Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
bioRxiv ; 2024 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-38464089

RESUMO

Calpain-3 is an intracellular Ca2+-dependent cysteine protease abundant in skeletal muscle. Its physiological role in the sarcomere is thought to include removing damaged muscle proteins after exercise. Loss-of-function mutations in its single-copy gene cause a dystrophy of the limb-girdle muscles. These mutations, of which there are over 500 in humans, are spread all along this 94-kDa multi-domain protein that includes three 40+-residue sequences (NS, IS1, and IS2). The latter sequences are unique to this calpain isoform and are hypersensitive to proteolysis. To investigate the whole enzyme structure and how mutations might affect its activity, we produce the proteolytically more stable 85-kDa calpain-3 ΔNS ΔIS1 form with a C129A inactivating mutation as a recombinant protein in E. coli. During size-exclusion chromatography, this calpain-3 was consistently eluted as a much larger 0.5-MDa complex rather than the expected 170-kDa dimer. Its size, which was confirmed by SEC-MALS, Blue Native PAGE, and AUC, made the complex amenable to single-particle cryo-EM analysis. From two data sets, we obtained a 3.85-Å reconstruction map that shows the complex is a trimer of calpain-3 dimers with six penta-EF-hand domains at its core. Calpain-3 has been reported to bind the N2A region of the giant muscle protein titin. When this 37-kDa region of titin was co-expressed with calpain-3 the multimer was reduced to a 320-kDa particle, which appears to be the calpain dimer bound to several copies of the titin fragment. We suggest that newly synthesized calpain-3 is kept as an inactive hexamer until it binds the N2A region of titin in the sarcomere, whereupon it dissociates into functional dimers.

2.
Nanomedicine (Lond) ; 18(22): 1519-1534, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37877696

RESUMO

Aim: We present multi-wavelength (MW) analytical ultracentrifugation (AUC) methods offering superior accuracy for adeno-associated virus characterization and quantification. Methods: Experimental design guidelines are presented for MW sedimentation velocity and analytical buoyant density equilibrium AUC. Results: Our results were compared with dual-wavelength AUC, transmission electron microscopy and mass photometry. In contrast to dual-wavelength AUC, MW-AUC correctly quantifies adeno-associated virus capsid ratios and identifies contaminants. In contrast to transmission electron microscopy, partially filled capsids can also be detected and quantified. In contrast to mass photometry, first-principle results are obtained. Conclusion: Our study demonstrates the improved information provided by MW-AUC, highlighting the utility of several recently integrated UltraScan programs, and reinforces AUC as the gold-standard analysis for viral vectors.


Assuntos
Capsídeo , Dependovirus , Dependovirus/genética , Ultracentrifugação/métodos , Vetores Genéticos , Microscopia Eletrônica de Transmissão
3.
Eur Biophys J ; 52(4-5): 311-320, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37014454

RESUMO

A method for characterizing and quantifying peaks formed in an analytical buoyant density equilibrium (ABDE) experiment is presented. An algorithm is derived to calculate the concentration of the density forming gradient material at every point in the cell, provided the rotor speed, temperature, meniscus position, bottom of the cell position, and the loading concentration, molar mass, and partial specific volume of the density gradient-forming material are known. In addition, a new peak fitting algorithm has been developed which allows the user to automatically quantify the peaks formed in terms of density, apparent partial specific volume, and relative abundance. The method is suitable for both ionic and non-ionic density forming materials and can be used with data generated from the UV optical system as well as the AVIV fluorescence optical system. These methods have been programmed in a new UltraScan-III module (us_abde). Examples are shown that demonstrate the application of the new module to adeno-associated viral vector preparations and proteins.


Assuntos
Algoritmos , Capsídeo , Proteínas , Peso Molecular
4.
J Am Chem Soc ; 145(9): 5285-5296, 2023 03 08.
Artigo em Inglês | MEDLINE | ID: mdl-36812303

RESUMO

The folding of collagen is a hierarchical process that starts with three peptides associating into the characteristic triple helical fold. Depending on the specific collagen in question, these triple helices then assemble into bundles reminiscent of α-helical coiled-coils. Unlike α-helices, however, the bundling of collagen triple helices is very poorly understood with almost no direct experimental data available. In order to shed light on this critical step of collagen hierarchical assembly, we have examined the collagenous region of complement component 1q. Thirteen synthetic peptides were prepared to dissect the critical regions allowing for its octadecameric self-assembly. We find that short peptides (under 40 amino acids) are able to self-assemble into specific (ABC)6 octadecamers. This requires the ABC heterotrimeric composition as the self-assembly subunit, but does not require disulfide bonds. Self-assembly into this octadecamer is aided by short noncollagenous sequences at the N-terminus, although they are not entirely required. The mechanism of self-assembly appears to begin with the very slow formation of the ABC heterotrimeric helix, followed by rapid bundling of triple helices into progressively larger oligomers, terminating in the formation of the (ABC)6 octadecamer. Cryo-electron microscopy reveals the (ABC)6 assembly as a remarkable, hollow, crown-like structure with an open channel approximately 18 Å at the narrow end and 30 Å at the wide end. This work helps to illuminate the structure and assembly mechanism of a critical protein in the innate immune system and lays the groundwork for the de novo design of higher order collagen mimetic peptide assemblies.


Assuntos
Colágeno , Peptídeos , Sequência de Aminoácidos , Microscopia Crioeletrônica , Peptídeos/química , Colágeno/química , Conformação Proteica em alfa-Hélice
5.
ACS Omega ; 7(38): 34665-34675, 2022 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-36188294

RESUMO

Ornithine decarboxylase (ODC) is a rate-limiting enzyme for the synthesis of polyamines (PAs). PAs are required for proliferation, and increased ODC activity is associated with cancer and neural over-proliferation. ODC levels and activity are therefore tightly regulated, including through the ODC-specific inhibitor, antizyme AZ1. Recently, ODC G84R has been reported as a partial loss-of-function variant that is associated with intellectual disability and seizures. However, G84 is distant from both the catalytic center and the ODC homodimerization interface. To understand how G84R modulates ODC activity, we have determined the crystal structure of ODC G84R in both the presence and the absence of the cofactor pyridoxal 5-phosphate. The structures show that the replacement of G84 by arginine leads to hydrogen bond formation of R84 with F420, the last residue of the ODC C-terminal helix, a structural element that is involved in the AZ1-mediated proteasomal degradation of ODC. In contrast, the catalytic center is essentially indistinguishable from that of wildtype ODC. We therefore reanalyzed the catalytic activity of ODC G84R and found that it is rescued when the protein is purified in the presence of a reducing agent to mimic the reducing environment of the cytoplasm. This suggests that R84 may exert its neurological effects not through reducing ODC catalytic activity but through misregulation of its AZ1-mediated proteasomal degradation.

6.
Nucleic Acids Res ; 50(10): 5881-5898, 2022 06 10.
Artigo em Inglês | MEDLINE | ID: mdl-35639511

RESUMO

Human Long Intergenic Noncoding RNA-p21 (LincRNA-p21) is a regulatory noncoding RNA that plays an important role in promoting apoptosis. LincRNA-p21 is also critical in down-regulating many p53 target genes through its interaction with a p53 repressive complex. The interaction between LincRNA-p21 and the repressive complex is likely dependent on the RNA tertiary structure. Previous studies have determined the two-dimensional secondary structures of the sense and antisense human LincRNA-p21 AluSx1 IRs using SHAPE. However, there were no insights into its three-dimensional structure. Therefore, we in vitro transcribed the sense and antisense regions of LincRNA-p21 AluSx1 Inverted Repeats (IRs) and performed analytical ultracentrifugation, size exclusion chromatography, light scattering, and small angle X-ray scattering (SAXS) studies. Based on these studies, we determined low-resolution, three-dimensional structures of sense and antisense LincRNA-p21. By adapting previously known two-dimensional information, we calculated their sense and antisense high-resolution models and determined that they agree with the low-resolution structures determined using SAXS. Thus, our integrated approach provides insights into the structure of LincRNA-p21 Alu IRs. Our study also offers a viable pipeline for combining the secondary structure information with biophysical and computational studies to obtain high-resolution atomistic models for long noncoding RNAs.


Assuntos
RNA Longo não Codificante , Apoptose/genética , Humanos , RNA Longo não Codificante/genética , Espalhamento a Baixo Ângulo , Proteína Supressora de Tumor p53/genética , Difração de Raios X
7.
Int J Mol Sci ; 22(1)2020 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-33374561

RESUMO

Rift Valley fever virus (RVFV) is a mosquito-transmitted virus from the Bunyaviridae family that causes high rates of mortality and morbidity in humans and ruminant animals. Previous studies indicated that DEAD-box helicase 17 (DDX17) restricts RVFV replication by recognizing two primary non-coding RNAs in the S-segment of the genome: the intergenic region (IGR) and 5' non-coding region (NCR). However, we lack molecular insights into the direct binding of DDX17 with RVFV non-coding RNAs and information on the unwinding of both non-coding RNAs by DDX17. Therefore, we performed an extensive biophysical analysis of the DDX17 helicase domain (DDX17135-555) and RVFV non-coding RNAs, IGR and 5' NCR. The homogeneity studies using analytical ultracentrifugation indicated that DDX17135-555, IGR, and 5' NCR are pure. Next, we performed small-angle X-ray scattering (SAXS) experiments, which suggested that DDX17 and both RNAs are homogenous as well. SAXS analysis also demonstrated that DDX17 is globular to an extent, whereas the RNAs adopt an extended conformation in solution. Subsequently, microscale thermophoresis (MST) experiments were performed to investigate the direct binding of DDX17 to the non-coding RNAs. The MST experiments demonstrated that DDX17 binds with the IGR and 5' NCR with a dissociation constant of 5.77 ± 0.15 µM and 9.85 ± 0.11 µM, respectively. As DDX17135-555 is an RNA helicase, we next determined if it could unwind IGR and NCR. We developed a helicase assay using MST and fluorescently-labeled oligos, which suggested DDX17135-555 can unwind both RNAs. Overall, our study provides direct evidence of DDX17135-555 interacting with and unwinding RVFV non-coding regions.


Assuntos
RNA Helicases DEAD-box/metabolismo , Interações Hospedeiro-Patógeno , RNA não Traduzido , RNA Viral , Febre do Vale de Rift/metabolismo , Febre do Vale de Rift/virologia , Vírus da Febre do Vale do Rift/genética , Trifosfato de Adenosina , Animais , RNA Helicases DEAD-box/química , Humanos , Modelos Moleculares , Ligação Proteica , Conformação Proteica , Domínios e Motivos de Interação entre Proteínas , Proteínas de Ligação a RNA/química , Proteínas de Ligação a RNA/metabolismo , Relação Estrutura-Atividade
8.
Curr Res Struct Biol ; 2: 104-115, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33554132

RESUMO

Bromodomain-containing proteins are often part of chromatin-modifying complexes, and their activity can lead to altered expression of genes that drive cancer, inflammation and neurological disorders in humans. Bromodomain-PHD finger protein 1 (BRPF1) is part of the MOZ (monocytic leukemic zinc-finger protein) HAT (histone acetyltransferase) complex, which is associated with chromosomal translocations known to contribute to the development of acute myeloid leukemia (AML). BRPF1 contains a unique combination of chromatin reader domains including two plant homeodomain (PHD) fingers separated by a zinc knuckle (PZP domain), a bromodomain, and a proline-tryptophan-tryptophan-proline (PWWP) domain. BRPF1 is known to recruit the MOZ HAT complex to chromatin by recognizing acetylated lysine residues on the N-terminal histone tail region through its bromodomain. However, histone proteins can contain several acetylation modifications on their N-terminus, and it is unknown how additional marks influence bromodomain recruitment to chromatin. Here, we identify the BRPF1 bromodomain as a selective reader of di-acetyllysine modifications on histone H4. We used ITC assays to characterize the binding of di-acetylated histone ligands to the BRPF1 bromodomain and found that the domain binds preferentially to histone peptides H4K5acK8ac and H4K5acK12ac. Analytical ultracentrifugation (AUC) experiments revealed that the monomeric state of the BRPF1 bromodomain coordinates di-acetylated histone ligands. NMR chemical shift perturbation studies, along with binding and mutational analyses, revealed non-canonical regions of the bromodomain-binding pocket that are important for histone tail recognition. Together, our findings provide critical information on how the combinatorial action of post-translational modifications can modulate BRPF1 bromodomain binding and specificity.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA