Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Cancer Res Commun ; 4(9): 2427-2443, 2024 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-39028932

RESUMO

An in-depth multiomic molecular characterization of PARP inhibitors revealed a distinct poly-pharmacology of niraparib (Zejula) mediated by its interaction with lanosterol synthase (LSS), which is not observed with other PARP inhibitors. Niraparib, in a similar way to the LSS inhibitor Ro-48-8071, induced activation of the 24,25-epoxysterol shunt pathway, which is a regulatory signaling branch of the cholesterol biosynthesis pathway. Interestingly, the combination of an LSS inhibitor with a PARP inhibitor that does not bind to LSS, such as olaparib, had an additive effect on killing cancer cells to levels comparable with niraparib as a single agent. In addition, the combination of PARP inhibitors and statins, inhibitors of 3-hydroxy-3-methylglutaryl-coenzyme A reductase, an enzyme catalyzing the rate-limiting step in the mevalonate pathway, had a synergistic effect on tumor cell killing in cell lines and patient-derived ovarian tumor organoids. These observations suggest that concomitant inhibition of the cholesterol biosynthesis pathway and PARP activity might result in stronger efficacy of these inhibitors against tumor types highly dependent on cholesterol metabolism. SIGNIFICANCE: The presented data indicate, to our knowledge, for the first time, the potential benefit of concomitant modulation of cholesterol biosynthesis pathway and PARP inhibition and highlight the need for further investigation to assess its translational relevance.


Assuntos
Colesterol , Sinergismo Farmacológico , Inibidores de Poli(ADP-Ribose) Polimerases , Humanos , Colesterol/biossíntese , Colesterol/metabolismo , Inibidores de Poli(ADP-Ribose) Polimerases/farmacologia , Linhagem Celular Tumoral , Feminino , Neoplasias Ovarianas/tratamento farmacológico , Neoplasias Ovarianas/metabolismo , Neoplasias Ovarianas/patologia , Inibidores de Hidroximetilglutaril-CoA Redutases/farmacologia
2.
iScience ; 24(5): 102485, 2021 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-34036248

RESUMO

Pregnenolone (P5) promotes prostate cancer cell growth, and de novo synthesis of intratumoural P5 is a potential cause of development of castration resistance. Immune cells can also synthesize P5 de novo. Despite its biological importance, little is known about P5's mode of actions, which appears to be context dependent and pleiotropic. A comprehensive proteome-wide spectrum of P5-binding proteins that are involved in its trafficking and functionality remains unknown. Here, we describe an approach that integrates chemical biology for probe synthesis with chemoproteomics to map P5-protein interactions in live prostate cancer cells and murine CD8+ T cells. We subsequently identified P5-binding proteins potentially involved in P5-trafficking and in P5's non-genomic action that may drive the promotion of castrate-resistance prostate cancer and regulate CD8+ T cell function. We envisage that this methodology could be employed for other steroids to map their interactomes directly in a broad range of living cells, tissues, and organisms.

3.
Nat Commun ; 9(1): 4004, 2018 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-30275468

RESUMO

Diminishing potential to replace damaged tissues is a hallmark for ageing of somatic stem cells, but the mechanisms remain elusive. Here, we present proteome-wide atlases of age-associated alterations in human haematopoietic stem and progenitor cells (HPCs) and five other cell populations that constitute the bone marrow niche. For each, the abundance of a large fraction of the ~12,000 proteins identified is assessed in 59 human subjects from different ages. As the HPCs become older, pathways in central carbon metabolism exhibit features reminiscent of the Warburg effect, where glycolytic intermediates are rerouted towards anabolism. Simultaneously, altered abundance of early regulators of HPC differentiation reveals a reduced functionality and a bias towards myeloid differentiation. Ageing causes alterations in the bone marrow niche too, and diminishes the functionality of the pathways involved in HPC homing. The data represent a valuable resource for further analyses, and for validation of knowledge gained from animal models.


Assuntos
Envelhecimento/genética , Envelhecimento/patologia , Células da Medula Óssea/citologia , Células da Medula Óssea/metabolismo , Senescência Celular/genética , Proteoma , Adulto , Células-Tronco Adultas/citologia , Envelhecimento/metabolismo , Carbono/metabolismo , Feminino , Perfilação da Expressão Gênica , Glicólise , Hematopoese , Células-Tronco Hematopoéticas/citologia , Células-Tronco Hematopoéticas/metabolismo , Humanos , Masculino , Pessoa de Meia-Idade , Nicho de Células-Tronco , Adulto Jovem
4.
Blood ; 132(12): 1225-1240, 2018 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-29930011

RESUMO

SF3B1, SRSF2, and U2AF1 are the most frequently mutated splicing factor genes in the myelodysplastic syndromes (MDS). We have performed a comprehensive and systematic analysis to determine the effect of these commonly mutated splicing factors on pre-mRNA splicing in the bone marrow stem/progenitor cells and in the erythroid and myeloid precursors in splicing factor mutant MDS. Using RNA-seq, we determined the aberrantly spliced genes and dysregulated pathways in CD34+ cells of 84 patients with MDS. Splicing factor mutations result in different alterations in splicing and largely affect different genes, but these converge in common dysregulated pathways and cellular processes, focused on RNA splicing, protein synthesis, and mitochondrial dysfunction, suggesting common mechanisms of action in MDS. Many of these dysregulated pathways and cellular processes can be linked to the known disease pathophysiology associated with splicing factor mutations in MDS, whereas several others have not been previously associated with MDS, such as sirtuin signaling. We identified aberrantly spliced events associated with clinical variables, and isoforms that independently predict survival in MDS and implicate dysregulation of focal adhesion and extracellular exosomes as drivers of poor survival. Aberrantly spliced genes and dysregulated pathways were identified in the MDS-affected lineages in splicing factor mutant MDS. Functional studies demonstrated that knockdown of the mitosis regulators SEPT2 and AKAP8, aberrantly spliced target genes of SF3B1 and SRSF2 mutations, respectively, led to impaired erythroid cell growth and differentiation. This study illuminates the effect of the common spliceosome mutations on the MDS phenotype and provides novel insights into disease pathophysiology.


Assuntos
Mutação , Síndromes Mielodisplásicas/genética , Fatores de Processamento de RNA/genética , Splicing de RNA , Spliceossomos/genética , Estudos de Coortes , Reparo do DNA , Regulação da Expressão Gênica , Humanos , Síndromes Mielodisplásicas/epidemiologia , Fosfoproteínas/genética , Fatores de Processamento de Serina-Arginina/genética , Fator de Processamento U2AF/genética , Análise de Sobrevida
5.
J Cell Sci ; 129(21): 4130-4142, 2016 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-27656108

RESUMO

Disruption of epithelial architecture is a fundamental event during epithelial tumorigenesis. We show that the expression of the cancer-promoting phosphatase PRL-3 (PTP4A3), which is overexpressed in several epithelial cancers, in polarized epithelial MDCK and Caco2 cells leads to invasion and the formation of multiple ectopic, fully polarized lumens in cysts. Both processes disrupt epithelial architecture and are hallmarks of cancer. The pathological relevance of these findings is supported by the knockdown of endogenous PRL-3 in MCF-7 breast cancer cells grown in three-dimensional branched structures, showing the rescue from multiple-lumen- to single-lumen-containing branch ends. Mechanistically, it has been previously shown that ectopic lumens can arise from midbodies that have been mislocalized through the loss of mitotic spindle orientation or through the loss of asymmetric abscission. Here, we show that PRL-3 triggers ectopic lumen formation through midbody mispositioning without altering the spindle orientation or asymmetric abscission, instead, PRL-3 accelerates cytokinesis, suggesting that this process is an alternative new mechanism for ectopic lumen formation in MDCK cysts. The disruption of epithelial architecture by PRL-3 revealed here is a newly recognized mechanism for PRL-3-promoted cancer progression.


Assuntos
Forma Celular , Células Epiteliais/citologia , Células Epiteliais/metabolismo , Mitose , Proteínas de Neoplasias/metabolismo , Proteínas Tirosina Fosfatases/metabolismo , Animais , Células CACO-2 , Polaridade Celular , Citocinese , Cães , Humanos , Células MCF-7 , Células Madin Darby de Rim Canino , Modelos Biológicos
6.
J Am Heart Assoc ; 2(4): e000318, 2013 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-23926118

RESUMO

BACKGROUND: The multifunctional Ca(2+)- and calmodulin-dependent protein kinase II (CaMKII) is a crucial mediator of cardiac physiology and pathology. Increased expression and activation of CaMKII has been linked to elevated risk for arrhythmic events and is a hallmark of human heart failure. A useful approach to determining CaMKII's role therein is large-scale analysis of phosphorylation events by mass spectrometry. However, current large-scale phosphoproteomics approaches have proved inadequate for high-fidelity identification of kinase-specific roles. The purpose of this study was to develop a phosphoproteomics approach to specifically identify CaMKII's downstream effects in cardiac tissue. METHODS AND RESULTS: To identify putative downstream CaMKII targets in cardiac tissue, animals with myocardial-delimited expression of the specific peptide inhibitor of CaMKII (AC3-I) or an inactive control (AC3-C) were compared using quantitative phosphoproteomics. The hearts were isolated after isoproterenol injection to induce CaMKII activation downstream of ß-adrenergic receptor agonist stimulation. Enriched phosphopeptides from AC3-I and AC3-C mice were differentially quantified using stable isotope dimethyl labeling, strong cation exchange chromatography and high-resolution LC-MS/MS. Phosphorylation levels of several hundred sites could be profiled, including 39 phosphoproteins noticeably affected by AC3-I-mediated CaMKII inhibition. CONCLUSIONS: Our data set included known CaMKII substrates, as well as several new candidate proteins involved in functions not previously implicated in CaMKII signaling.


Assuntos
Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo , Miocárdio/enzimologia , Proteômica , Sequência de Aminoácidos , Animais , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/antagonistas & inibidores , Resinas de Troca de Cátion , Cromatografia por Troca Iônica , Ativação Enzimática , Marcação por Isótopo , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Dados de Sequência Molecular , Peptídeos/genética , Peptídeos/metabolismo , Fosforilação , Proteômica/métodos , Transdução de Sinais , Especificidade por Substrato , Espectrometria de Massas em Tandem
7.
J Proteome Res ; 12(5): 2214-24, 2013 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-23510141

RESUMO

In order to understand cellular signaling, a clear understanding of kinase-substrate relationships is essential. Some of these relationships are defined by consensus recognition motifs present in substrates making them amendable for phosphorylation by designated kinases. Here, we explore a method that is based on two sequential steps of strong cation exchange chromatography combined with differential stable isotope labeling, to define kinase consensus motifs with high accuracy. We demonstrate the value of our method by evaluating the motifs of two very distinct kinases: cAMP regulated protein kinase A (PKA) and human monopolar spindle 1 (Mps1) kinase, also known as TTK. PKA is a well-studied basophilic kinase with a relatively well-defined motif and numerous known substrates in vitro and in vivo. Mps1, a kinase involved in chromosome segregation, has been less well characterized. Its substrate specificity is unclear and here we show that Mps1 is an acidophilic kinase with a striking tendency for phosphorylation of threonines. The final outcomes of our work are high-definition kinase consensus motifs for PKA and Mps1. Our generic method, which makes use of proteolytic cell lysates as a source for peptide-substrate libraries, can be implemented for any kinase present in the kinome.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Ensaios Enzimáticos , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Tirosina Quinases/metabolismo , Motivos de Aminoácidos , Sítios de Ligação , Proteínas de Ciclo Celular/química , Cromatografia por Troca Iônica , Sequência Consenso , Proteínas Quinases Dependentes de AMP Cíclico/química , Células HEK293 , Células HeLa , Humanos , Marcação por Isótopo/métodos , Metilação , Dados de Sequência Molecular , Fosfoproteínas/química , Fosfoproteínas/metabolismo , Fosforilação , Processamento de Proteína Pós-Traducional , Proteínas Serina-Treonina Quinases/química , Proteínas Tirosina Quinases/química , Proteômica , Especificidade por Substrato , Espectrometria de Massas em Tandem
8.
Mol Biosyst ; 9(4): 732-49, 2013 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-23403867

RESUMO

The small GTPase Rap1 is required for proper cell-cell junction formation and also plays a key role in mediating cAMP-induced tightening of adherens junctions and subsequent increased barrier function of endothelial cells. To further study how Rap1 controls barrier function, we performed quantitative global phosphoproteomics in human umbilical vein endothelial cells (HUVECs) prior to and after Rap1 activation by the Epac-selective cAMP analog 8-pCPT-2'-O-Me-cAMP-AM (007-AM). Tryptic digests were labeled using stable isotope dimethyl labeling, enriched with phosphopeptides by strong cation exchange (SCX), followed by titanium(iv) immobilized metal affinity chromatography (Ti(4+)-IMAC) and analyzed by high resolution mass spectrometry. We identified 19 859 unique phosphopeptides containing 17 278 unique phosphosites on 4594 phosphoproteins, providing the largest HUVEC phosphoproteome to date. Of all identified phosphosites, 220 (∼1%) were more than 1.5-fold up- or downregulated upon Rap activation, in two independent experiments. Compatible with the function of Rap1, these alterations were found predominantly in proteins regulating the actin cytoskeleton, cell-cell junctions and cell adhesion.


Assuntos
Células Endoteliais da Veia Umbilical Humana/metabolismo , Fosfoproteínas/metabolismo , Proteoma , Transdução de Sinais , Proteínas rap1 de Ligação ao GTP/metabolismo , Actinas/metabolismo , Junções Aderentes/metabolismo , Sequência de Aminoácidos , Adesão Celular , AMP Cíclico/análogos & derivados , AMP Cíclico/farmacologia , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Células Endoteliais da Veia Umbilical Humana/efeitos dos fármacos , Humanos , Junções Intercelulares/metabolismo , Peptídeos/metabolismo , Fosfoproteínas/química , Fosforilação/efeitos dos fármacos , Matrizes de Pontuação de Posição Específica , Mapas de Interação de Proteínas , Proteômica/métodos , Transdução de Sinais/efeitos dos fármacos
9.
Analyst ; 137(15): 3541-8, 2012 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-22728655

RESUMO

Here, we describe an in-house built ultra-high pressure liquid chromatography (UHPLC) system, with little complexity in design and high separation power combined with convenience in operation. This system enables the use of long columns of 40 cm packed with 1.8 µm particles generating pressures below 1000 bar. Furthermore, the system could be operated at flow rates between 50 and 200 nL min(-1) while maintaining its separation power. Several gradients were optimized ranging from 23 to 458 minutes. With the longest gradient we identified over 4500 protein groups and more than 26,000 unique peptides from 1 µg of a human cancer cell lysate in a single run using an Orbitrap Velos - a level of performance often seen solely using multidimensional separation strategies. Further experiments using a mass spectrometer with faster sequencing speeds, like the TripleTOF 5600, enabled us to identify over 1400 protein groups in a 23 min gradient. The TripleTOF 5600 performed especially well, compared to the Orbitrap Velos, for the shorter gradients used. Our data demonstrate that the combination of UHPLC with high resolution mass spectrometry at increased sequencing speeds enables extensive proteome analysis in single runs.


Assuntos
Proteínas de Escherichia coli/análise , Proteínas de Neoplasias/análise , Soroalbumina Bovina/análise , Animais , Bovinos , Cromatografia Líquida de Alta Pressão/instrumentação , Desenho de Equipamento , Células HeLa , Humanos
10.
J Proteomics ; 75(13): 3791-813, 2012 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-22561838

RESUMO

Shotgun proteomics dominates the field of proteomics. The foundations of the strategy consist of multiple rounds of peptide separation where chromatography provides the bedrock. Initially, the scene was relatively simple with the majority of strategies based on some types of ion exchange and reversed phase chromatography. The thirst to achieve comprehensivity, when it comes to proteome coverage and the global characterization of post translational modifications, has led to the introduction of several new separations. In this review, we attempt to provide a historical perspective to separations in proteomics as well as indicate the principles of their operation and rationales for their implementation. Furthermore, we provide a guide on what are the possibilities for combining different separations in order to increase peak capacity and proteome coverage. We aim to show how separations enrich the world of proteomics and how further developments may impact the field.


Assuntos
Cromatografia Líquida/métodos , Peptídeos/isolamento & purificação , Proteoma/química , Aminoácidos/análise , Cromatografia por Troca Iônica , Cromatografia de Fase Reversa , Humanos , Espectrometria de Massas , Sistemas On-Line , Processamento de Proteína Pós-Traducional , Proteômica/métodos
11.
Mol Cell Proteomics ; 10(10): M110.006452, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21715320

RESUMO

Metal and metal oxide chelating-based phosphopeptide enrichment technologies provide powerful tools for the in-depth profiling of phosphoproteomes. One weakness inherent to current enrichment strategies is poor binding of phosphopeptides containing multiple basic residues. The problem is exacerbated when strong cation exchange (SCX) is used for pre-fractionation, as under low pH SCX conditions phosphorylated peptides with multiple basic residues elute with the bulk of the tryptic digest and therefore require more stringent enrichment. Here, we report a systematic evaluation of the characteristics of a novel phosphopeptide enrichment approach based on a combination of low pH SCX and Ti(4+)-immobilized metal ion affinity chromatography (IMAC) comparing it one-to-one with the well established low pH SCX-TiO(2) enrichment method. We also examined the effect of 1,1,1,3,3,3-hexafluoroisopropanol (HFP), trifluoroacetic acid (TFA), or 2,5-dihydroxybenzoic acid (DHB) in the loading buffer, as it has been hypothesized that high levels of TFA and the perfluorinated solvent HFP improve the enrichment of phosphopeptides containing multiple basic residues. We found that Ti(4+)-IMAC in combination with TFA in the loading buffer, outperformed all other methods tested, enabling the identification of around 5000 unique phosphopeptides containing multiple basic residues from 400 µg of a HeLa cell lysate digest. In comparison, ∼ 2000 unique phosphopeptides could be identified by Ti(4+)-IMAC with HFP and close to 3000 by TiO(2). We confirmed, by motif analysis, the basic phosphopeptides enrich the number of putative basophilic kinases substrates. In addition, we performed an experiment using the SCX/Ti(4+)-IMAC methodology alongside the use of collision-induced dissociation (CID), higher energy collision induced dissociation (HCD) and electron transfer dissociation with supplementary activation (ETD) on considerably more complex sample, consisting of a total of 400 µg of triple dimethyl labeled MCF-7 digest. This analysis led to the identification of over 9,000 unique phosphorylation sites. The use of three peptide activation methods confirmed that ETD is best capable of sequencing multiply charged peptides. Collectively, our data show that the combination of SCX and Ti(4+)-IMAC is particularly advantageous for phosphopeptides with multiple basic residues.


Assuntos
Basófilos/enzimologia , Fracionamento Químico , Cromatografia de Afinidade/métodos , Cromatografia por Troca Iônica/métodos , Fosfopeptídeos/análise , Fosfotransferases/química , Aminoácidos Básicos/análise , Resinas de Troca de Cátion/química , Gentisatos/química , Células HeLa , Humanos , Hidrocarbonetos Fluorados/química , Concentração de Íons de Hidrogênio , Espectrometria de Massas , Ligação Proteica , Titânio/química , Ácido Trifluoracético/química
12.
J Proteome Res ; 10(5): 2377-88, 2011 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-21413819

RESUMO

Over the past decade peptide sequencing by collision induced dissociation (CID) has become the method of choice in mass spectrometry-based proteomics. The development of alternative fragmentation techniques such as electron transfer dissociation (ETD) has extended the possibilities within tandem mass spectrometry. Recent advances in instrumentation allow peptide fragment ions to be detected with high speed and sensitivity (e.g., in a 2D or 3D ion trap) or at high resolution and high mass accuracy (e.g., an Orbitrap or a ToF). Here, we describe a comprehensive experimental comparison of using ETD, ion-trap CID, and beam type CID (HCD) in combination with either linear ion trap or Orbitrap readout for the large-scale analysis of tryptic peptides. We investigate which combination of fragmentation technique and mass analyzer provides the best performance for the analysis of distinct peptide populations such as N-acetylated, phosphorylated, and tryptic peptides with up to two missed cleavages. We found that HCD provides more peptide identifications than CID and ETD for doubly charged peptides. In terms of Mascot score, ETD FT outperforms the other techniques for peptides with charge states higher than 2. Our data shows that there is a trade-off between spectral quality and speed when using the Orbitrap for fragment ion detection. We conclude that a decision-tree regulated combination of higher-energy collisional dissociation (HCD) and ETD can improve the average Mascot score.


Assuntos
Peptídeos/genética , Proteômica/métodos , Análise de Sequência de Proteína/métodos , Espectrometria de Massas em Tandem/métodos , Linhagem Celular , Humanos
13.
Anal Chem ; 81(18): 7814-22, 2009 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-19689115

RESUMO

In proteomics, proteolytic peptides are often chemically modified to improve MS analysis, peptide identification, and/or to enable protein/peptide quantification. It is known that such chemical modifications can alter peptide fragmentation in collision induced dissociation MS/MS. Here, we investigated the fragmentation behavior of such chemically modified peptides in MS/MS using the relatively new activation method electron transfer dissociation (ETD). We generated proteolytic peptides using the proteases Lys-N and trypsin and compared the fragmentation behavior of the unlabeled peptides with that of their chemically modified cognates. We investigated the effect of several commonly used modification reactions, namely, guanidination, dimethylation, imidazolinylation, and nicotinylation (ICPL). Of these guanidination and imidazolinylation specifically target the epsilon-amino groups of lysine residues in the peptides, whereas dimethylation and nicotinylation modify both N-termini and epsilon-amino groups of lysine residues. Dimethylation, guanidination, and particularly imidazolinylation of doubly charged Lys-N peptides resulted in a significant increase in peptide sequence coverage, resulting in more reliable peptide identification using ETD. This may be rationalized by the increased basicity and resulting positive charge at the N-termini of these peptides. Nicotinylation of the peptides, on the other hand, severely suppressed backbone fragmentation, hampering the use of this label in ETD based analysis. Doubly charged C-terminal lysine containing tryptic peptides also resulted in an enhanced observation of a single type of fragment ion series when guanidinated or imidazolinylated. These labels would thus facilitate the use of de novo sequencing strategies based on ETD for both arginine and lysine containing tryptic peptides. Since isotopic analogues of the labeling reagents applied in this work are commercially available, one can combine quantitation with improved ETD based peptide sequencing for both Lys-N and trypsin digested samples.


Assuntos
Fragmentos de Peptídeos/química , Peptídeos/análise , Proteômica/métodos , Espectrometria de Massas em Tandem/métodos , Bicarbonatos/química , Linhagem Celular , Transporte de Elétrons , Guanidina/química , Humanos , Imidazóis/química , Peptídeos/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA