Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
1.
J Immunol ; 206(1): 59-66, 2021 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-33268481

RESUMO

Friend leukemia virus integration 1 (Fli-1) is an ETS transcription factor and a critical regulator of inflammatory mediators, including MCP-1, CCL5, IL-6, G-CSF, CXCL2, and caspase-1. GM-CSF is a regulator of granulocyte and macrophage lineage differentiation and a key player in the pathogenesis of inflammatory/autoimmune diseases. In this study, we demonstrated that Fli-1 regulates the expression of GM-CSF in both T cells and endothelial cells. The expression of GM-CSF was significantly reduced in T cells and endothelial cells when Fli-1 was reduced. We found that Fli-1 binds directly to the GM-CSF promoter using chromatin immunoprecipitation assay. Transient transfection assays indicated that Fli-1 drives transcription from the GM-CSF promoter in a dose-dependent manner, and mutation of the Fli-1 DNA binding domain resulted in a significant loss of transcriptional activation. Mutation of a known phosphorylation site within the Fli-1 protein led to a significant increase in GM-CSF promoter activation. Thus, direct binding to the promoter and phosphorylation are two important mechanisms behind Fli-1-driven activation of the GM-CSF promoter. In addition, Fli-1 regulates GM-CSF expression in an additive manner with another transcription factor Sp1. Finally, we demonstrated that a low dose of a chemotherapeutic drug, camptothecin, inhibited expression of Fli-1 and reduced GM-CSF production in human T cells. These results demonstrate novel mechanisms for regulating the expression of GM-CSF and suggest that Fli-1 is a critical druggable regulator of inflammation and immunity.


Assuntos
Endotélio/metabolismo , Fator Estimulador de Colônias de Granulócitos e Macrófagos/metabolismo , Proteína Proto-Oncogênica c-fli-1/metabolismo , Linfócitos T/fisiologia , Animais , Camptotecina/farmacologia , Endotélio/patologia , Regulação da Expressão Gênica , Fator Estimulador de Colônias de Granulócitos e Macrófagos/genética , Humanos , Células Jurkat , Camundongos , Terapia de Alvo Molecular , Células NIH 3T3 , Regiões Promotoras Genéticas/genética , Proteína Proto-Oncogênica c-fli-1/genética , RNA Interferente Pequeno/genética , Fator de Transcrição Sp1/genética , Linfócitos T/efeitos dos fármacos , Inibidores da Topoisomerase I/farmacologia
2.
J Pharm Pharm Sci ; 22(1): 536-547, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31718771

RESUMO

Human papillomaviruses (HPV) are small, double-stranded DNA viruses that cause cervical cancer, the second most lethal cancer among women in the world. Currently, two vaccines are on the market for preventing HPV-caused cervical cancers and warts. Both are virus-like particle (VLP)-based vaccines. However, these vaccines have limitations; they are costly, have an invasive route of administration, require trained personnel to administer, need cold chain storage to preserve them, and most of all, they are preventive vaccines that do not have curative effects. Therefore, it is necessary to develop therapeutic HPV vaccines to facilitate the control of HPV-associated malignancies and to address all these issues. Recently there are DNA vaccines under investigation to prevent HPV. In general, DNA-based vaccines are better than or an excellent alternative to traditional vaccines since they can closely mimic live infections and can induce both antibody and cell-mediated immune responses. DNA vaccines involve the delivery of plasmid DNA (pDNA) which encodes the specific antigens. DNA vaccines have potential to be effective therapeutic tools against HPV infections. Combining the VLP-based and DNA-based vaccines can be highly effective as they can complement each other. VLP vaccines are more prone to mucosal immunity whereas DNA vaccines are more towards systemic immunity. In this article, we discuss an optimal formulation that will contain both type of vaccines, preventive and therapeutic. A film dosage form can be a good option which can be administered in buccal or sublingual routes for systemic action or in the vaginal area for local action to treat cervical cancer and to protect from future infection. Multiple vaccines in native form or in particulate form can be incorporated in film dosage forms. The film dosage form of vaccines can elicit both antibody-mediated (preventative) and cell-mediated (therapeutic) mechanisms. Film dosage forms are feasible to prepare for vaccine administration in the mouth cavity, GI tract, and vagina.


Assuntos
Sistemas de Liberação de Medicamentos , Papillomaviridae/efeitos dos fármacos , Infecções por Papillomavirus/prevenção & controle , Vacinas contra Papillomavirus/farmacologia , Neoplasias do Colo do Útero/prevenção & controle , Vacinas de DNA/farmacologia , Vacinas de Partículas Semelhantes a Vírus/química , Composição de Medicamentos , Feminino , Humanos , Vacinas contra Papillomavirus/administração & dosagem , Vacinas de DNA/química
3.
J Neurosci ; 39(22): 4268-4281, 2019 05 29.
Artigo em Inglês | MEDLINE | ID: mdl-30867261

RESUMO

Antagonism of nicotinic acetylcholine receptors (nAChRs) in the medial habenula (MHb) or interpeduncular nucleus (IPN) triggers withdrawal-like behaviors in mice chronically exposed to nicotine, implying that nicotine dependence involves the sensitization of nicotinic signaling. Identification of receptor and/or neurophysiological mechanisms underlying this sensitization is important, as it could promote novel therapeutic strategies to reduce tobacco use. Using an approach involving photoactivatable nicotine, we previously demonstrated that chronic nicotine (cNIC) potently enhances nAChR function in dendrites of MHb neurons. However, whether cNIC modulates downstream components of the habenulo-interpeduncular (Hb-IP) circuit is unknown. In this study, cNIC-mediated changes to Hb-IP nAChR function were examined in mouse (male and female) brain slices using molecular, electrophysiological, and optical techniques. cNIC enhanced action potential firing and modified spike waveform characteristics in MHb neurons. Nicotine uncaging revealed nAChR functional enhancement by cNIC on proximal axonal membranes. Similarly, nAChR-driven glutamate release from MHb axons was enhanced by cNIC. In IPN, the target structure of MHb axons, neuronal morphology, and nAChR expression is complex, with stronger nAChR function in the rostral subnucleus [rostral IPN (IPR)]. As in MHb, cNIC induced strong upregulation of nAChR function in IPN neurons. This, coupled with cNIC-enhanced nicotine-stimulated glutamate release, was associated with stronger depolarization responses to brief (1 ms) nicotine uncaging adjacent to IPR neurons. Together, these results indicate that chronic exposure to nicotine dramatically alters nicotinic cholinergic signaling and cell excitability in Hb-IP circuits, a key pathway involved in nicotine dependence.SIGNIFICANCE STATEMENT This study uncovers several neuropharmacological alterations following chronic exposure to nicotine in a key brain circuit involved in nicotine dependence. These results suggest that smokers or regular users of electronic nicotine delivery systems (i.e., "e-cigarettes") likely undergo sensitization of cholinergic circuitry in the Hb-IP system. Reducing the activity of Hb-IP nAChRs, either volitionally during smoking cessation or inadvertently via receptor desensitization during nicotine intake, may be a key trigger of withdrawal in nicotine dependence. Escalation of nicotine intake in smokers, or tolerance, may involve stimulation of these sensitized cholinergic pathways. Smoking cessation therapeutics are only marginally effective, and by identifying cellular/receptor mechanisms of nicotine dependence, our results take a step toward improved therapeutic approaches for this disorder.


Assuntos
Habenula/efeitos dos fármacos , Núcleo Interpeduncular/efeitos dos fármacos , Vias Neurais/efeitos dos fármacos , Nicotina/farmacologia , Animais , Feminino , Habenula/metabolismo , Núcleo Interpeduncular/metabolismo , Masculino , Camundongos , Vias Neurais/metabolismo , Agonistas Nicotínicos/farmacologia , Receptores Nicotínicos/metabolismo , Transmissão Sináptica/efeitos dos fármacos , Tabagismo/metabolismo
4.
J Biol Chem ; 293(45): 17442-17453, 2018 11 09.
Artigo em Inglês | MEDLINE | ID: mdl-30257867

RESUMO

L1 cell adhesion molecule (L1CAM) is well-known for its importance in nervous system development and cancer progression. In addition to its role as a plasma membrane protein in cytoskeletal organization, recent in vitro studies have revealed that both transmembrane and cytosolic fragments of proteolytically cleaved vertebrate L1CAM translocate to the nucleus. In vitro studies indicate that nuclear L1CAM affects genes with functions in DNA post-replication repair, cell cycle control, and cell migration and differentiation, but its in vivo role and how its nuclear levels are regulated is less well-understood. Here, we report that mutations in the conserved ankyrin-binding domain affect nuclear levels of the sole Drosophila homolog neuroglian (Nrg) and that it also has a noncanonical role in regulating transcript levels of the oncogene Myc in the adult nervous system. We further show that altered nuclear levels of Nrg correlate with altered transcript levels of Myc in neurons, similar to what has been reported for human glioblastoma stem cells. However, whereas previous in vitro studies suggest that increased nuclear levels of L1CAM promote tumor cell survival, we found here that elevated levels of nuclear Nrg in neurons are associated with increased sensitivity to oxidative stress and reduced life span of adult animals. We therefore conclude that these findings are of potential relevance to the management of neurodegenerative diseases associated with oxidative stress and cancer.


Assuntos
Moléculas de Adesão Celular Neuronais/metabolismo , Núcleo Celular/metabolismo , Proteínas de Drosophila/metabolismo , Regulação da Expressão Gênica , Molécula L1 de Adesão de Célula Nervosa/metabolismo , Neurônios/metabolismo , Proteínas Proto-Oncogênicas c-myc/biossíntese , Motivos de Aminoácidos , Animais , Moléculas de Adesão Celular Neuronais/genética , Núcleo Celular/patologia , Proteínas de Drosophila/genética , Drosophila melanogaster , Neoplasias/genética , Neoplasias/metabolismo , Neoplasias/patologia , Molécula L1 de Adesão de Célula Nervosa/genética , Doenças Neurodegenerativas/genética , Doenças Neurodegenerativas/metabolismo , Doenças Neurodegenerativas/patologia , Neurônios/patologia , Proteínas Proto-Oncogênicas c-myc/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA