunologia , Neutrófilos/patologia , Estresse Oxidativo , Piperazinas/química , Doença Pulmonar Obstrutiva Crônica/imunologia , Doença Pulmonar Obstrutiva Crônica/metabolismo , Doença Pulmonar Obstrutiva Crônica/fisiopatologia , Espécies Reativas de Oxigênio/metabolismo , Alcatrões/química , Alcatrões/toxicidade , Fator de Transcrição RelA/antagonistas & inibidores , Fator de Transcrição RelA/genética , Fator de Transcrição RelA/imunologia
18.
Eur J Pharmacol ; 769: 225-33, 2015 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-26593431

RESUMO

Hypothermia and rewarming produces organ injury through the production of reactive oxygen species. We previously found that dopamine prevents hypothermia and rewarming-induced apoptosis in cultured cells through increased expression of the H2S-producing enzyme cystathionine ß-Synthase (CBS). Here, we investigate whether dopamine protects the kidney in deep body cooling and explore the role of H2S-producing enzymes in an in vivo rat model of deep hypothermia and rewarming. In anesthetized Wistar rats, body temperature was decreased to 15°C for 3h, followed by rewarming for 1h. Rats (n≥5 per group) were treated throughout the procedure with vehicle or dopamine infusion, and in the presence or absence of a non-specific inhibitor of H2S-producing enzymes, amino-oxyacetic acid (AOAA). Kidney damage and renal expression of three H2S-producing enzymes (CBS, CSE and 3-MST) was quantified and serum H2S level measured. Hypothermia and rewarming induced renal damage, evidenced by increased serum creatinine, renal reactive oxygen species production, KIM-1 expression and influx of immune cells, which was accompanied by substantially lowered renal expression of CBS, CSE, and 3-MST and lowered serum H2S levels. Infusion of dopamine fully attenuated renal damage and maintained expression of H2S-producing enzymes, while normalizing serum H2S. AOAA further decreased the expression of H2S-producing enzymes and serum H2S level, and aggravated renal damage. Hence, dopamine preserves renal integrity during deep hypothermia and rewarming likely by maintaining the expression of renal H2S-producing enzymes and serum H2S.


Assuntos
Dopamina/farmacologia , Sulfeto de Hidrogênio/metabolismo , Hipotermia/enzimologia , Rim/enzimologia , Rim/lesões , Reaquecimento/efeitos adversos , Ácido Amino-Oxiacético/farmacologia , Anestesia Geral , Animais , Inibidores Enzimáticos/farmacologia , Regulação Enzimológica da Expressão Gênica/efeitos dos fármacos , Hemodinâmica/efeitos dos fármacos , Sulfeto de Hidrogênio/sangue , Hipotermia/metabolismo , Hipotermia/patologia , Hipotermia/fisiopatologia , Rim/efeitos dos fármacos , Rim/fisiopatologia , Masculino , Ratos , Ratos Wistar
19.
PLoS One ; 10(8): e0136113, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26295351

RESUMO

BACKGROUND: Therapeutic hypothermia is used to reduce ischemia/reperfusion injury (IRI) during organ transplantation and major surgery, but does not fully prevent organ injury. Interestingly, hibernating animals undergo repetitive periods of low body temperature called 'torpor' without signs of organ injury. Recently, we identified an essential role of hydrogen sulfide (H2S) in entrance into torpor and preservation of kidney integrity during hibernation. A torpor-like state can be induced pharmacologically by injecting 5'-Adenosine monophosphate (5'-AMP). The mechanism by which 5'-AMP leads to the induction of a torpor-like state, and the role of H2S herein, remains to be unraveled. Therefore, we investigated whether induction of a torpor-like state by 5-AMP depends on H2S production. METHODS: To study the role of H2S on the induction of torpor, amino-oxyacetic acid (AOAA), a non-specific inhibitor of H2S, was administered before injection with 5'-AMP to block endogenous H2S production in Syrian hamster. To assess the role of H2S on maintenance of torpor induced by 5'-AMP, additional animals were injected with AOAA during torpor. KEY RESULTS: During the torpor-like state induced by 5'-AMP, the expression of H2S- synthesizing enzymes in the kidneys and plasma levels of H2S were increased. Blockade of these enzymes inhibited the rise in the plasma level of H2S, but neither precluded torpor nor induced arousal. Remarkably, blockade of endogenous H2S production was associated with increased renal injury. CONCLUSIONS: Induction of a torpor-like state by 5'-AMP does not depend on H2S, although production of H2S seems to attenuate renal injury. Unraveling the mechanisms by which 5'-AMP reduces the metabolism without organ injury may allow optimization of current strategies to limit (hypothermic) IRI and improve outcome following organ transplantation, major cardiac and brain surgery.


Assuntos
Monofosfato de Adenosina/farmacologia , Sulfeto de Hidrogênio/metabolismo , Torpor , Monofosfato de Adenosina/administração & dosagem , Monofosfato de Adenosina/metabolismo , Ácido Amino-Oxiacético/farmacologia , Animais , Creatina/sangue , Creatina/metabolismo , Cricetinae , Sulfeto de Hidrogênio/antagonistas & inibidores , Sulfeto de Hidrogênio/sangue , Hipotermia Induzida , Rim/efeitos dos fármacos , Rim/metabolismo , Rim/patologia , Masculino , Mesocricetus , Torpor/efeitos dos fármacos
20.
PLoS One ; 10(7): e0133553, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26193369

RESUMO

BACKGROUND: The heat shock response (HSR) is an ancient and highly conserved program of stress-induced gene expression, aimed at reestablishing protein homeostasis to preserve cellular fitness. Cells that fail to activate or maintain this protective response are hypersensitive to proteotoxic stress. The HSR is mediated by the heat shock transcription factor 1 (HSF1), which binds to conserved heat shock elements (HSE) in the promoter region of heat shock genes, resulting in the expression of heat shock proteins (HSP). Recently, we observed that hyperactivation of RhoA conditions cardiomyocytes for the cardiac arrhythmia atrial fibrillation. Also, the HSR is annihilated in atrial fibrillation, and induction of HSR mitigates sensitization of cells to this disease. Therefore, we hypothesized active RhoA to suppress the HSR resulting in sensitization of cells for proteotoxic stimuli. METHODS AND RESULTS: Stimulation of RhoA activity significantly suppressed the proteotoxic stress-induced HSR in HL-1 atrial cardiomyocytes as determined with a luciferase reporter construct driven by the HSF1 regulated human HSP70 (HSPA1A) promoter and HSP protein expression by Western Blot analysis. Inversely, RhoA inhibition boosted the proteotoxic stress-induced HSR. While active RhoA did not preclude HSF1 nuclear accumulation, phosphorylation, acetylation, or sumoylation, it did impair binding of HSF1 to the hsp genes promoter element HSE. Impaired binding results in suppression of HSP expression and sensitized cells to proteotoxic stress. CONCLUSION: These results reveal that active RhoA negatively regulates the HSR via attenuation of the HSF1-HSE binding and thus may play a role in sensitizing cells to proteotoxic stimuli.


Assuntos
Proteínas de Ligação a DNA/metabolismo , Proteínas de Choque Térmico HSP70/metabolismo , Temperatura Alta , Fatores de Transcrição/metabolismo , Proteína rhoA de Ligação ao GTP/metabolismo , Animais , Apoptose/efeitos dos fármacos , Western Blotting , Caspase 3/metabolismo , Linhagem Celular Tumoral , Proteínas de Ligação a DNA/genética , Dipeptídeos/farmacologia , Fator de Iniciação 2 em Eucariotos/metabolismo , Regulação da Expressão Gênica , Células HEK293 , Proteínas de Choque Térmico HSP70/genética , Fatores de Transcrição de Choque Térmico , Humanos , Microscopia Confocal , Fosforilação/efeitos dos fármacos , Regiões Promotoras Genéticas/genética , Ligação Proteica , Elementos de Resposta/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Fatores de Transcrição/genética , Proteína rhoA de Ligação ao GTP/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA