Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
mBio ; 15(8): e0003924, 2024 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-38975756

RESUMO

Symbiotic interactions between humans and our communities of resident gut microbes (microbiota) play many roles in health and disease. Some gut bacteria utilize mucus as a nutrient source and can under certain conditions damage the protective barrier it forms, increasing disease susceptibility. We investigated how Ruminococcus torques-a known mucin degrader that has been implicated in inflammatory bowel diseases (IBDs)-degrades mucin glycoproteins or their component O-linked glycans to understand its effects on the availability of mucin-derived nutrients for other bacteria. We found that R. torques utilizes both mucin glycoproteins and released oligosaccharides from gastric and colonic mucins, degrading these substrates with a panoply of mostly constitutively expressed, secreted enzymes. Investigation of mucin oligosaccharide degradation by R. torques revealed strong α-L-fucosidase, sialidase and ß1,4-galactosidase activities. There was a lack of detectable sulfatase and weak ß1,3-galactosidase degradation, resulting in accumulation of glycans containing these structures on mucin polypeptides. While the Gram-negative symbiont, Bacteroides thetaiotaomicron grows poorly on mucin glycoproteins, we demonstrate a clear ability of R. torques to liberate products from mucins, making them accessible to B. thetaiotaomicron. This work underscores the diversity of mucin-degrading mechanisms in different bacterial species and the probability that some species are contingent on others for the ability to more fully access mucin-derived nutrients. The ability of R. torques to directly degrade a variety of mucin and mucin glycan structures and unlock released glycans for other species suggests that it is a keystone mucin degrader, which might contribute to its association with IBD.IMPORTANCEAn important facet of maintaining healthy symbiosis between host and intestinal microbes is the mucus layer, the first defense protecting the epithelium from lumenal bacteria. Some gut bacteria degrade the various components of intestinal mucins, but detailed mechanisms used by different species are still emerging. It is imperative to understand these mechanisms as they likely dictate interspecies interactions and may illuminate species associated with bacterial mucus damage and subsequent disease susceptibility. Ruminococcus torques is positively associated with IBD in multiple studies. We identified mucin glycan-degrading enzymes in R. torques and found that it shares mucin degradation products with another species of gut bacteria, Bacteroides thetaiotaomicron. Our findings underscore the importance of understanding mucin degradation mechanisms in different gut bacteria and their consequences on interspecies interactions, which may identify keystone bacteria that disproportionately affect mucus damage and could therefore be key players in effects that result from reductions in mucus integrity.


Assuntos
Bacteroides thetaiotaomicron , Microbioma Gastrointestinal , Mucinas , Oligossacarídeos , Ruminococcus , Oligossacarídeos/metabolismo , Mucinas/metabolismo , Bacteroides thetaiotaomicron/metabolismo , Ruminococcus/metabolismo , Humanos , Glicoproteínas/metabolismo , Simbiose
2.
Proc Natl Acad Sci U S A ; 120(10): e2214076120, 2023 03 07.
Artigo em Inglês | MEDLINE | ID: mdl-36848567

RESUMO

Lentinula is a broadly distributed group of fungi that contains the cultivated shiitake mushroom, L. edodes. We sequenced 24 genomes representing eight described species and several unnamed lineages of Lentinula from 15 countries on four continents. Lentinula comprises four major clades that arose in the Oligocene, three in the Americas and one in Asia-Australasia. To expand sampling of shiitake mushrooms, we assembled 60 genomes of L. edodes from China that were previously published as raw Illumina reads and added them to our dataset. Lentinula edodes sensu lato (s. lat.) contains three lineages that may warrant recognition as species, one including a single isolate from Nepal that is the sister group to the rest of L. edodes s. lat., a second with 20 cultivars and 12 wild isolates from China, Japan, Korea, and the Russian Far East, and a third with 28 wild isolates from China, Thailand, and Vietnam. Two additional lineages in China have arisen by hybridization among the second and third groups. Genes encoding cysteine sulfoxide lyase (lecsl) and γ-glutamyl transpeptidase (leggt), which are implicated in biosynthesis of the organosulfur flavor compound lenthionine, have diversified in Lentinula. Paralogs of both genes that are unique to Lentinula (lecsl 3 and leggt 5b) are coordinately up-regulated in fruiting bodies of L. edodes. The pangenome of L. edodes s. lat. contains 20,308 groups of orthologous genes, but only 6,438 orthogroups (32%) are shared among all strains, whereas 3,444 orthogroups (17%) are found only in wild populations, which should be targeted for conservation.


Assuntos
Lentinula , Filogenia , Ásia Oriental , Tailândia
3.
J Fungi (Basel) ; 8(3)2022 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-35330313

RESUMO

The Ganoderma species in Polyporales are ecologically and economically relevant wood decayers used in traditional medicine, but their genomic traits are still poorly documented. In the present study, we carried out a phylogenomic and comparative genomic analyses to better understand the genetic blueprint of this fungal lineage. We investigated seven Ganoderma genomes, including three new genomes, G. australe, G. leucocontextum, and G. lingzhi. The size of the newly sequenced genomes ranged from 60.34 to 84.27 Mb and they encoded 15,007 to 20,460 genes. A total of 58 species, including 40 white-rot fungi, 11 brown-rot fungi, four ectomycorrhizal fungi, one endophyte fungus, and two pathogens in Basidiomycota, were used for phylogenomic analyses based on 143 single-copy genes. It confirmed that Ganoderma species belong to the core polyporoid clade. Comparing to the other selected species, the genomes of the Ganoderma species encoded a larger set of genes involved in terpene metabolism and coding for secreted proteins (CAZymes, lipases, proteases and SSPs). Of note, G. australe has the largest genome size with no obvious genome wide duplication, but showed transposable elements (TEs) expansion and the largest set of terpene gene clusters, suggesting a high ability to produce terpenoids for medicinal treatment. G. australe also encoded the largest set of proteins containing domains for cytochrome P450s, heterokaryon incompatibility and major facilitator families. Besides, the size of G. australe secretome is the largest, including CAZymes (AA9, GH18, A01A), proteases G01, and lipases GGGX, which may enhance the catabolism of cell wall carbohydrates, proteins, and fats during hosts colonization. The current genomic resource will be used to develop further biotechnology and medicinal applications, together with ecological studies of the Ganoderma species.

4.
Environ Microbiol ; 23(10): 5716-5732, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-33538380

RESUMO

Because they comprise some of the most efficient wood-decayers, Polyporales fungi impact carbon cycling in forest environment. Despite continuous discoveries on the enzymatic machinery involved in wood decomposition, the vision on their evolutionary adaptation to wood decay and genome diversity remains incomplete. We combined the genome sequence information from 50 Polyporales species, including 26 newly sequenced genomes and sought for genomic and functional adaptations to wood decay through the analysis of genome composition and transcriptome responses to different carbon sources. The genomes of Polyporales from different phylogenetic clades showed poor conservation in macrosynteny, indicative of genome rearrangements. We observed different gene family expansion/contraction histories for plant cell wall degrading enzymes in core polyporoids and phlebioids and captured expansions for genes involved in signalling and regulation in the lineages of white rotters. Furthermore, we identified conserved cupredoxins, thaumatin-like proteins and lytic polysaccharide monooxygenases with a yet uncharacterized appended module as new candidate players in wood decomposition. Given the current need for enzymatic toolkits dedicated to the transformation of renewable carbon sources, the observed genomic diversity among Polyporales strengthens the relevance of mining Polyporales biodiversity to understand the molecular mechanisms of wood decay.


Assuntos
Basidiomycota , Polyporales , Basidiomycota/genética , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Genoma Fúngico , Filogenia , Polyporales/genética , Polyporales/metabolismo , Transcriptoma/genética , Madeira/microbiologia
5.
Mol Biol Evol ; 38(4): 1428-1446, 2021 04 13.
Artigo em Inglês | MEDLINE | ID: mdl-33211093

RESUMO

As actors of global carbon cycle, Agaricomycetes (Basidiomycota) have developed complex enzymatic machineries that allow them to decompose all plant polymers, including lignin. Among them, saprotrophic Agaricales are characterized by an unparalleled diversity of habitats and lifestyles. Comparative analysis of 52 Agaricomycetes genomes (14 of them sequenced de novo) reveals that Agaricales possess a large diversity of hydrolytic and oxidative enzymes for lignocellulose decay. Based on the gene families with the predicted highest evolutionary rates-namely cellulose-binding CBM1, glycoside hydrolase GH43, lytic polysaccharide monooxygenase AA9, class-II peroxidases, glucose-methanol-choline oxidase/dehydrogenases, laccases, and unspecific peroxygenases-we reconstructed the lifestyles of the ancestors that led to the extant lignocellulose-decomposing Agaricomycetes. The changes in the enzymatic toolkit of ancestral Agaricales are correlated with the evolution of their ability to grow not only on wood but also on leaf litter and decayed wood, with grass-litter decomposers as the most recent eco-physiological group. In this context, the above families were analyzed in detail in connection with lifestyle diversity. Peroxidases appear as a central component of the enzymatic toolkit of saprotrophic Agaricomycetes, consistent with their essential role in lignin degradation and high evolutionary rates. This includes not only expansions/losses in peroxidase genes common to other basidiomycetes but also the widespread presence in Agaricales (and Russulales) of new peroxidases types not found in wood-rotting Polyporales, and other Agaricomycetes orders. Therefore, we analyzed the peroxidase evolution in Agaricomycetes by ancestral-sequence reconstruction revealing several major evolutionary pathways and mapped the appearance of the different enzyme types in a time-calibrated species tree.


Assuntos
Agaricales/genética , Genoma Fúngico , Lignina/metabolismo , Peroxidases/genética , Filogenia , Agaricales/enzimologia , Ecossistema , Família Multigênica , Peroxidases/metabolismo
6.
Sci Rep ; 10(1): 5250, 2020 03 23.
Artigo em Inglês | MEDLINE | ID: mdl-32251355

RESUMO

Fungal plant pathogens remain a serious threat to the sustainable agriculture and forestry, despite the extensive efforts undertaken to control their spread. White root rot disease is threatening rubber tree (Hevea brasiliensis) plantations throughout South and Southeast Asia and Western Africa, causing tree mortality and severe yield losses. Here, we report the complete genome sequence of the basidiomycete fungus Rigidoporus microporus, a causative agent of the disease. Our phylogenetic analysis confirmed the position of R. microporus among the members of Hymenochaetales, an understudied group of basidiomycetes. Our analysis further identified pathogen's genes with a predicted role in the decay of plant cell wall polymers, in the utilization of latex components and in interspecific interactions between the pathogen and other fungi. We also detected putative horizontal gene transfer events in the genome of R. microporus. The reported first genome sequence of a tropical rubber tree pathogen R. microporus should contribute to the better understanding of how the fungus is able to facilitate wood decay and nutrient cycling as well as tolerate latex and utilize resinous extractives.


Assuntos
Proteínas Fúngicas/genética , Látex/metabolismo , Polyporales/genética , Polyporales/patogenicidade , Madeira/microbiologia , Parede Celular/metabolismo , Parede Celular/microbiologia , Enzimas/genética , Enzimas/metabolismo , Regulação Fúngica da Expressão Gênica , Transferência Genética Horizontal , Genoma Fúngico , Interações Hospedeiro-Patógeno/genética , Interações Microbianas/genética , Filogenia , Polyporales/metabolismo , Metabolismo Secundário , Madeira/metabolismo
7.
Appl Microbiol Biotechnol ; 103(19): 8145-8155, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31482283

RESUMO

The environmental accumulation of polycyclic aromatic hydrocarbons (PAHs) is of great concern due to potential carcinogenic and mutagenic risks, as well as their resistance to remediation. While many fungi have been reported to break down PAHs in environments, the details of gene-based metabolic pathways are not yet comprehensively understood. Specifically, the genome-scale transcriptional responses of fungal PAH degradation have rarely been reported. In this study, we report the genomic and transcriptomic basis of PAH bioremediation by a potent fungal degrader, Dentipellis sp. KUC8613. The genome size of this fungus was 36.71 Mbp long encoding 14,320 putative protein-coding genes. The strain efficiently removed more than 90% of 100 mg/l concentration of PAHs within 10 days. The genomic and transcriptomic analysis of this white rot fungus highlights that the strain primarily utilized non-ligninolytic enzymes to remove various PAHs, rather than typical ligninolytic enzymes known for playing important roles in PAH degradation. PAH removal by non-ligninolytic enzymes was initiated by both different PAH-specific and common upregulation of P450s, followed by downstream PAH-transforming enzymes such as epoxide hydrolases, dehydrogenases, FAD-dependent monooxygenases, dioxygenases, and glycosyl- or glutathione transferases. Among the various PAHs, phenanthrene induced a more dynamic transcriptomic response possibly due to its greater cytotoxicity, leading to highly upregulated genes involved in the translocation of PAHs, a defense system against reactive oxygen species, and ATP synthesis. Our genomic and transcriptomic data provide a foundation of understanding regarding the mycoremediation of PAHs and the application of this strain for polluted environments.


Assuntos
Basidiomycota/genética , Basidiomycota/metabolismo , Perfilação da Expressão Gênica , Genômica , Redes e Vias Metabólicas/genética , Hidrocarbonetos Policíclicos Aromáticos/metabolismo , Biotransformação
8.
Biotechnol Biofuels ; 11: 201, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30061923

RESUMO

BACKGROUND: Plant biomass conversion for green chemistry and bio-energy is a current challenge for a modern sustainable bioeconomy. The complex polyaromatic lignin polymers in raw biomass feedstocks (i.e., agriculture and forestry by-products) are major obstacles for biomass conversions. White-rot fungi are wood decayers able to degrade all polymers from lignocellulosic biomass including cellulose, hemicelluloses, and lignin. The white-rot fungus Polyporus brumalis efficiently breaks down lignin and is regarded as having a high potential for the initial treatment of plant biomass in its conversion to bio-energy. Here, we describe the extraordinary ability of P. brumalis for lignin degradation using its enzymatic arsenal to break down wheat straw, a lignocellulosic substrate that is considered as a biomass feedstock worldwide. RESULTS: We performed integrative multi-omics analyses by combining data from the fungal genome, transcriptomes, and secretomes. We found that the fungus possessed an unexpectedly large set of genes coding for Class II peroxidases involved in lignin degradation (19 genes) and GMC oxidoreductases/dehydrogenases involved in generating the hydrogen peroxide required for lignin peroxidase activity and promoting redox cycling of the fungal enzymes involved in oxidative cleavage of lignocellulose polymers (36 genes). The examination of interrelated multi-omics patterns revealed that eleven Class II Peroxidases were secreted by the fungus during fermentation and eight of them where tightly co-regulated with redox cycling enzymatic partners. CONCLUSION: As a peculiar feature of P. brumalis, we observed gene family extension, up-regulation and secretion of an abundant set of versatile peroxidases and manganese peroxidases, compared with other Polyporales species. The orchestrated secretion of an abundant set of these delignifying enzymes and redox cycling enzymatic partners could contribute to the delignification capabilities of the fungus. Our findings highlight the diversity of wood decay mechanisms present in Polyporales and the potentiality of further exploring this taxonomic order for enzymatic functions of biotechnological interest.

9.
Mycologia ; 110(2): 316-324, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29843575

RESUMO

A novel fungal species able to synthesize enzymes with potential synergistic actions in lignocellulose conversion was isolated from the biomass of Arundo donax during biodegradation under natural conditions in the Gussone Park of the Royal Palace of Portici (Naples, Italy). In this work, this species was subjected to morphological and phylogenetic analyses. Sequencing of its genome was performed, resulting in 28 scaffolds that were assembled into 27.05 Mb containing 9744 predicted genes, among which 396 belong to carbohydrate-active enzyme (CAZyme)-encoding genes. Here we describe and illustrate this previously unknown species, which was named Talaromyces borbonicus, by a polyphasic approach combining phenotypic, physiological, and sequence data.


Assuntos
Lignina/metabolismo , Poaceae/microbiologia , Talaromyces/classificação , Talaromyces/isolamento & purificação , Biotransformação , Metabolismo dos Carboidratos , Enzimas/genética , Genoma Fúngico , Itália , Filogenia , Análise de Sequência de DNA , Talaromyces/genética , Talaromyces/metabolismo
10.
Genome Biol ; 18(1): 28, 2017 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-28196534

RESUMO

BACKGROUND: The fungal genus Aspergillus is of critical importance to humankind. Species include those with industrial applications, important pathogens of humans, animals and crops, a source of potent carcinogenic contaminants of food, and an important genetic model. The genome sequences of eight aspergilli have already been explored to investigate aspects of fungal biology, raising questions about evolution and specialization within this genus. RESULTS: We have generated genome sequences for ten novel, highly diverse Aspergillus species and compared these in detail to sister and more distant genera. Comparative studies of key aspects of fungal biology, including primary and secondary metabolism, stress response, biomass degradation, and signal transduction, revealed both conservation and diversity among the species. Observed genomic differences were validated with experimental studies. This revealed several highlights, such as the potential for sex in asexual species, organic acid production genes being a key feature of black aspergilli, alternative approaches for degrading plant biomass, and indications for the genetic basis of stress response. A genome-wide phylogenetic analysis demonstrated in detail the relationship of the newly genome sequenced species with other aspergilli. CONCLUSIONS: Many aspects of biological differences between fungal species cannot be explained by current knowledge obtained from genome sequences. The comparative genomics and experimental study, presented here, allows for the first time a genus-wide view of the biological diversity of the aspergilli and in many, but not all, cases linked genome differences to phenotype. Insights gained could be exploited for biotechnological and medical applications of fungi.


Assuntos
Adaptação Biológica , Aspergillus/classificação , Aspergillus/genética , Biodiversidade , Genoma Fúngico , Genômica , Aspergillus/metabolismo , Biomassa , Carbono/metabolismo , Biologia Computacional/métodos , Sistema Enzimático do Citocromo P-450/genética , Sistema Enzimático do Citocromo P-450/metabolismo , Metilação de DNA , Proteínas Fúngicas/genética , Regulação Fúngica da Expressão Gênica , Redes Reguladoras de Genes , Genômica/métodos , Humanos , Redes e Vias Metabólicas , Anotação de Sequência Molecular , Família Multigênica , Oxirredutases/metabolismo , Filogenia , Plantas/metabolismo , Plantas/microbiologia , Metabolismo Secundário/genética , Transdução de Sinais , Estresse Fisiológico/genética
11.
Genome Announc ; 4(5)2016 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-27634999

RESUMO

We report here the first genome sequence of the white-rot fungus Obba rivulosa (Polyporales, Basidiomycota), a polypore known for its lignin-decomposing ability. The genome is based on the homokaryon 3A-2 originating in Finland. The genome is typical in size and carbohydrate active enzyme (CAZy) content for wood-decomposing basidiomycetes.

12.
Genome Biol ; 17(1): 124, 2016 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-27286965

RESUMO

BACKGROUND: The yellow potato cyst nematode, Globodera rostochiensis, is a devastating plant pathogen of global economic importance. This biotrophic parasite secretes effectors from pharyngeal glands, some of which were acquired by horizontal gene transfer, to manipulate host processes and promote parasitism. G. rostochiensis is classified into pathotypes with different plant resistance-breaking phenotypes. RESULTS: We generate a high quality genome assembly for G. rostochiensis pathotype Ro1, identify putative effectors and horizontal gene transfer events, map gene expression through the life cycle focusing on key parasitic transitions and sequence the genomes of eight populations including four additional pathotypes to identify variation. Horizontal gene transfer contributes 3.5 % of the predicted genes, of which approximately 8.5 % are deployed as effectors. Over one-third of all effector genes are clustered in 21 putative 'effector islands' in the genome. We identify a dorsal gland promoter element motif (termed DOG Box) present upstream in representatives from 26 out of 28 dorsal gland effector families, and predict a putative effector superset associated with this motif. We validate gland cell expression in two novel genes by in situ hybridisation and catalogue dorsal gland promoter element-containing effectors from available cyst nematode genomes. Comparison of effector diversity between pathotypes highlights correlation with plant resistance-breaking. CONCLUSIONS: These G. rostochiensis genome resources will facilitate major advances in understanding nematode plant-parasitism. Dorsal gland promoter element-containing effectors are at the front line of the evolutionary arms race between plant and parasite and the ability to predict gland cell expression a priori promises rapid advances in understanding their roles and mechanisms of action.


Assuntos
Genoma de Protozoário , Doenças das Plantas/parasitologia , Solanum tuberosum/parasitologia , Tylenchoidea/genética , Tylenchoidea/patogenicidade , Animais , Elementos Facilitadores Genéticos , Perfilação da Expressão Gênica , Transferência Genética Horizontal , Ilhas Genômicas , Genômica/métodos , Sequenciamento de Nucleotídeos em Larga Escala , Estágios do Ciclo de Vida , Motivos de Nucleotídeos , Matrizes de Pontuação de Posição Específica , Sítios de Splice de RNA , Splicing de RNA , Transcriptoma , Tylenchoidea/crescimento & desenvolvimento , Virulência/genética
13.
PLoS Genet ; 12(5): e1006017, 2016 05.
Artigo em Inglês | MEDLINE | ID: mdl-27153332

RESUMO

Drechmeria coniospora is an obligate fungal pathogen that infects nematodes via the adhesion of specialized spores to the host cuticle. D. coniospora is frequently found associated with Caenorhabditis elegans in environmental samples. It is used in the study of the nematode's response to fungal infection. Full understanding of this bi-partite interaction requires knowledge of the pathogen's genome, analysis of its gene expression program and a capacity for genetic engineering. The acquisition of all three is reported here. A phylogenetic analysis placed D. coniospora close to the truffle parasite Tolypocladium ophioglossoides, and Hirsutella minnesotensis, another nematophagous fungus. Ascomycete nematopathogenicity is polyphyletic; D. coniospora represents a branch that has not been molecularly characterized. A detailed in silico functional analysis, comparing D. coniospora to 11 fungal species, revealed genes and gene families potentially involved in virulence and showed it to be a highly specialized pathogen. A targeted comparison with nematophagous fungi highlighted D. coniospora-specific genes and a core set of genes associated with nematode parasitism. A comparative gene expression analysis of samples from fungal spores and mycelia, and infected C. elegans, gave a molecular view of the different stages of the D. coniospora lifecycle. Transformation of D. coniospora allowed targeted gene knock-out and the production of fungus that expresses fluorescent reporter genes. It also permitted the initial characterisation of a potential fungal counter-defensive strategy, involving interference with a host antimicrobial mechanism. This high-quality annotated genome for D. coniospora gives insights into the evolution and virulence of nematode-destroying fungi. Coupled with genetic transformation, it opens the way for molecular dissection of D. coniospora physiology, and will allow both sides of the interaction between D. coniospora and C. elegans, as well as the evolutionary arms race that exists between pathogen and host, to be studied.


Assuntos
Caenorhabditis elegans/microbiologia , Micoses/microbiologia , Filogenia , Spiroplasma/genética , Animais , Ascomicetos/genética , Ascomicetos/patogenicidade , Caenorhabditis elegans/parasitologia , Hibridização Genômica Comparativa , Hypocreales/classificação , Hypocreales/genética , Micoses/parasitologia , Spiroplasma/classificação , Spiroplasma/patogenicidade , Esporos Fúngicos/classificação , Esporos Fúngicos/genética , Esporos Fúngicos/patogenicidade , Virulência/genética
14.
Biotechnol Biofuels ; 8: 216, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26692083

RESUMO

BACKGROUND: White-rot basidiomycete fungi are potent degraders of plant biomass, with the ability to mineralize all lignocellulose components. Recent comparative genomics studies showed that these fungi use a wide diversity of enzymes for wood degradation. Deeper functional analyses are however necessary to understand the enzymatic mechanisms leading to lignocellulose breakdown. The Polyporale fungus Pycnoporus coccineus BRFM310 grows well on both coniferous and deciduous wood. In the present study, we analyzed the early response of the fungus to softwood (pine) and hardwood (aspen) feedstocks and tested the effect of the secreted enzymes on lignocellulose deconstruction. RESULTS: Transcriptomic and proteomic analyses revealed that P. coccineus grown separately on pine and aspen displayed similar sets of transcripts and enzymes implicated in lignin and polysaccharide degradation. In particular, the expression of lignin-targeting oxidoreductases, such as manganese peroxidases, increased upon cultivation on both woods. The sets of enzymes secreted during growth on both pine and aspen were more efficient in saccharide release from pine than from aspen, and characterization of the residual solids revealed polysaccharide conversion on both pine and aspen fiber surfaces. CONCLUSION: The combined analysis of soluble sugars and solid residues showed the suitability of P. coccineus secreted enzymes for softwood degradation. Analyses of solubilized products and residual surface chemistries of enzyme-treated wood samples pointed to differences in fiber penetration by different P. coccineus secretomes. Accordingly, beyond the variety of CAZymes identified in P. coccineus genome, transcriptome and secretome, we discuss several parameters such as the abundance of manganese peroxidases and the potential role of cytochrome P450s and pectin degradation on the efficacy of fungi for softwood conversion.

15.
Mycologia ; 105(6): 1412-27, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23935027

RESUMO

To degrade the polysaccharides, wood-decay fungi secrete a variety of glycoside hydrolases (GHs) and carbohydrate esterases (CEs) classified into various sequence-based families of carbohydrate-active enzymes (CAZys) and their appended carbohydrate-binding modules (CBM). Oxidative enzymes, such as cellobiose dehydrogenase (CDH) and lytic polysaccharide monooxygenase (LPMO, formerly GH61), also have been implicated in cellulose degradation. To examine polysaccharide-degrading potential between white- and brown-rot fungi, we performed genomewide analysis of CAZys and these oxidative enzymes in 11 Polyporales, including recently sequenced monokaryotic strains of Bjerkandera adusta, Ganoderma sp. and Phlebia brevispora. Furthermore, we conducted comparative secretome analysis of seven Polyporales grown on wood culture. As a result, it was found that genes encoding cellulases belonging to families GH6, GH7, GH9 and carbohydrate-binding module family CBM1 are lacking in genomes of brown-rot polyporales. In addition, the presence of CDH and the expansion of LPMO were observed only in white-rot genomes. Indeed, GH6, GH7, CDH and LPMO peptides were identified only in white-rot polypores. Genes encoding aldose 1-epimerase (ALE), previously detected with CDH and cellulases in the culture filtrates, also were identified in white-rot genomes, suggesting a physiological connection between ALE, CDH, cellulase and possibly LPMO. For hemicellulose degradation, genes and peptides corresponding to GH74 xyloglucanase, GH10 endo-xylanase, GH79 ß-glucuronidase, CE1 acetyl xylan esterase and CE15 glucuronoyl methylesterase were significantly increased in white-rot genomes compared to brown-rot genomes. Overall, relative to brown-rot Polyporales, white-rot Polyporales maintain greater enzymatic diversity supporting lignocellulose attack.


Assuntos
Proteínas Fúngicas/genética , Genoma Fúngico , Glicosídeo Hidrolases/genética , Polyporales/enzimologia , Polyporales/genética , Polissacarídeos/metabolismo , Madeira/microbiologia , Proteínas Fúngicas/metabolismo , Glicosídeo Hidrolases/metabolismo , Dados de Sequência Molecular , Filogenia , Polyporales/classificação , Polyporales/metabolismo , Polissacarídeos/química , Madeira/metabolismo
16.
Nat Commun ; 4: 1810, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23651998

RESUMO

Fungi are important for biomass degradation processes in mangrove forests. Given the presence of sea water in these ecosystems, mangrove fungi are adapted to high salinity. Here we isolate Pestalotiopsis sp. NCi6, a halotolerant and lignocellulolytic mangrove fungus of the order Xylariales. We study its lignocellulolytic enzymes and analyse the effects of salinity on its secretomes. De novo transcriptome sequencing and assembly indicate that this fungus possesses of over 400 putative lignocellulolytic enzymes, including a large fraction involved in lignin degradation. Proteomic analyses of the secretomes suggest that the presence of salt modifies lignocellulolytic enzyme composition, with an increase in the secretion of xylanases and cellulases and a decrease in the production of oxidases. As a result, cellulose and hemicellulose hydrolysis is enhanced but lignin breakdown is reduced. This study highlights the adaptation to salt of mangrove fungi and their potential for biotechnological applications.


Assuntos
Proteínas Fúngicas/metabolismo , Lignina/metabolismo , Rhizophoraceae/microbiologia , Tolerância ao Sal , Xylariales/enzimologia , Xylariales/fisiologia , Genoma Fúngico/genética , Glicosídeo Hidrolases/química , Glicosídeo Hidrolases/metabolismo , Espectrometria de Massas , Anotação de Sequência Molecular , Oxirredutases/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Salinidade , Tolerância ao Sal/efeitos dos fármacos , Tolerância ao Sal/genética , Análise de Sequência de DNA , Cloreto de Sódio/farmacologia , Transcriptoma/genética , Xylariales/genética , Xylariales/isolamento & purificação
17.
PLoS Pathog ; 8(12): e1003037, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23236275

RESUMO

The class Dothideomycetes is one of the largest groups of fungi with a high level of ecological diversity including many plant pathogens infecting a broad range of hosts. Here, we compare genome features of 18 members of this class, including 6 necrotrophs, 9 (hemi)biotrophs and 3 saprotrophs, to analyze genome structure, evolution, and the diverse strategies of pathogenesis. The Dothideomycetes most likely evolved from a common ancestor more than 280 million years ago. The 18 genome sequences differ dramatically in size due to variation in repetitive content, but show much less variation in number of (core) genes. Gene order appears to have been rearranged mostly within chromosomal boundaries by multiple inversions, in extant genomes frequently demarcated by adjacent simple repeats. Several Dothideomycetes contain one or more gene-poor, transposable element (TE)-rich putatively dispensable chromosomes of unknown function. The 18 Dothideomycetes offer an extensive catalogue of genes involved in cellulose degradation, proteolysis, secondary metabolism, and cysteine-rich small secreted proteins. Ancestors of the two major orders of plant pathogens in the Dothideomycetes, the Capnodiales and Pleosporales, may have had different modes of pathogenesis, with the former having fewer of these genes than the latter. Many of these genes are enriched in proximity to transposable elements, suggesting faster evolution because of the effects of repeat induced point (RIP) mutations. A syntenic block of genes, including oxidoreductases, is conserved in most Dothideomycetes and upregulated during infection in L. maculans, suggesting a possible function in response to oxidative stress.


Assuntos
Ascomicetos/genética , Ascomicetos/patogenicidade , Cromossomos Fúngicos/genética , Evolução Molecular , Genes Fúngicos/fisiologia , Doenças das Plantas/genética , Ascomicetos/metabolismo , Cromossomos Fúngicos/metabolismo , Elementos de DNA Transponíveis/fisiologia , Estresse Oxidativo/genética , Doenças das Plantas/microbiologia , Mutação Puntual
18.
PLoS One ; 7(11): e49138, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23209564

RESUMO

Crohn's disease (CD) is an inflammatory bowel disease of complex etiology, although dysbiosis of the gut microbiota has been implicated in chronic immune-mediated inflammation associated with CD. Here we combined shotgun metagenomic and metaproteomic approaches to identify potential functional signatures of CD in stool samples from six twin pairs that were either healthy, or that had CD in the ileum (ICD) or colon (CCD). Integration of these omics approaches revealed several genes, proteins, and pathways that primarily differentiated ICD from healthy subjects, including depletion of many proteins in ICD. In addition, the ICD phenotype was associated with alterations in bacterial carbohydrate metabolism, bacterial-host interactions, as well as human host-secreted enzymes. This eco-systems biology approach underscores the link between the gut microbiota and functional alterations in the pathophysiology of Crohn's disease and aids in identification of novel diagnostic targets and disease specific biomarkers.


Assuntos
Doença de Crohn/metabolismo , Doença de Crohn/microbiologia , Metagenoma , Metagenômica , Proteômica , Bactérias/genética , Bactérias/metabolismo , Análise por Conglomerados , Feminino , Trato Gastrointestinal/metabolismo , Trato Gastrointestinal/microbiologia , Humanos , Íleo/metabolismo , Íleo/microbiologia , Íleo/patologia , Mucosa Intestinal/metabolismo , Mucosa Intestinal/microbiologia , Mucosa Intestinal/patologia , Masculino , Redes e Vias Metabólicas , Proteoma , Gêmeos Monozigóticos
19.
BMC Genomics ; 13: 444, 2012 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-22937793

RESUMO

BACKGROUND: Softwood is the predominant form of land plant biomass in the Northern hemisphere, and is among the most recalcitrant biomass resources to bioprocess technologies. The white rot fungus, Phanerochaete carnosa, has been isolated almost exclusively from softwoods, while most other known white-rot species, including Phanerochaete chrysosporium, were mainly isolated from hardwoods. Accordingly, it is anticipated that P. carnosa encodes a distinct set of enzymes and proteins that promote softwood decomposition. To elucidate the genetic basis of softwood bioconversion by a white-rot fungus, the present study reports the P. carnosa genome sequence and its comparative analysis with the previously reported P. chrysosporium genome. RESULTS: P. carnosa encodes a complete set of lignocellulose-active enzymes. Comparative genomic analysis revealed that P. carnosa is enriched with genes encoding manganese peroxidase, and that the most divergent glycoside hydrolase families were predicted to encode hemicellulases and glycoprotein degrading enzymes. Most remarkably, P. carnosa possesses one of the largest P450 contingents (266 P450s) among the sequenced and annotated wood-rotting basidiomycetes, nearly double that of P. chrysosporium. Along with metabolic pathway modeling, comparative growth studies on model compounds and chemical analyses of decomposed wood components showed greater tolerance of P. carnosa to various substrates including coniferous heartwood. CONCLUSIONS: The P. carnosa genome is enriched with genes that encode P450 monooxygenases that can participate in extractives degradation, and manganese peroxidases involved in lignin degradation. The significant expansion of P450s in P. carnosa, along with differences in carbohydrate- and lignin-degrading enzymes, could be correlated to the utilization of heartwood and sapwood preparations from both coniferous and hardwood species.


Assuntos
Genômica/métodos , Phanerochaete/genética , Polyporaceae/genética , Madeira/microbiologia , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Genoma Fúngico/genética , Glicosídeo Hidrolases/genética , Phanerochaete/enzimologia , Polyporaceae/enzimologia
20.
PLoS One ; 6(9): e23784, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21912644

RESUMO

Ramlibacter tataouinensis TTB310(T) (strain TTB310), a betaproteobacterium isolated from a semi-arid region of South Tunisia (Tataouine), is characterized by the presence of both spherical and rod-shaped cells in pure culture. Cell division of strain TTB310 occurs by the binary fission of spherical "cyst-like" cells ("cyst-cyst" division). The rod-shaped cells formed at the periphery of a colony (consisting mainly of cysts) are highly motile and colonize a new environment, where they form a new colony by reversion to cyst-like cells. This unique cell cycle of strain TTB310, with desiccation tolerant cyst-like cells capable of division and desiccation sensitive motile rods capable of dissemination, appears to be a novel adaptation for life in a hot and dry desert environment. In order to gain insights into strain TTB310's underlying genetic repertoire and possible mechanisms responsible for its unusual lifestyle, the genome of strain TTB310 was completely sequenced and subsequently annotated. The complete genome consists of a single circular chromosome of 4,070,194 bp with an average G+C content of 70.0%, the highest among the Betaproteobacteria sequenced to date, with total of 3,899 predicted coding sequences covering 92% of the genome. We found that strain TTB310 has developed a highly complex network of two-component systems, which may utilize responses to light and perhaps a rudimentary circadian hourglass to anticipate water availability at the dew time in the middle/end of the desert winter nights and thus direct the growth window to cyclic water availability times. Other interesting features of the strain TTB310 genome that appear to be important for desiccation tolerance, including intermediary metabolism compounds such as trehalose or polyhydroxyalkanoate, and signal transduction pathways, are presented and discussed.


Assuntos
Adaptação Fisiológica/genética , Divisão Celular/genética , Comamonadaceae/citologia , Comamonadaceae/fisiologia , Clima Desértico , Genoma Bacteriano , Genômica , Adaptação Fisiológica/efeitos da radiação , Metabolismo dos Carboidratos/genética , Metabolismo dos Carboidratos/efeitos da radiação , Divisão Celular/efeitos da radiação , Membrana Celular/metabolismo , Membrana Celular/efeitos da radiação , Movimento Celular/genética , Movimento Celular/efeitos da radiação , Forma Celular/genética , Forma Celular/efeitos da radiação , Ritmo Circadiano/genética , Ritmo Circadiano/efeitos da radiação , Comamonadaceae/enzimologia , Comamonadaceae/genética , Reparo do DNA/genética , Reparo do DNA/efeitos da radiação , DNA Bacteriano/genética , Espaço Extracelular/genética , Espaço Extracelular/metabolismo , Espaço Extracelular/efeitos da radiação , Ácidos Graxos/metabolismo , Hidrólise/efeitos da radiação , Luz , Fluidez de Membrana/genética , Fluidez de Membrana/efeitos da radiação , Lipídeos de Membrana/metabolismo , Pressão Osmótica/efeitos da radiação , Estresse Oxidativo/genética , Estresse Oxidativo/efeitos da radiação , Polissacarídeos Bacterianos/biossíntese , Polissacarídeos Bacterianos/metabolismo , Transporte Proteico/genética , Transporte Proteico/efeitos da radiação , Análise de Sequência de DNA , Transdução de Sinais/genética , Transdução de Sinais/efeitos da radiação , Trealose/biossíntese , Trealose/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA