Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Cell Mol Life Sci ; 79(1): 38, 2021 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-34971427

RESUMO

Bacteria that occupy an intracellular niche can evade extracellular host immune responses and antimicrobial molecules. In addition to classic intracellular pathogens, other bacteria including uropathogenic Escherichia coli (UPEC) can adopt both extracellular and intracellular lifestyles. UPEC intracellular survival and replication complicates treatment, as many therapeutic molecules do not effectively reach all components of the infection cycle. In this study, we explored cell-penetrating antimicrobial peptides from distinct structural classes as alternative molecules for targeting bacteria. We identified two ß-hairpin peptides from the horseshoe crab, tachyplesin I and polyphemusin I, with broad antimicrobial activity toward a panel of pathogenic and non-pathogenic bacteria in planktonic form. Peptide analogs [I11A]tachyplesin I and [I11S]tachyplesin I maintained activity toward bacteria, but were less toxic to mammalian cells than native tachyplesin I. This important increase in therapeutic window allowed treatment with higher concentrations of [I11A]tachyplesin I and [I11S]tachyplesin I, to significantly reduce intramacrophage survival of UPEC in an in vitro infection model. Mechanistic studies using bacterial cells, model membranes and cell membrane extracts, suggest that tachyplesin I and polyphemusin I peptides kill UPEC by selectively binding and disrupting bacterial cell membranes. Moreover, treatment of UPEC with sublethal peptide concentrations increased zinc toxicity and enhanced innate macrophage antimicrobial pathways. In summary, our combined data show that cell-penetrating peptides are attractive alternatives to traditional small molecule antibiotics for treating UPEC infection, and that optimization of native peptide sequences can deliver effective antimicrobials for targeting bacteria in extracellular and intracellular environments.


Assuntos
Antibacterianos/farmacologia , Peptídeos Catiônicos Antimicrobianos/farmacologia , Peptídeos Antimicrobianos/farmacologia , Bactérias/efeitos dos fármacos , Infecções Bacterianas/tratamento farmacológico , Proteínas de Ligação a DNA/farmacologia , Peptídeos Cíclicos/farmacologia , Animais , Células da Medula Óssea , Membrana Celular/efeitos dos fármacos , Células Cultivadas , Eritrócitos , Caranguejos Ferradura/metabolismo , Humanos , Camundongos Endogâmicos C57BL , Cultura Primária de Células
2.
Biochim Biophys Acta Biomembr ; 1863(1): 183480, 2021 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-32979382

RESUMO

Anticancer chemo- and targeted therapies are limited in some cases due to strong side effects and/or drug resistance. Peptides have received renascent interest as anticancer therapeutics and are currently being considered as alternatives and/or as complementary to biologics and small-molecule drugs. Gomesin, a disulfide-rich host defense peptide expressed in the Brazilian spider Acanthoscurria gomesiana selectively targets and disrupts cancer cell membranes. In the current study, we employed a range of biophysical methodologies with model membranes and bioassays to investigate the use of a cyclic analogue of gomesin as a drug scaffold to internalize cancer cells. We found that cyclic gomesin can internalize cancer cells via endocytosis and direct membrane permeation. In addition, we designed an improved non-disruptive and non-toxic cyclic gomesin analogue by incorporating D-amino acids within the scaffold. This improved analogue retained the ability to enter cancer cells and can be used as a scaffold to deliver drugs. Efforts to investigate the internalization mechanism used by host defense peptides, and to improve their stability, potency, selectivity and ability to permeate cancer cell membranes will increase the opportunities to repurpose peptides as templates for designing alternative anticancer therapeutic leads.


Assuntos
Peptídeos Catiônicos Antimicrobianos , Proteínas de Artrópodes , Membrana Celular/metabolismo , Sistemas de Liberação de Medicamentos , Neoplasias/metabolismo , Aranhas/química , Animais , Peptídeos Catiônicos Antimicrobianos/química , Peptídeos Catiônicos Antimicrobianos/farmacocinética , Peptídeos Catiônicos Antimicrobianos/farmacologia , Proteínas de Artrópodes/química , Proteínas de Artrópodes/farmacocinética , Proteínas de Artrópodes/farmacologia , Membrana Celular/patologia , Células HeLa , Humanos , Células MCF-7 , Neoplasias/tratamento farmacológico , Neoplasias/patologia
3.
Nat Commun ; 11(1): 4027, 2020 08 12.
Artigo em Inglês | MEDLINE | ID: mdl-32788676

RESUMO

Programmed cell death or apoptosis is a central biological process that is dysregulated in many diseases, including inflammatory conditions and cancer. The detection and quantification of apoptotic cells in vivo is hampered by the need for fixatives or washing steps for non-fluorogenic reagents, and by the low levels of free calcium in diseased tissues that restrict the use of annexins. In this manuscript, we report the rational design of a highly stable fluorogenic peptide (termed Apo-15) that selectively stains apoptotic cells in vitro and in vivo in a calcium-independent manner and under wash-free conditions. Furthermore, using a combination of chemical and biophysical methods, we identify phosphatidylserine as a molecular target of Apo-15. We demonstrate that Apo-15 can be used for the quantification and imaging of drug-induced apoptosis in preclinical mouse models, thus creating opportunities for assessing the in vivo efficacy of anti-inflammatory and anti-cancer therapeutics.


Assuntos
Apoptose , Imageamento Tridimensional , Peptídeos Cíclicos/farmacologia , Sequência de Aminoácidos , Animais , Apoptose/efeitos dos fármacos , Linhagem Celular , Feminino , Humanos , Camundongos Endogâmicos C57BL , Microscopia de Fluorescência , Neutrófilos/citologia , Neutrófilos/efeitos dos fármacos , Peptídeos Cíclicos/administração & dosagem , Peptídeos Cíclicos/síntese química , Peptídeos Cíclicos/química , Fagocitose/efeitos dos fármacos , Fosfatidilserinas/metabolismo
4.
J Biol Chem ; 295(32): 10911-10925, 2020 08 07.
Artigo em Inglês | MEDLINE | ID: mdl-32414842

RESUMO

Cyclotides are plant-derived peptides characterized by an ∼30-amino acid-long cyclic backbone and a cystine knot motif. Cyclotides have diverse bioactivities, and their cytotoxicity has attracted significant attention for its potential anticancer applications. Hybanthus enneaspermus (Linn) F. Muell is a medicinal herb widely used in India as a libido enhancer, and a previous study has reported that it may contain cyclotides. In the current study, we isolated 11 novel cyclotides and 1 known cyclotide (cycloviolacin O2) from H. enneaspermus and used tandem MS to determine their amino acid sequences. We found that among these cyclotides, hyen C comprises a unique sequence in loops 1, 2, 3, 4, and 6 compared with known cyclotides. The most abundant cyclotide in this plant, hyen D, had anticancer activity comparable to that of cycloviolacin O2, one of the most cytotoxic known cyclotides. We also provide mechanistic insights into how these novel cyclotides interact with and permeabilize cell membranes. Results from surface plasmon resonance experiments revealed that hyen D, E, L, and M and cycloviolacin O2 preferentially interact with model lipid membranes that contain phospholipids with phosphatidyl-ethanolamine headgroups. The results of a lactate dehydrogenase assay indicated that exposure to these cyclotides compromises cell membrane integrity. Using live-cell imaging, we show that hyen D induces rapid membrane blebbing and cell necrosis. Cyclotide-membrane interactions correlated with the observed cytotoxicity, suggesting that membrane permeabilization and disintegration underpin cyclotide cytotoxicity. These findings broaden our knowledge on the indigenous Indian herb H. enneaspermus and have uncovered cyclotides with potential anticancer activity.


Assuntos
Antineoplásicos Fitogênicos/farmacologia , Ciclotídeos/farmacologia , Descoberta de Drogas , Plantas Medicinais/química , Violaceae/química , Sequência de Aminoácidos , Antineoplásicos Fitogênicos/química , Antineoplásicos Fitogênicos/isolamento & purificação , Linhagem Celular Tumoral , Ciclotídeos/química , Ciclotídeos/isolamento & purificação , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Proteínas de Plantas/química , Proteínas de Plantas/isolamento & purificação , Proteínas de Plantas/farmacologia , Ressonância de Plasmônio de Superfície , Espectrometria de Massas em Tandem
5.
ACS Chem Biol ; 14(1): 118-130, 2019 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-30507158

RESUMO

Gating modifier toxins (GMTs) from spider venom can inhibit voltage gated sodium channels (NaVs) involved in pain signal transmission, including the NaV1.7 subtype. GMTs have a conserved amphipathic structure that allow them to interact with membranes and also with charged residues in regions of NaV that are exposed at the cell surface. ProTx-II and GpTx-1 are GMTs able to inhibit NaV1.7 with high potency, but they differ in their ability to bind to membranes and in their selectivity over other NaV subtypes. To explore these differences and gain detailed information on their membrane-binding ability and how this relates to potency and selectivity, we examined previously described NaV1.7 potent/selective GpTx-1 analogues and new ProTx-II analogues designed to reduce membrane binding and improve selectivity for NaV1.7. Our studies reveal that the number and type of hydrophobic residues as well as how they are presented at the surface determine the affinity of ProTx-II and GpTx-1 for membranes and that altering these residues can have dramatic effects on NaV inhibitory activity. We demonstrate that strong peptide-membrane interactions are not essential for inhibiting NaV1.7 and propose that hydrophobic interactions instead play an important role in positioning the GMT at the membrane surface proximal to exposed NaV residues, thereby affecting peptide-channel interactions. Our detailed structure-activity relationship study highlights the challenges of designing GMT-based molecules that simultaneously achieve high potency and selectivity for NaV1.7, as single mutations can induce local changes in GMT structure that can have a major impact on NaV-inhibitory activity.


Assuntos
Peptídeos/efeitos dos fármacos , Venenos de Aranha/farmacologia , Animais , Humanos , Peptídeos/química
6.
Cell Mol Life Sci ; 75(24): 4511-4524, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30109357

RESUMO

Sea anemone venoms have long been recognized as a rich source of peptides with interesting pharmacological and structural properties, but they still contain many uncharacterized bioactive compounds. Here we report the discovery, three-dimensional structure, activity, tissue localization, and putative function of a novel sea anemone peptide toxin that constitutes a new, sixth type of voltage-gated potassium channel (KV) toxin from sea anemones. Comprised of just 17 residues, κ-actitoxin-Ate1a (Ate1a) is the shortest sea anemone toxin reported to date, and it adopts a novel three-dimensional structure that we have named the Proline-Hinged Asymmetric ß-hairpin (PHAB) fold. Mass spectrometry imaging and bioassays suggest that Ate1a serves a primarily predatory function by immobilising prey, and we show this is achieved through inhibition of Shaker-type KV channels. Ate1a is encoded as a multi-domain precursor protein that yields multiple identical mature peptides, which likely evolved by multiple domain duplication events in an actinioidean ancestor. Despite this ancient evolutionary history, the PHAB-encoding gene family exhibits remarkable sequence conservation in the mature peptide domains. We demonstrate that this conservation is likely due to intra-gene concerted evolution, which has to our knowledge not previously been reported for toxin genes. We propose that the concerted evolution of toxin domains provides a hitherto unrecognised way to circumvent the effects of the costly evolutionary arms race considered to drive toxin gene evolution by ensuring efficient secretion of ecologically important predatory toxins.


Assuntos
Venenos de Cnidários/química , Peptídeos/química , Canais de Potássio de Abertura Dependente da Tensão da Membrana/química , Anêmonas-do-Mar/química , Sequência de Aminoácidos , Animais , Venenos de Cnidários/genética , Venenos de Cnidários/metabolismo , Evolução Molecular , Modelos Moleculares , Peptídeos/genética , Peptídeos/metabolismo , Canais de Potássio de Abertura Dependente da Tensão da Membrana/genética , Canais de Potássio de Abertura Dependente da Tensão da Membrana/metabolismo , Conformação Proteica , Dobramento de Proteína , Anêmonas-do-Mar/genética , Anêmonas-do-Mar/metabolismo , Transcriptoma
7.
J Biol Chem ; 293(5): 1536-1549, 2018 02 02.
Artigo em Inglês | MEDLINE | ID: mdl-29255091

RESUMO

Crotalicidin (Ctn), a cathelicidin-related peptide from the venom of a South American rattlesnake, possesses potent antimicrobial, antitumor, and antifungal properties. Previously, we have shown that its C-terminal fragment, Ctn(15-34), retains the antimicrobial and antitumor activities but is less toxic to healthy cells and has improved serum stability. Here, we investigated the mechanisms of action of Ctn and Ctn(15-34) against Gram-negative bacteria. Both peptides were bactericidal, killing ∼90% of Escherichia coli and Pseudomonas aeruginosa cells within 90-120 and 5-30 min, respectively. Studies of ζ potential at the bacterial cell membrane suggested that both peptides accumulate at and neutralize negative charges on the bacterial surface. Flow cytometry experiments confirmed that both peptides permeabilize the bacterial cell membrane but suggested slightly different mechanisms of action. Ctn(15-34) permeabilized the membrane immediately upon addition to the cells, whereas Ctn had a lag phase before inducing membrane damage and exhibited more complex cell-killing activity, probably because of two different modes of membrane permeabilization. Using surface plasmon resonance and leakage assays with model vesicles, we confirmed that Ctn(15-34) binds to and disrupts lipid membranes and also observed that Ctn(15-34) has a preference for vesicles that mimic bacterial or tumor cell membranes. Atomic force microscopy visualized the effect of these peptides on bacterial cells, and confocal microscopy confirmed their localization on the bacterial surface. Our studies shed light onto the antimicrobial mechanisms of Ctn and Ctn(15-34), suggesting Ctn(15-34) as a promising lead for development as an antibacterial/antitumor agent.


Assuntos
Antibacterianos , Permeabilidade da Membrana Celular/efeitos dos fármacos , Membrana Celular , Venenos de Crotalídeos , Crotalus , Escherichia coli , Fragmentos de Peptídeos , Pseudomonas aeruginosa , Animais , Antibacterianos/química , Antibacterianos/farmacologia , Membrana Celular/química , Membrana Celular/metabolismo , Venenos de Crotalídeos/química , Venenos de Crotalídeos/farmacologia , Escherichia coli/química , Escherichia coli/metabolismo , Fragmentos de Peptídeos/química , Fragmentos de Peptídeos/farmacologia , Pseudomonas aeruginosa/química , Pseudomonas aeruginosa/metabolismo , Ressonância de Plasmônio de Superfície
9.
Biopolymers ; 108(5)2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28459137

RESUMO

Chlorotoxin (CTX), a disulfide-rich peptide from the scorpion Leiurus quinquestriatus, has several promising biopharmaceutical properties, including preferential affinity for certain cancer cells, high serum stability, and cell penetration. These properties underpin its potential for use as a drug design scaffold, especially for the treatment of cancer; indeed, several analogs of CTX have reached clinical trials. Here, we focus on its ability to internalize into cells-a trait associated with a privileged subclass of peptides called cell-penetrating peptides-and whether it can be improved through conservative substitutions. Mutants of CTX were made using solid-phase peptide synthesis and internalization into human cervical carcinoma (HeLa) cells was monitored by fluorescence and confocal microscopy. CTX_M1 (ie, [K15R/K23R]CTX) and CTX_M2 (ie, [K15R/K23R/Y29W]CTX) mutants showed at least a twofold improvement in uptake compared to CTX. We further showed that these mutants internalize into HeLa cells largely via an energy-dependent mechanism. Importantly, the mutants have high stability, remaining intact in serum for over 24 h; thus, retaining the characteristic stability of their parent peptide. Overall, we have shown that simple conservative substitutions can enhance the cellular uptake of CTX, suggesting that such type of mutations might be useful for improving uptake of other peptide toxins.


Assuntos
Venenos de Escorpião/metabolismo , Sequência de Aminoácidos , Animais , Arginina/química , Membrana Celular/química , Membrana Celular/metabolismo , Dissulfetos/química , Espectroscopia de Ressonância de Spin Eletrônica , Células HeLa , Humanos , Bicamadas Lipídicas/química , Bicamadas Lipídicas/metabolismo , Lisina/química , Microscopia Confocal , Mutagênese , Estabilidade Proteica , Venenos de Escorpião/síntese química , Venenos de Escorpião/genética , Escorpiões/metabolismo , Alinhamento de Sequência
10.
Biopolymers ; 108(1)2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-27487329

RESUMO

Cyclotides are plant-derived host defense peptides displaying exceptional stability due to their cyclic cystine knot comprising three intertwined disulfide bonds and a cyclic backbone. Their six conserved cysteine residues are separated by backbone loops with diverse sequences. Prototypical cyclotides from the Möbius (kalata B1) and trypsin inhibitor (MCoTI-II) subfamilies lack sequence homology with one another, but both are able to penetrate cells, apparently via different mechanisms. To delineate the influence of the sequences of the loops on the structure and cell internalization of these two cyclotide subfamilies, a series of Möbius/trypsin inhibitor loop-chimeras of kalata B1 and MCoTI-II were synthesized, and structurally and functionally characterized. NMR analysis showed that the structural fold of the majority of chimeric peptides was minimally affected by the loop substitutions. Substituting loops 3, 5, or 6 of MCoTI-II into the corresponding loops of kalata B1 attenuated its hemolytic and cytotoxic activities, and greatly reduced its cell-penetrating properties. On the other hand, replacing loops of MCoTI-II with the corresponding loops of kalata B1 did not introduce cytotoxicity into the chimeras. Loops 2, 3, and 4 of MCoTI-II were found to contribute little to cell-penetrating properties. Overall, this study provides valuable insights into the structural basis for the hemolytic, cytotoxic, and cell-penetrating properties of kalata B1 and MCoTI-II, which could be useful for future engineering of cyclotides to carry bioactive epitopes to intracellular targets.


Assuntos
Ciclotídeos/química , Proteínas de Plantas/química , Sequência de Aminoácidos , Sobrevivência Celular/efeitos dos fármacos , Cucurbitaceae/metabolismo , Ciclotídeos/síntese química , Ciclotídeos/toxicidade , Eritrócitos/citologia , Eritrócitos/efeitos dos fármacos , Eritrócitos/metabolismo , Células HeLa , Hemólise/efeitos dos fármacos , Humanos , Espectroscopia de Ressonância Magnética , Estrutura Terciária de Proteína
11.
Mech Ageing Dev ; 161(Pt B): 247-254, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27491841

RESUMO

The plant-derived decapeptide OSIP108 increases tolerance of yeast and human cells to apoptosis-inducing agents, such as copper and cisplatin. We performed a whole amino acid scan of OSIP108 and conducted structure-activity relationship studies on the induction of cisplatin tolerance (CT) in yeast. The use of cisplatin as apoptosis-inducing trigger in this study should be considered as a tool to better understand the survival-promoting nature of OSIP108 and not for purposes related to anti-cancer treatment. We found that charged residues (Arg, His, Lys, Glu or Asp) or a Pro on positions 4-7 improved OSIP108 activity by 10% or more. The variant OSIP108[G7P] induced the most pronounced tolerance to toxic concentrations of copper and cisplatin in yeast and/or HepG2 cells. Both OSIP108 and OSIP108[G7P] were shown to internalize equally into HeLa cells, but at a higher rate than the inactive OSIP108[E10A], suggesting that the peptides can internalize into cells and that OSIP108 activity is dependent on subsequent intracellular interactions. In conclusion, our studies demonstrated that tolerance/survival-promoting properties of OSIP108 can be significantly improved by single amino acid substitutions, and that these properties are dependent on (an) intracellular target(s), yet to be determined.


Assuntos
Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/farmacologia , Proteínas de Arabidopsis/farmacocinética , Sobrevivência Celular/efeitos dos fármacos , Cisplatino/farmacocinética , Cisplatino/farmacologia , Farmacorresistência Fúngica/efeitos dos fármacos , Células HeLa , Células Hep G2 , Humanos , Saccharomyces cerevisiae/metabolismo
12.
Biopolymers ; 106(6): 853-863, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27287767

RESUMO

The transcription factor p53 has a tumor suppressor role in leading damaged cells to apoptosis. Its activity is regulated/inhibited in healthy cells by the proteins MDM2 and MDMX. Overexpression of MDM2 and/or MDMX in cancer cells inactivates p53, facilitating tumor development. A 12-mer dual inhibitor peptide (pDI) was previously reported to be able to target and inhibit MDMX:p53 and MDM2:p53 interactions with nanomolar potency in vitro. With the aim of improving its cellular inhibitory activity, we produced a series of constrained pDI analogs featuring lactam staples that stabilize the bioactive helical conformation and fused them with a cell-penetrating peptide to increase cytosol delivery. We compared pDI and its analogs on their inhibitory potency, toxicity, and ability to enter cancer cells. Overall, the results show that these analogs keep their nanomolar affinity for MDM2 and MDMX and are highly active against cancer cells. © 2016 Wiley Periodicals, Inc. Biopolymers (Pept Sci) 106: 853-863, 2016.


Assuntos
Antineoplásicos , Peptídeos Penetradores de Células , Sistemas de Liberação de Medicamentos , Complexos Multiproteicos , Proteínas Nucleares , Proteínas Proto-Oncogênicas c-mdm2 , Proteínas Proto-Oncogênicas , Proteína Supressora de Tumor p53 , Antineoplásicos/química , Antineoplásicos/farmacocinética , Antineoplásicos/farmacologia , Proteínas de Ciclo Celular , Peptídeos Penetradores de Células/química , Peptídeos Penetradores de Células/farmacocinética , Peptídeos Penetradores de Células/farmacologia , Células HeLa , Humanos , Complexos Multiproteicos/antagonistas & inibidores , Complexos Multiproteicos/metabolismo , Proteínas Nucleares/antagonistas & inibidores , Proteínas Nucleares/metabolismo , Proteínas Proto-Oncogênicas/antagonistas & inibidores , Proteínas Proto-Oncogênicas/metabolismo , Proteínas Proto-Oncogênicas c-mdm2/antagonistas & inibidores , Proteínas Proto-Oncogênicas c-mdm2/metabolismo , Proteína Supressora de Tumor p53/antagonistas & inibidores , Proteína Supressora de Tumor p53/metabolismo
13.
J Am Chem Soc ; 138(17): 5706-13, 2016 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-27064294

RESUMO

Enantiomeric forms of BTD-2, PG-1, and PM-1 were synthesized to delineate the structure and function of these ß-sheet antimicrobial peptides. Activity and lipid-binding assays confirm that these peptides act via a receptor-independent mechanism involving membrane interaction. The racemic crystal structure of BTD-2 solved at 1.45 Å revealed a novel oligomeric form of ß-sheet antimicrobial peptides within the unit cell: an antiparallel trimer, which we suggest might be related to its membrane-active form. The BTD-2 oligomer extends into a larger supramolecular state that spans the crystal lattice, featuring a steric-zipper motif that is common in structures of amyloid-forming peptides. The supramolecular structure of BTD-2 thus represents a new mode of fibril-like assembly not previously observed for antimicrobial peptides, providing structural evidence linking antimicrobial and amyloid peptides.


Assuntos
Amiloide/química , Anti-Infecciosos/química , Peptídeos/química , Dicroísmo Circular , Cristalografia por Raios X , Conformação Proteica , Ressonância de Plasmônio de Superfície
14.
Biochim Biophys Acta ; 1858(4): 872-82, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26850736

RESUMO

Many venom peptides are potent and selective inhibitors of voltage-gated ion channels, including channels that are validated therapeutic targets for treatment of a wide range of human diseases. However, the development of novel venom-peptide-based therapeutics requires an understanding of their mechanism of action. In the case of voltage-gated ion channels, venom peptides act either as pore blockers that bind to the extracellular side of the channel pore or gating modifiers that bind to one or more of the membrane-embedded voltage sensor domains. In the case of gating modifiers, it has been debated whether the peptide must partition into the membrane to reach its binding site. In this study, we used surface plasmon resonance, fluorescence spectroscopy and molecular dynamics to directly compare the lipid-binding properties of two gating modifiers (µ-TRTX-Hd1a and ProTx-I) and two pore blockers (ShK and KIIIA). Only ProTx-I was found to bind to model membranes. Our results provide further evidence that the ability to insert into the lipid bilayer is not a requirement to be a gating modifier. In addition, we characterised the surface of ProTx-I that mediates its interaction with neutral and anionic phospholipid membranes and show that it preferentially interacts with anionic lipids.


Assuntos
Membranas/efeitos dos fármacos , Peptídeos/química , Venenos de Aranha/química , Sítios de Ligação/efeitos dos fármacos , Humanos , Ativação do Canal Iônico/efeitos dos fármacos , Membranas/química , Peptídeos/toxicidade , Venenos de Aranha/toxicidade
15.
New Phytol ; 210(2): 717-30, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26668107

RESUMO

Plants have evolved many strategies to protect themselves from attack, including peptide toxins that are ribosomally synthesized and thus adaptable directly by genetic polymorphisms. Certain toxins in Clitoria ternatea (butterfly pea) are cyclic cystine-knot peptides of c. 30 residues, called cyclotides, which have co-opted the plant's albumin-1 gene family for their production. How butterfly pea albumin-1 genes were commandeered and how these cyclotides are utilized in defence remain unclear. The role of cyclotides in host plant ecology and biotechnological applications requires exploration. We characterized the sequence diversity and expression dynamics of precursor and processing proteins implicated in butterfly pea cyclotide biosynthesis by expression profiling through RNA-sequencing (RNA-seq). Peptide-enriched extracts from various organs were tested for activity against insect-like membranes and the model nematode Caenorhabditis elegans. We found that the evolution and deployment of cyclotides involved their diversification to exhibit different chemical properties and expression between organs facing different defensive challenges. Cyclotide-enriched fractions from soil-contacting organs were effective at killing nematodes, whereas similar enriched fractions from aerial organs contained cyclotides that exhibited stronger interactions with insect-like membrane lipids. Cyclotides are employed as versatile and combinatorial mediators of defence in C. ternatea and have specialized to affect different classes of attacking organisms.


Assuntos
Evolução Molecular , Genes de Plantas , Peptídeos Cíclicos/metabolismo , Plantas/genética , Plantas/imunologia , Sequência de Aminoácidos , Análise por Conglomerados , Sequência Conservada , Regulação da Expressão Gênica de Plantas , Especificidade de Órgãos/genética , Peptídeos Cíclicos/biossíntese , Peptídeos Cíclicos/química , Proteínas de Plantas/metabolismo , Domínios Proteicos , Processamento de Proteína Pós-Traducional , Solo/química , Especificidade da Espécie , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Água
16.
Biochemistry ; 55(2): 396-405, 2016 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-26685975

RESUMO

The SET protein is a promising drug target in cancer therapy, because of its ability to inhibit the function of the tumor suppressor gene protein phosphatase 2A (PP2A). COG peptides, derived from apolipoprotein E (apoE), are potent antagonists of SET; they induce cytotoxicity in cancer cells upon binding to intracellular SET and modulate the nuclear factor kappa B (NF-κB) signaling pathway. However, the therapeutic potential of COG peptides is limited, because of their poor proteolytic stability and low bioavailability. In this study, the COG peptide, COG1410, was stabilized by grafting it onto the ultrastable cyclic peptide scaffold, Momordica cochinchinensis trypsin inhibitor-II (MCoTI-II). The grafted MCoTI-II peptides were cytotoxic to a cancer cell line and showed high stability in human serum. The most potent grafted MCoTI-II peptide inhibited lipopolysaccharide (LPS)-mediated activation of NF-κB in murine macrophages. Overall, this study demonstrates the application of the MCoTI-II scaffold for the development of stable peptide drugs for cancer therapy.


Assuntos
Chaperonas de Histonas/antagonistas & inibidores , Peptídeos Cíclicos/química , Peptídeos Cíclicos/farmacologia , Fatores de Transcrição/antagonistas & inibidores , Apolipoproteínas E/química , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Ciclotídeos/química , Ciclotídeos/farmacologia , Proteínas de Ligação a DNA , Humanos , Imageamento por Ressonância Magnética , NF-kappa B/metabolismo , Regiões Promotoras Genéticas/genética , Proteína Fosfatase 2/metabolismo
17.
ACS Chem Biol ; 10(11): 2491-500, 2015 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-26322745

RESUMO

Cyclotides are macrocyclic proteins produced by plants for host defense. Although they occur sparsely in other plant families, cyclotides have been detected in every Violaceae plant species so far screened. Many of the Violaceae species examined until now have been from closely related geographical regions or habitats. To test the hypothesis that cyclotides are ubiquitous in this family, two geographically isolated (and critically endangered) species of Australasian Violaceae, namely Melicytus chathamicus and M. latifolius, were examined. Surprisingly, we discovered a suite of cyclotides possessing novel sequence features, including a lysine-rich nature, distinguishing them from "conventional" cyclotides and suggesting that they might have different physiological activities in plants to those reported to date. The newly discovered cyclotides were found to bind to lipid membranes and were cytotoxic against cancer cell lines but had low toxicity against red blood cells, which is advantageous for potential therapeutic applications. This suite of novel Lys-rich cyclotides emphasizes the broad diversity of cyclotides in Violaceae species.


Assuntos
Ciclotídeos/química , Lisina/química , Violaceae/química , Sequência de Aminoácidos , Células Cultivadas , Ciclotídeos/farmacologia , Motivos Nó de Cisteína , Eritrócitos/efeitos dos fármacos , Humanos , Lisina/farmacologia , Espectroscopia de Ressonância Magnética , Modelos Moleculares , Peptídeos/química , Peptídeos/genética , Ligação Proteica , Espectrometria de Massas por Ionização por Electrospray
18.
Chem Biol ; 22(8): 1087-97, 2015 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-26278183

RESUMO

Cyclotides combine the stability of disulfide-rich peptides with the intracellular accessibility of cell-penetrating peptides, giving them outstanding potential as drug scaffolds with an ability to inhibit intracellular protein-protein interactions. To realize and optimize the application of cyclotides as a drug framework and delivery system, we studied the ability of the prototypic cyclotide, kalata B1, to enter mammalian cells. We show that kalata B1 can enter cells via both endocytosis and direct membrane translocation. Both pathways are initiated by targeting phosphatidylethanolamine phospholipids at the cell surface and inducing membrane curvature. This unusual approach to initiate internalization might be harnessed to deliver drugs into cells and, in particular, cancer cells, which present a higher proportion of surface-exposed phosphatidylethanolamine phospholipids. Our findings highlight the potential of these peptides as drug leads for the modulation of traditionally "undruggable" targets, such as intracellular protein-protein interactions.


Assuntos
Ciclotídeos/química , Ciclotídeos/farmacocinética , Fosfolipídeos/química , Fosfolipídeos/metabolismo , Membrana Celular/metabolismo , Peptídeos Penetradores de Células/química , Peptídeos Penetradores de Células/farmacocinética , Sistemas de Liberação de Medicamentos , Endocitose/fisiologia , Células HeLa , Humanos , Modelos Moleculares , Fosfatidiletanolaminas/metabolismo
19.
PLoS One ; 8(11): e80474, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24260399

RESUMO

The inhibition of tyrosine kinases is a successful approach for the treatment of cancers and the discovery of kinase inhibitor drugs is the focus of numerous academic and pharmaceutical laboratories. With this goal in mind, several strategies have been developed to measure kinase activity and to screen novel tyrosine kinase inhibitors. Nevertheless, a general non-radioactive and inexpensive approach, easy to implement and adapt to a range of applications, is still missing. Herein, using Bcr-Abl tyrosine kinase, an oncogenic target and a model protein for cancer studies, we describe a novel cost-effective high-throughput screening kinase assay. In this approach, named the BacKin assay, substrates displayed on a Bacterial cell surface are incubated with Kinase and their phosphorylation is examined and quantified by flow cytometry. This approach has several advantages over existing approaches, as using bacteria (i.e. Escherichia coli) to display peptide substrates provides a self renewing solid support that does not require laborious chemical strategies. Here we show that the BacKin approach can be used for kinetic and mechanistic studies, as well as a platform to characterize and identify small-molecule or peptide-based kinase inhibitors with potential applications in drug development.


Assuntos
Bactérias/metabolismo , Técnicas de Visualização da Superfície Celular , Ensaios Enzimáticos/métodos , Citometria de Fluxo , Fosfotransferases/metabolismo , Ativação Enzimática , Proteínas de Fusão bcr-abl/antagonistas & inibidores , Proteínas de Fusão bcr-abl/química , Proteínas de Fusão bcr-abl/metabolismo , Cinética , Modelos Moleculares , Fragmentos de Peptídeos/química , Fragmentos de Peptídeos/metabolismo , Fosfotransferases/antagonistas & inibidores , Fosfotransferases/química , Ligação Proteica , Conformação Proteica , Inibidores de Proteínas Quinases/química , Inibidores de Proteínas Quinases/farmacologia , Proteínas Tirosina Quinases/antagonistas & inibidores , Proteínas Tirosina Quinases/química , Proteínas Tirosina Quinases/metabolismo , Reprodutibilidade dos Testes , Especificidade por Substrato
20.
J Biol Chem ; 288(15): 10830-40, 2013 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-23430740

RESUMO

θ-Defensins are ribosomally synthesized cyclic peptides found in the leukocytes of some primate species and have promising applications as antimicrobial agents and scaffolds for peptide drugs. The cyclic cystine ladder motif, comprising a cyclic peptide backbone and three parallel disulfide bonds, is characteristic of θ-defensins. In this study, we explore the role of the cyclic peptide backbone and cystine ladder in the structure, stability, and activity of θ-defensins. θ-Defensin analogues with different numbers and combinations of disulfide bonds were synthesized and characterized in terms of their NMR solution structures, serum and thermal stabilities, and their antibacterial and membrane-binding activities. Whereas the structures and stabilities of the peptides were primarily dependent on the number and position of the disulfide bonds, their antibacterial and membrane-binding properties were dependent on the cyclic backbone. The results provide insights into the mechanism of action of θ-defensins and illustrate the potential of θ-defensin analogues as scaffolds for peptide drug design.


Assuntos
Cistina/química , alfa-Defensinas/química , Motivos de Aminoácidos , Cistina/genética , Humanos , Ressonância Magnética Nuclear Biomolecular , Estabilidade Proteica , Estrutura Secundária de Proteína , alfa-Defensinas/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA